KELOMPOK
MATRIKS Ordo 3x3

• Hendhi Charinta Septayana
• M Iqbal Abiyyu Dzaky M
• Rizqi Aulia nurlaili
• Zahrah Ayu Afifah...
DETERMINAN MATRIKS

Determinan matriks 𝐴 di definisikan sebagai
selisih antara perkalian elemen - elemen pada
diagonal uta...
DETERMINAN MATRIKS ORDO 3x3
Untuk mencari determinanmatriks berordo 3x3
dapat digunakan dua metode, sebagaiberikut:

• Met...
METODE SARRUS

Cara ini paling tepat digunakan untuk menentukan
determinan matriks ordo 3×3.
Cara sarrus :
i. Tuliskan kol...
q

r

s

t

u

v

Jika Matriks B =

p

w

x
q

r

p

q

s

t

u

s

t

v

maka det (B) = |B| =

p

w

x

v

w

= ptx + quv...
METODE EKSPANSI KOFAKTOR
a.

Pengertian Minor . Minor suatu matriks 𝐴 dilambangkan
dengan 𝐴 𝐴j adalah matriks bagian dari ...
b. Pengertian Kofaktor Kofaktor suatu elemen baris ke-𝑖 dan kolom ke𝑖dari matriks A dilambangkan dengan
𝑖 𝑖j =(−1) 𝑖+𝑖. |𝑖...
2

4

1

7

5

7

𝑖=

3

2

CONTOH

3

Untuk mendapatkan det(𝑖) dengan metode kofaktor adalah
mencari terlebih dahulu dete...
Upcoming SlideShare
Loading in...5
×

Matriks ordo 3x3

38,606

Published on

0 Comments
5 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
38,606
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
440
Comments
0
Likes
5
Embeds 0
No embeds

No notes for slide

Transcript of "Matriks ordo 3x3"

  1. 1. KELOMPOK MATRIKS Ordo 3x3 • Hendhi Charinta Septayana • M Iqbal Abiyyu Dzaky M • Rizqi Aulia nurlaili • Zahrah Ayu Afifah Febriani 7 15 23 31
  2. 2. DETERMINAN MATRIKS Determinan matriks 𝐴 di definisikan sebagai selisih antara perkalian elemen - elemen pada diagonal utama dengan perkalian elemen elemen pada diagonal sekunder. Determinan dari matriks dinotasikan dengan det 𝐴 atau |𝐴|. Nilai dari determinan suatu matriks berupa bilangan real.
  3. 3. DETERMINAN MATRIKS ORDO 3x3 Untuk mencari determinanmatriks berordo 3x3 dapat digunakan dua metode, sebagaiberikut: • Metode Sarrus • Metode Ekspansi Kofaktor Tetapi lebih mudah menggunakan metode sarrus seperti yang kami tulis
  4. 4. METODE SARRUS Cara ini paling tepat digunakan untuk menentukan determinan matriks ordo 3×3. Cara sarrus : i. Tuliskan kolom pertama dan kedua dari determinan awal di sebelah kanan setelah kolom ketiga. ii. Kalikan unsur – unsur pada keenam diagonal, yaitu tiga kolom diagonal utama (dari kiri ke kanan) dan tiga kolom diagonal pendamping (dari kanan ke kiri). Hasil kali diagonal utama dijumlahkan dan hasil kali pada diagonal pendamping dikurangkan.
  5. 5. q r s t u v Jika Matriks B = p w x q r p q s t u s t v maka det (B) = |B| = p w x v w = ptx + quv + rsw – vtr –wup – xsq Perlu diperhatikan bahwa Metode Sarrus tidak berlaku bila matriks berordo 4x4 dan yang lebih tinggi lagi.
  6. 6. METODE EKSPANSI KOFAKTOR a. Pengertian Minor . Minor suatu matriks 𝐴 dilambangkan dengan 𝐴 𝐴j adalah matriks bagian dari 𝐴 yang diperoleh dengan cara menghilangkan elemen - elemennya pada baris ke-𝐴 dan elemen elemen pada kolom ke-𝐴. Contoh : Q= 2 maka, 4 3 1 , M12 = 3 2 1 7 , M13 = 5 7 M11 = 7 2 3 3 2 3 2 1 7 1 7 M11, M12 , M13 merupakan sub,matriks hasil ekspansi baris ke-1 dari matriks Q
  7. 7. b. Pengertian Kofaktor Kofaktor suatu elemen baris ke-𝑖 dan kolom ke𝑖dari matriks A dilambangkan dengan 𝑖 𝑖j =(−1) 𝑖+𝑖. |𝑖 𝑖j| = (−1) 𝑖+𝑖.det (𝑖 𝑖.j) Penentuan tanda dr determinan matriks persegi berodo 3x3 : + - + - + - + - + Untuk mencari det (A) dg metode ekspansi kofaktor cukup mengambil satu ekspansi saja misal ekspansi bari ke -1
  8. 8. 2 4 1 7 5 7 𝑖= 3 2 CONTOH 3 Untuk mendapatkan det(𝑖) dengan metode kofaktor adalah mencari terlebih dahulu determinan – determinan minornya yang diperoleh dari ekspansi baris ke-1 diatas, yaitu : M11= 7 2 M13= 1 7 , det(𝑖11) = 11 ; M12= 5 , det(𝑖12) = 5 ; -32 1 3 7 , det(𝑖13)=− 47 2 det(𝑖)= 𝑖11.𝑖11+𝑖12.𝑖12+𝑖13.𝑖13 = (−1)1+1.|𝑖11|.𝑖11+ (−1)1+2.|𝑖12|.𝑖12 + (−1)1+3.|𝑖13|.𝑖13 =11.3 − (−32).2 + (−47).4 =33+64−188 = −91 7 3
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×