Full Dimension MIMO and Beamforming Technologies for B4G

22,320 views
23,558 views

Published on

Published in: Technology
0 Comments
13 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
22,320
On SlideShare
0
From Embeds
0
Number of Embeds
15,274
Actions
Shares
0
Downloads
356
Comments
0
Likes
13
Embeds 0
No embeds

No notes for slide

Full Dimension MIMO and Beamforming Technologies for B4G

  1. 1. 제8회 차세대이동통신망 표준기술 단기 강좌Seoul, Korea, October 18-19, 2012 Full Dimension MIMO andBeamforming Technologies for B4G Younsun Kim younsun@samsung.com
  2. 2. I RequirementII TechnologiesIII Roadmap
  3. 3. I Requirement
  4. 4. Requirement of Beyond 4G NetworkSignificant network capacity enhancement Network energy efficiency improvement- Continued evolution of macro cell - Network capacity improvement without necessarily increasing energy consumption- Enhancement for small cell, e.g., LTE or others - Energy efficiency improvement for both macro and small cells Mobile network energy consumption 1000x traffic increase towards 2020 Source: GeSI SMART2020 Report (2008)Enhanced network traffic control Support of various types of LTE device- Efficient support of various traffic types - Consider the market need for various device types, e.g., low cost LTE UEs 3
  5. 5. II Technologies • Full Dimension MIMO
  6. 6. Full Dimension MIMO (FD-MIMO) System (FD- Solution for capacity demand BenefitFull Dimension MIMO with 2D AAS Capacity 10x (Active Antenna System) 3-5x MU-MIMO with 10s of UEs 2D AAS array & 100 antennas Rel-10 Rel -12 FD-MIMO Rel-13 FD-MIMO 32-64 Tx 100 Tx 3D-SCM channel Throughput with (8x8), dH = 0.5λ , dV = 4λ 15 1 Cell-average throughput (b/s/Hz) Cell-edge throughput (b/s/Hz) 10 0.5 5 FD-MIMO eNB CPRI IP High order MU-MIMO transmission 0 0 to more than 10 UEs 0 5 10 15 20 25 30 LTE Infrastructure Number of users per sector 5
  7. 7. Full Dimension MIMO Concept RF/Antennas Baseband CPRI 6
  8. 8. Active Antenna System – Road to FD-MIMO FD- Active antenna systems – integrating RF components into antennas, allowing: - Improved energy efficiency - Improved beamforming capability (vertical and horizontal active beamforming) - Improved system capacity - Reduced cost of maintenance and site rental 3GPP RAN4: SI on RF and EMC requirements for AAS Important step toward realization of FD-MIMO Base station evolution with Active Antenna Systems 7
  9. 9. RF Transceiver Architecture for FD-MIMO FD- Full digital control of individual active antenna in FD-MIMO allows - Easy adaptation to traffic and UE population change - Flexible partitioning of antenna resource for coverage and capacity N Elements PA PA TRX PA TRX 1 xN 1 LNA PA N Elements LNA N Elements … … PA N Elements …TRX LNA TRX PA TRX PA TRX N LNA N LNA LNA Active Antenna Module Active Antenna Module Active Antenna Module Multiple TRX + multiple PACommon TRX + common PA Common TRX + multiple PA Multiple TRX + multiple PA Current base station – AAS solution in RAN4 SI Smart 2D-AAS for passive antennas FD-MIMO 8
  10. 10. FD-FD-MIMO 2D AAS Form Factor Examples 0.5m λ=12cm λ/2 @ 2.5GHz 0.5m 2λ λ/2 λ/2 λ/2 1m0.5m Example 1: 8x8 array with “uniform” elements Example 2: 8x4 array with “rectangular” elements Full digital beamforming across 64 elements Each element is 4 antennas with analog beamforming FD-MIMO antenna panel form factor is well within practical range 9
  11. 11. FD-FD-MIMO with 1D/2D AAS Configurations 2D antenna array:UMa 2D antenna array:UMa 1 1 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 cdfcdf 0.5 0.5 0.4 0.4 0.3 0.3 (64x1), dH=0.5λ, dV =0.5λ (64x1), dH=0.5λ, dV =0.5λ 0.2 (8x8), dH=0.5λ, dV =0.5λ 0.2 (8x8), dH=0.5λ, dV =0.5λ 0.1 (8x8), dH=0.5λ, dV =4λ 0.1 (8x8), dH=0.5λ, dV =4λ 1-Tx 1-Tx 0 0 -10 -5 0 5 10 15 20 25 30 35 40 0 0.5 1 1.5 2 2.5 3 3.5 SINR (dB) User throughput (b/s/Hz) 57 sectors, 10 UE/sector Long-term fading only Perfect AoD assumed at eNB SINR-throughput mapping using TU3 link results (64x1), (8x8), (8x8), BS Antenna configuration 1Tx dH=dV=0.5λ dH=dV=0.5λ dH=0.5λ, dV = 4λ Half power beamwidth (H, V) (70, 10) (90, 90) (90, 90) (90, 90)Cell average throughput (bps/Hz) 0.880 13.539 3.814 9.960 Cell edge throughput (bps/Hz) 0.010 0.260 0.078 0.203 10
  12. 12. 1D (64x1): dH = 0.5λ 0.5λ φ2 = 90ο φ1 = 70ο φ2 = 90ο , θ 2 = 110ο φ1 = 70ο , MU Interference virtually non-existent using θ1 = 100ο 64-antenna horizontal beamforming At 700MHz, 64 antennas with half lambda spacing is 15m long! 11
  13. 13. 2D (8x8): dH = 0.5λ, dV = 0.5 λ φ2 = 90ο φ1 = 70ο φ1 = 70ο , θ1 = 100ο Azimuth Low MU Interference from horizontal beamforming θ 2 = 110 ο θ1 = 100ο φ2 = 90ο , θ 2 = 110ο Elevation High MU Interference from vertical beamforming 12
  14. 14. 2D (8x8): dH = 0.5λ, dV = 4 λ φ2 = 90ο φ1 = 70ο φ1 = 70ο , θ1 = 100ο Azimuth Low MU Interference from horizontal beamforming θ 2 = 110ο θ1 = 100ο φ2 = 90ο , θ 2 = 110ο Elevation Low MU Interference from vertical beamforming 13
  15. 15. FD-FD-MIMO Multi-user Dimensioning Multi- Cell capacity increases until around 30 users/sector Cell-edge throughput drops but still better than the reference value of 0.01 Throughput with (8x8), dH = 0.5λ, dV = 4λCell-average throughput (b/s/Hz) Cell-edge throughput (b/s/Hz) Cell average throughput Cell edge throughput average edge Case: UMa(dV=4.0λ) Number of scheduled UEs per sector 14
  16. 16. 3D-3D-SCM Modeling Principles Associate elevation angles to paths generated by SCM Correlate elevation statistics with other large-scale fading parameters Reuse the mechanism and procedure in SCM z z β= 0 β α x α x y y SCM 3D SCM α: azimuth angle β: elevation angle 15
  17. 17. 3D-3D-SCM Block Diagram 1 Choose scenario Suburban macro Urban macro Urban micro2 Determine user parameters Azimuth angle of departure (A-AoD) Subpath offset of A-AoD 1 Azimuth spread at departure (ASD) Elevation spread at departure (ESD) Elevation angle of departure (E-AoD) Subpath offset of E-AoD Lognormal shadowing (SF) Path delays Delay spread (DS) Average path powers Azimuth angle of arrival (A-AoA) Orientation, speed vector Subpath offset of A-AoA Antenna gains Elevation angle of arrival (E-AoA) Subpath offset of E-AoA 3 Generate channel coefficients 16
  18. 18. Initial Evaluation Results with 3D-SCM 3D- BS antenna configuration Avg. throughput Edge throughput UE Rx (H x V) (bps/Hz) / gain (bps/Hz) / gain 2Hx1V, (0.5λ) 2 1.51 0.029 9.43 0.446 64Hx1V, (0.5λ) 1 / x6.2 / x15 6.27 0.252 32Hx1V, (0.5λ) 1 / x4.2 / x8.7 5.24 0.219 8Hx8V, (0.5λ, 0.5λ) 1 / x3.5 / x7.6 3.53 0.076 8Hx4V, (0.5λ, 0.5λ) 1 / x2.3 / x2.6 8Hx4V, (0.5λ, 2λ) 5.81 0.144 1 Electrical down tilt = 15o / x3.8 / x5 ESD = 1.7 assumed, indicating channel with limited v-domain diversity Further gain expected with 2 Rx UE, larger ESD and better scheduler FD-MIMO is a promising technology driver for Rel-12 and beyond 17
  19. 19. Potential LTE/LTE-A Specification Impact LTE/LTE- Enhanced reference signal design - DMRS: Demodulation Reference Signal - CSI-RS: Channel Status Information Reference Signal - SRS: Sounding Reference Signal Enhanced channel feedback design - Low overhead - High precision - Capable of overcoming CQI mismatch Considerations for energy efficiency Considerations for coexistence with legacy systems 18
  20. 20. III Roadmap
  21. 21. 3GPP Release RoadmapRel-12- FullDimension MIMO- Inter-eNB carrier aggregation- Controlplane overhead reduction- Enhancement of Rel-11 featuresRel-13- Enhancement on FD-MIMO, inter-eNB carrier aggregation, and CP overhead reduction- Technologies for higher frequency 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 WRC-15 Start of commercialization RAN WS on Rel-12 and onwards 20
  22. 22. Technology Roadmap Rel- Rel-11 Rel- Rel-12 Rel- Rel-13 CoMP WI CoMP Enhancement WI Further DL MIMO Enhancement WI FD-MIMO SI FD-MIMO WI FD-MIMO Enh WI Enh DL ctrl ch WI FeICIC WI LTE TDD IMTA SI LTE TDD IMTA WI Low-cost MTC UE SI Low-cost MTC UE WI Coverage Enh SI Coverage Enh WIRAN overload ctrl WI CP-reduction SI CP-overhead reduction WI CP-reduction enh WI eDDA WICA enhancements WI Inter-eNB CA SI Inter-eNB CA WI Inter-eNB CA enh WI MDT enhance WI MDT enhancements+ WI HetNet mob SI HetNet mobility WI Energy Saving WI Energy Saving Enhancement WI Mobile Relay SI Mobile Relay WI LIPA/SIPTO WI UP-CON WI UP-CON enh WIAdvanced Receiver WI Further adv rx SI? Further advanced receiver WI? RAN1 RAN2 Technologies for higher RAN3 frequency RAN4 21

×