SlideShare a Scribd company logo
1 of 44
Download to read offline
The University of Tennessee, Knoxville




Backscattering Spectrometry
                                                        Part 1




                                          Professor C.J.McHargue

                                                Younes Sina
Backscattering spectrometry using ion beams with energies in
the megaelectronvolt range has been used extensively for
accurate determination of stoichiometry , elemental areal
density ,and impurity distributions in thin films.
Kinematic factor




              K E /E
                            i
                   i        1   0




                                                                     2
           (M 2  M 2sin 2 )  M cos       1/ 2
                                      
                        2       1                                1
     K
          
                      M M             
                                         1         2




                                    Z2
                                     M2




         E0    M1      Z1                 M1   Z1       E0 -ΔE
Areal density

                                              Integrated peak count
Areal density, Nt, as atoms per unit area



                             Ai cos i
        Nt                
                      i
                            Qi ( E ,  )

                                                               Cross section
          Incident ions              Detector solid angle
Rutherford scattering cross section



                                      e2≈1.44x10-13


                                                                                  2

              Z Z e2  4[(M 2  M 1 sin 2 )  M 2 cos ]
                             2
                                   2                                1/ 2
 ( E , )          
                  1   2
                             2
 R
              4E         M 2sin 4 (M 2  M 1 sin 2 )
                                                                           1/ 2

                     
                                              2
                                          2




                                       Z2
                                      M2




         E0    M1     Z1                     M1       Z1   E0 -ΔE
The average stoichiometric ratio for the compound film AmBn

                                                           nABN 0
                                                         
                                                    AB
                                             N      B
                                                            MAB
             n NB AB A( E , )
                  .
             m NA AA B ( E , )
                                            Cross section ratio
                      Ratio of measured
                    integrated peak count

           mABN 0
         
    AB
N   A
            MAB
Physical film thickness     AmBn


                          ( Nt ) A       ( Nt ) B
                 t           AB
                                             AB
                          N   A          N   B




           mABN 0                                         nABN 0
                                                        
    AB                                              AB
N   A
            MAB                              N      B
                                                            MAB


                MAB  mMA  nMB
FUNDAMENTALS




              Energy
              separation
                                           dK 
                                 E1  E 0      EM 2
                                           dM 2 


                                  E         Minimum energy separation that can be
                   M 2                     experimentally resolved
                                   dK 
                               E 0      
                                   dM 2 
mass resolution for fixed θ:
Elastic scattering cross section




                                                      Fraction of incident particles
   Average differential cross section
                                                      scattered to the detector



                     1  dQ( E ) 1
        ( , E )   (         )
                     Nt  Q       ( )

                                                               Detector solid angle

               Number of target atoms per unit area
Rutherford cross section



                                                 Z2
                                                 M2




                              E0   M1   Z1              M1   Z1




                                             2
                       Z Z  
  ( E , )  0.02073 
                                                          M 1 
                             sin
                                   1    2        4
   R                                                     2    
                                                       2   M 2 
                       4E  
        Unit: barn/ sr
        1 b(barn)=10-24 cm2
Non-Rutherford cross section

                                                             Low energy



           L’Ecuyer Eq. for Low energy ion

                                                   4/3
                        1 0.049Z 1Z 2
                    
                    R
                                        E   CM



                                                         Center-of-mass kinetic energy (keV)
   Wenzel and Whaling for light ion with
   MeV energy                                                      ECM≈Elab

                                             7/2
               1 0.0326Z 1Z 2
           
           R
                               E   CM
Laboratory projectile kinetic energy
                                                                                     Non-Rutherford
                                               For 1H:

                                                          (0.12  0.01) Z 2  (0.5  0.1)
                                                  NR
                                              E
  Laboratory projectile kinetic energy(MeV)



                                                  Lab



                                              For 4He:


                                                          (0.25  0.01) Z 2  (0.4  0.2)
                                                  NR
                                              E   Lab




                                              For 7Li:


                                                           (0.330  0.005)Z 2  (1.4  0.1)
                                                    NR
                                               E    Lab
Experimental geometry




  θ1

  θ2




  π   1  2          cosθ2= cos (π-θ).cosθ1
Experimental geometry



For IBM geometry


         x                           x
 din                       dout 
       cos  1                     cos  2


For Cornel



        x                             x
din                    dout 
      cos  1                  cos  1, cos  2
Effects of energy loss of ions in solids


                                                Atomic density
        dE
            N                                            Stopping cross section
        dx
stopping power

       For a compound of AmBn:
       εAB =mεA+nεB

               AB
     dE 
                  N                 N A A  N B B
                         AB       AB       AB         AB


     dx 
                                          Atomic density
         Molecular density
Example:                      Calculate the stopping cross section and stopping power of
                              2 MeV 4He+ in Al2O3 using Bragg rule

 From appendix 3:                 εAl= 44x10-15 eVcm2                               εO= 35x10-15 eVcm2
 For a compound of AmBn:
 εAB =mεA+nεB
 εAl2O3=(2x44+3x35)x10-15 =193x10-15eVcm2
                   g           23 molecules
           N 0 4 cm 3  6 10      mol                22 Al2O3molecules
 N  M                                      2.35 10
  Al 2 O 3


                          102
                                g                              cm 3
                              mol
                   Al 2 O 3
 dE                                                                                                        eV
                                                             2.35 10 22 193 10 15  46
                                      Al 2 O 3       Al 2 O 3
                                  N                                                                               0
 dx                                                                                                         A

                                                     Al atoms                                                     O atoms
                                                                                    3  2.35 10 22  7.11022
                                                                        Al 2 O 3
               2  2.35 1022  4.7 1022
    Al 2O 3
N   Al
                                                       cm 3
                                                                    N   O
                                                                                                                    cm 3
Example:

               Al 2 O 3
 dE                                                                                       eV
                        N                             2.35 10 193 10   15
                                                                                      46
                               Al 2 O 3       Al 2 O 3             22
                                                                                                0
 dx                                                                                       A

                                          15                           15            eV
  4.7 10  44 10 22
                                                 7.110  35 10
                                                              22
                                                                               46 10      8

                                                                                       cm
        eV
  46      0
           A

                                 x
                      E   (dE / dx)dx
                                 0
Depth scale                    x
                        E   (dE / dx)dx
                               0                         Energy loss factor

                          E  S  x

             dE              dE       1 
    S    K         1
                                              
              dx in cos  1  dx out cos  2 


   E   N .x                                 Stopping cross section factor



                                                         1 
                             K in   1
                                                  out         
                                       cos  1         cos  2 

                                                       1                  1 
                                          K A  in           out, A
                                    AB             AB             AB
    E A   A N x                                                               
              AB   AB
                                    A
                                                     cos  1            cos  2 
Depth resolution
                                       Calculate the depth- scattered ion energy differences
    Example
                                       for 2 MeV 4He+ in Al2O3
                                       θ1=0°and θ2=10°
                                       K factor for4He on Al=0.5525
                                       K factor for4He on O=03625

                                                          0.5525  2  1.105 MeV
                                                    Al

     E1  KE0                               E   1

                                                          0.3625  2  0.725 MeV
                                                    O
                                            E       1
Using the surface-energy approximation                                               ε at E0,surface
                                                             εAB =mεA+nεB

                   2   in  3   in  2  44 1015  3  35 1015  193 1015 eVcm 2
        Al 2 O 3                  Al            O
        in
                                                                                    ε at E1

 out, Al  2   out, Al  3   out, Al  2  511015  3  46 1015  240 1015 eVcm 2
      Al 2 O 3               Al                 O




               2   out,O  3   out,O  2  54 1015  3  48 1015  252 1015 eVcm 2
    Al 2 O 3            Al                  O
    out,O
Example               We can now calculate the stopping cross section factors

                                                                                        1 
               [ ]
                                                                    1
                                                K Al  in                 out, Al
                                Al 2 O 3                 Al 2 O 3             Al 2 O 3
                                                                                               
                                                                  cos  1              cos  2 
                          0
                                Al
                                                

[ ]
       Al 2O 3
   0                  0.5525 193 1015  240 1015 1.015  350 1015 eVcm 2
       Al


                                                                                  1 
               [ ]
                                                              1
                                           K O  in                 out,O
                              Al 2 O 3             Al 2 O 3             Al 2 O 3
                                                                                         
                                                            cos  1              cos  2 
                      0
                          O
                                           

 [ ]
           Al 2O 3
       0              0.3625 193 1015  252 1015 1.015  326 1015 eVcm 2
           O


       Using the molecular density N Al2O3=2.35x1022 molecules/cm3 we find:


   E Al                  0          Al 2 O 3

                                         Al         N
                                                        Al 2 O 3     
                                                                   x
                                                                     
                                                                           eV 
                                                                      82.3 0   x
                                                                              
                                                                            A 
    EO                   0          Al 2 O 3

                                         O          N
                                                         Al 2 O 3     
                                                                    x
                                                                      
                                                                            eV 
                                                                       76.6 0   x
                                                                               
                                                                             A 
Surface spectrum height
                                                               Energy width per channel

                         ( E )QE
                  H 0  [ ] cos  1
                         0
                                                       stopping cross section factors

Surface height of the two elemental peaks in the compound AmBn are given by


                   A( E 0)QmE
               
H       A, 0
                       0      AB

                                 A
                                       cos  1

                      B ( E 0)QnE
                  
    H      B ,0
                       0      AB

                                 B
                                      cos  2
Mean energy in thin films                                     Surface Energy Approximation


                  Ai cos i                                       SEA
    Nt                                          ( Nt )
           i
                 Qi ( E ,  )        E  E0
                                                                  i



                        r

   E                        ( E ) ( Nt )
               SEA              i                   SEA
               in                       0           i
                       i 1



                                                                       E 0  E in
                                                                                 SEA
                                                            (1)
   Mean energy of the ions in the film ,Ē(1)            E
                                                                               2



                                       E2          E1                    E0
Mean energy in thin films

For the second iteration, the values of (Nt)i(1) should
                                              Ai cos i
 be calculated using                N ti    Qi ( E , )          with

   E= Ē(1) then ∆Ei(1) and Ē(2)
                 r

E                   
        (1)                i                       (1)
        in
                               E   (1)
                                         ( Nt )    i
                i 1

                                                                                  E
                                                                                       (1)
                                                                  ( 2)
                                                             E            E0         in
                                                                                   2


                                             E2              E1            E0
Example               Calculate surface height for 2 MeV 4He+ on Al2O3:
                      Ω=10-3sr
                      E=1 keV/channel
                      Q=6.24x1013 incident particles (10μC charge)
                      θ1=0°, θ2=10° (scattering angle=170°)
From appendix 6: σRAl=0.2128x10-24 & σRO=0.0741x10-24
From previous example:

[ ]                                            [ ]
        Al 2O 3                                        Al 2O 3
  0                 350 1015 eVcm 2             0              326 1015 eVcm 2
        Al                                             O


               A( E 0)QmE
H A, 0 
                    0AB

                        A
                                cos  1
                   AlQ 2 E            0.2128 10 24 10 3  6.24 10 3  2 103
                                                                                    76cnt
H     Al , 0
                    0   Al 2 O 3

                           Al
                                                        350 10   15



                   OQ3E               0.074110 24 10 3  6.24 10 3  3 103
                                                                                   43cnt
H     O,0
                    0   Al 2 O 3

                           O
                                                       326 10   15
For not too thick film



E=Ē(f)
                                          2
                           E( f ) 
                 ( Nt )           ( Nt )
                          (f)                 SEA


                           E0 
                          i                   i

                                  



                                E2   E1           E0
Sample analysis

Typical experimental operating conditions and parameter ranges used during
acquisition of backscattering spectra

 Experimental Parameter                     Units            Values

 Analysis ion energy                        MeV              1.0-5.0

 Beam cross section                         mm x mm          1.5x1.5

 Beam current                               nA               10-200

 Integrated charge                          μC               5-100

 Detector energy resolution for 4He ions    keV              15


 Data acquisition time                      min              5-10

 Vacuum                                     Torr             2x10-6

 Pump-down time                             min              15
Thin-film analysis
The peak integration method
                                    Integrated peak counts
                                    That can be accurately determined
                                    from the spectrum
                                                                           Correction factor


                        Ai cos  1 CBi e  DTR                               Dead time ratio
     ( Nt )i 
                                          
                        Q'  R ( E ,  )( ) i
                                              i

                                          R
 Integrated charge deposited
 on the sample during the run
                                                     Non Rutherford correction factor


                              solid angle subtended by
                              the detector at the target
Example

an application of the peak integration method of analysis of the two-element
thin film



E0=3776 keV
θ=170˚
θ1=0˚
θ2=10˚
Ω=0.78 msr
CBi=(0.99±0.03)
E=(3.742±0.005)keV/channel
É=(8±3) keV        E1= nE+ É
KFe=(170˚)=0.7520      Energy intercept
KGd=(170˚)=0.90390
Example
                     From appendix 6

                            3.521                                    cm 2
         ( E0 ,170 )            10  24          0.2469 10 24
    Fe
    R                            2
                            3.776                                     sr

                                21.53                 cm 2
           ( E0 ,170 )             24
                                 10  1.510 10  24
     Gd              
        R                      2
                          3.776                        sr
                                                         4/3

              From               1 0.049Z 1Z 2
                            R
                                                E   CM




    
                                       4/3
                  (0.049)(2)(26)                           Center-of-mass energy
            1                              0.998
    R  Fe            3776

     
                                        4/3
                  (0.049)(2)(64)
            1                              0.993
     R Gd            3776
Example

         From Trim 1985:



  (3776 keV )  51.4 10
    Fe                             15
                                         eVcm   2



 (3676 keV )  52.2 10
    Fe                            15
                                        eVcm    2




   Gd
          (3776 keV )  86.3 10   15
                                         eVcm   2



   Gd
         (3676 keV )  87.5 10   15
                                        eVcm   2
Example
 Q '  20.01 C
 nB  (757  1)
 nB '  (660  1)
              (1020  20) cts
      AB
 H    A, 0

 DTR  1.008
nA  (910  1)
nA'  (812  1)
              (640  20) cts
     AB
 H   B ,0

Integrated counts in spectral regions of interest (initial
and final channel numbers are listed:
Channels (789-918)=103978 cts; (920-960)=49 cts
Channels (640-767)=64957 cts; (768-788)=79 cts
Example

    From: E1= nE+ É and Ki=Ei1/E0 :

           nB E  E '  (757  1)(3.742  0.005)  (8  3)  (2841  6)keV
      B
  E  1



              nAE  E '  (910  1)(3.742  0.005)  (8  3)  (3413  7)keV
         A
   E  1



        E1  (2841  6)  0.752  0.002
         B                                                          Energy intercept
   KB 
        E0   (3776  5)


      E1  (3413  7)  0.904  0.002
       A
 KA 
      E0   (3776  5)

    Therefore, element A and B are Gd and Fe, respectively. Note that element A
    could also be Tb, because KTb=0.9048
Example

Calculation of elemental areal densities,(Nt)
Values of Ai are calculated from the integrated counts in the
regions of interests




                    79
   AFe     64957     (128)  (64475  261)cts
                    21
                     49
   AGd     103978     (130)  (103823  323)cts
                     41
      In this case, the background correction is almost negligible
Example
  The areal densities in the surface-energy approximation,(Nt)SEA i
  using E=E0                             1
                            Ai cos  1 CBi e  DTR
               ( Nt )i 
                                                      
                            Q'                 
                                           ( E ,  )(
                                       i
                                                        )i
                                       R
                                                                    R
                        Ai             DTR      CBi                             0.998
                                                                    e
      SEA        (64475  261)(1.008)(0.99  0.03)(1.602 1019 ) atoms
( Nt )                    6          3              24
         Fe     (20.0110 )(0.78 10 )(0.2469 10 )(0.998)              cm 2
                   Q’                  Ω                  σ

                              (2.68  0.08) 10         18   atoms
                                                                         cm 2

                         SEA
                 ( Nt )         (0.709  0.021) 1018    atoms
                         Gd                                       cm 2
Example

            The mean energy of the 4He ion in the film, Ē(1), is calculated (to first order)
            using the following equation


                                   r

                  E                   
                       SEA                   i                     SEA
                       in
                                                 ( E 0) ( Nt )
                                                                   i
                                  i 1



      For the first-order energy loss, ΔESEAin ,of the ions in the film:



 E                                                                   
                                                             SEA                                SEA
                                                                  
             SEA            Fe                                             Gd
             in
                                 ( E 0) ( Nt )                                  ( E 0) ( Nt )
                                                             Fe                             Gd

  (51.4 10 15 )(2.68 1018 )  (86.3 10 15 )(0.709 1018 )                                       eV

  199             keV


             E 0  E in
                            SEA
      (1)                                              (1)                 199
  E                                               E          3776            3676    keV
                     2                                                      2
Example

          From the following Eq. we can calculate the areal densities:



                                               2
                            E      (f)      
                                            (N )
                    (f )                                 S EA
          ( Nt )    i
                             E0                        i

                                            

                               2
                3676 
      ( Nt )         (N )
            (1)                        SEA
                                              2.54 1018    atoms / cm 2
                3776 
            Fe                         Fe




                  (1)
      ( Nt )             0.672 1018               atoms / cm 2
                  Gd
Example           Results of an additional iteration of this procedure using the
                  following equations we have: (Note that Fe and Gd are
                  evaluated at Ē(1) )

                                                                                   E
                         r                                                                  (1)

  E                         
           (1)                     i                      (1)       ( 2)
           in
                                       E   (1)
                                                 ( Nt )   i
                                                                E           E0
                                                                                        2
                                                                                            in

                        i 1
                                                                       2
                                        E           ( f )          
                                                                   ( Nt )
                               ( f )                                                S EA
      ( Nt )                   i
                                         E0                                       i

                                                                   
E          (52.2 1015 )(2.54 1018 )  (87.5 1015 )(0.672 1018 ) eV  191 eV
     (1)
     in


                          192
  E              3776       3681 eV
          ( 2)
          in
                           2
                                           2
          3681 
( Nt )         ( Nt )
      ( 2)                                          SEA
                                                               (2.55  0.08) 1018 atoms / cm 2
          3776 
      Fe                                            Fe



                 ( 2)
  ( Nt )                 (0.674  0.021) 1018 atoms / cm 2
                 Gd
Example


  The average stoichiometric ratio for this film using the following Eq.:


                n NB AB A( E , )
                     .
                m NA AA B ( E , )

N Fe
     
       AFe
                      
                             Gd
                                  ( E0 ,170 ) /  R 
                                  ( E ,170 )  /  R 
                             R                                              Gd
                                            .
N Gd   AGd             
                             Fe
                             R        0        
                                                                            Fe

  (64475  261) 21.53 0.993
              .     .       3.78  0.02
  103823  323 3.521 0.998
Example



    If the molecular formula for the film is
    written as GdmFen , then:


    m=0.209±0.001 and n=0.791±0.001


                   n+m=1
Example                            The value of the physical film thickness:


                                  ( Nt ) A        ( Nt ) B
                           t           AB
                                                      AB
                                  N     A         N    B


                                   Fe N 0
Elemental bulk density




                         N Fe                8.44 1022 atoms / cm 3
                                   M Fe
                                  Gd N 0
                         N Gd                3.02 1022 atoms / cm 3
                                   M Gd

                                  2.55 1018                    0.674 1018
                         t Fe                cm  302 nm tGd              cm  223 nm
                                  8.44 10 22
                                                                3.02 10 22



                            tGdFe  525 nm
Thank you




My hometown

More Related Content

What's hot

14.40 o8 s wimbush
14.40 o8 s wimbush14.40 o8 s wimbush
14.40 o8 s wimbushNZIP
 
227th ACS BZ Oral Presentation
227th ACS  BZ Oral Presentation227th ACS  BZ Oral Presentation
227th ACS BZ Oral Presentationbinzhao2004
 
лекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физикилекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физикиSergey Sozykin
 
Thermal Modeling of Electron Beam Additive Manufacturing Process–Powder Sinte...
Thermal Modeling of Electron Beam Additive Manufacturing Process–Powder Sinte...Thermal Modeling of Electron Beam Additive Manufacturing Process–Powder Sinte...
Thermal Modeling of Electron Beam Additive Manufacturing Process–Powder Sinte...Ninggang Shen
 
Magnetism and magnetic interactions in graphene and graphite
Magnetism and magnetic interactions in graphene and graphiteMagnetism and magnetic interactions in graphene and graphite
Magnetism and magnetic interactions in graphene and graphiteOleg Yazyev
 
Charge exchange and spectroscopy with isolated highly-charged ions
Charge exchange and spectroscopy with isolated highly-charged ionsCharge exchange and spectroscopy with isolated highly-charged ions
Charge exchange and spectroscopy with isolated highly-charged ionsAstroAtom
 
Simulations of Thermo-Mechanical Characteristics in Electron Beam Additive Ma...
Simulations of Thermo-Mechanical Characteristics in Electron Beam Additive Ma...Simulations of Thermo-Mechanical Characteristics in Electron Beam Additive Ma...
Simulations of Thermo-Mechanical Characteristics in Electron Beam Additive Ma...Ninggang Shen
 
Preheating effects in Electron Beam Additive Manufacturing
Preheating effects in Electron Beam Additive ManufacturingPreheating effects in Electron Beam Additive Manufacturing
Preheating effects in Electron Beam Additive ManufacturingNinggang Shen
 
PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...
PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...
PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...Masayuki Horio
 
[INTRO] Estrutura cristalina
[INTRO] Estrutura cristalina[INTRO] Estrutura cristalina
[INTRO] Estrutura cristalinaDaphiny Pottmaier
 
Magnetoresistive junctions based on epitaxial graphene and h-BN
Magnetoresistive junctions based on epitaxial graphene and h-BNMagnetoresistive junctions based on epitaxial graphene and h-BN
Magnetoresistive junctions based on epitaxial graphene and h-BNOleg Yazyev
 
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTs
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTsFull-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTs
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTsayubimoak
 

What's hot (20)

14.40 o8 s wimbush
14.40 o8 s wimbush14.40 o8 s wimbush
14.40 o8 s wimbush
 
227th ACS BZ Oral Presentation
227th ACS  BZ Oral Presentation227th ACS  BZ Oral Presentation
227th ACS BZ Oral Presentation
 
лекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физикилекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физики
 
call for papers, research paper publishing, where to publish research paper, ...
call for papers, research paper publishing, where to publish research paper, ...call for papers, research paper publishing, where to publish research paper, ...
call for papers, research paper publishing, where to publish research paper, ...
 
Ismanam 2011 fernandez seivane
Ismanam 2011 fernandez seivaneIsmanam 2011 fernandez seivane
Ismanam 2011 fernandez seivane
 
Thermal Modeling of Electron Beam Additive Manufacturing Process–Powder Sinte...
Thermal Modeling of Electron Beam Additive Manufacturing Process–Powder Sinte...Thermal Modeling of Electron Beam Additive Manufacturing Process–Powder Sinte...
Thermal Modeling of Electron Beam Additive Manufacturing Process–Powder Sinte...
 
Magnetism and magnetic interactions in graphene and graphite
Magnetism and magnetic interactions in graphene and graphiteMagnetism and magnetic interactions in graphene and graphite
Magnetism and magnetic interactions in graphene and graphite
 
Charge exchange and spectroscopy with isolated highly-charged ions
Charge exchange and spectroscopy with isolated highly-charged ionsCharge exchange and spectroscopy with isolated highly-charged ions
Charge exchange and spectroscopy with isolated highly-charged ions
 
Interference
InterferenceInterference
Interference
 
Simulations of Thermo-Mechanical Characteristics in Electron Beam Additive Ma...
Simulations of Thermo-Mechanical Characteristics in Electron Beam Additive Ma...Simulations of Thermo-Mechanical Characteristics in Electron Beam Additive Ma...
Simulations of Thermo-Mechanical Characteristics in Electron Beam Additive Ma...
 
Ebb245 presentation al foil
Ebb245 presentation al foilEbb245 presentation al foil
Ebb245 presentation al foil
 
Preheating effects in Electron Beam Additive Manufacturing
Preheating effects in Electron Beam Additive ManufacturingPreheating effects in Electron Beam Additive Manufacturing
Preheating effects in Electron Beam Additive Manufacturing
 
PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...
PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...
PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...
 
[INTRO] Estrutura cristalina
[INTRO] Estrutura cristalina[INTRO] Estrutura cristalina
[INTRO] Estrutura cristalina
 
Magnetoresistive junctions based on epitaxial graphene and h-BN
Magnetoresistive junctions based on epitaxial graphene and h-BNMagnetoresistive junctions based on epitaxial graphene and h-BN
Magnetoresistive junctions based on epitaxial graphene and h-BN
 
00951314
0095131400951314
00951314
 
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTs
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTsFull-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTs
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTs
 
About byFlow R&D
About byFlow R&DAbout byFlow R&D
About byFlow R&D
 
Phy b10 1-1
Phy b10 1-1Phy b10 1-1
Phy b10 1-1
 
Lec4 jwfiles
Lec4 jwfilesLec4 jwfiles
Lec4 jwfiles
 

Similar to A presentation by Younes Sina: Backscattering spectrometry

Structure of atom
Structure of atom Structure of atom
Structure of atom sahil9100
 
Nityanand gopalika spectrum validation - nde 2003
Nityanand gopalika   spectrum validation - nde 2003Nityanand gopalika   spectrum validation - nde 2003
Nityanand gopalika spectrum validation - nde 2003Nityanand Gopalika
 
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...grssieee
 
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...grssieee
 
Introduction to nanophotonics
Introduction to nanophotonicsIntroduction to nanophotonics
Introduction to nanophotonicsajayrampelli
 
Photoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional OxidesPhotoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional Oxidesnirupam12
 
Principle Of A F S
Principle Of  A F SPrinciple Of  A F S
Principle Of A F Sguestc5e21a
 
Cluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentationCluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentationColm Connaughton
 
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopynirupam12
 
Atmospheric aberrations in coherent laser systems
Atmospheric aberrations in coherent laser systemsAtmospheric aberrations in coherent laser systems
Atmospheric aberrations in coherent laser systemswtyru1989
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
The inverse droplet coagulation problem
The inverse droplet coagulation problemThe inverse droplet coagulation problem
The inverse droplet coagulation problemColm Connaughton
 
Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnologyStar Gold
 
Quantum Nanomagnetism
Quantum  NanomagnetismQuantum  Nanomagnetism
Quantum Nanomagnetismoriolespinal
 

Similar to A presentation by Younes Sina: Backscattering spectrometry (20)

Talk spinoam photon
Talk spinoam photonTalk spinoam photon
Talk spinoam photon
 
non linear optics
non linear opticsnon linear optics
non linear optics
 
Structure of atom
Structure of atom Structure of atom
Structure of atom
 
Nityanand gopalika spectrum validation - nde 2003
Nityanand gopalika   spectrum validation - nde 2003Nityanand gopalika   spectrum validation - nde 2003
Nityanand gopalika spectrum validation - nde 2003
 
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
 
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
 
Waveguide
WaveguideWaveguide
Waveguide
 
Introduction to nanophotonics
Introduction to nanophotonicsIntroduction to nanophotonics
Introduction to nanophotonics
 
Photoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional OxidesPhotoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional Oxides
 
17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko
 
Principle Of A F S
Principle Of  A F SPrinciple Of  A F S
Principle Of A F S
 
Cluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentationCluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentation
 
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopy
 
Schrodingermaxwell
SchrodingermaxwellSchrodingermaxwell
Schrodingermaxwell
 
Atmospheric aberrations in coherent laser systems
Atmospheric aberrations in coherent laser systemsAtmospheric aberrations in coherent laser systems
Atmospheric aberrations in coherent laser systems
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
662 magnetrons
662 magnetrons662 magnetrons
662 magnetrons
 
The inverse droplet coagulation problem
The inverse droplet coagulation problemThe inverse droplet coagulation problem
The inverse droplet coagulation problem
 
Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnology
 
Quantum Nanomagnetism
Quantum  NanomagnetismQuantum  Nanomagnetism
Quantum Nanomagnetism
 

More from Younes Sina

Physics by Younes Sina
Physics by Younes SinaPhysics by Younes Sina
Physics by Younes SinaYounes Sina
 
ICDIM 2012 presentation
ICDIM 2012 presentationICDIM 2012 presentation
ICDIM 2012 presentationYounes Sina
 
Phase Diagram, ZrO2 and Al2O3 System
Phase Diagram, ZrO2 and Al2O3 SystemPhase Diagram, ZrO2 and Al2O3 System
Phase Diagram, ZrO2 and Al2O3 SystemYounes Sina
 
Electron irradiation effect on Al2O3
Electron irradiation effect on Al2O3Electron irradiation effect on Al2O3
Electron irradiation effect on Al2O3Younes Sina
 
Line Spectra (Rydberg’s Constant)
Line Spectra (Rydberg’s Constant)Line Spectra (Rydberg’s Constant)
Line Spectra (Rydberg’s Constant)Younes Sina
 
توسعه روش شكست سنجي براي تعيين درصد
توسعه روش شكست سنجي براي تعيين درصدتوسعه روش شكست سنجي براي تعيين درصد
توسعه روش شكست سنجي براي تعيين درصدYounes Sina
 
Nuclear Radiation, the chart of nuclides
Nuclear Radiation, the chart of nuclidesNuclear Radiation, the chart of nuclides
Nuclear Radiation, the chart of nuclidesYounes Sina
 

More from Younes Sina (20)

Physics by Younes Sina
Physics by Younes SinaPhysics by Younes Sina
Physics by Younes Sina
 
Chapter 14
Chapter 14Chapter 14
Chapter 14
 
Chapter 12
Chapter 12Chapter 12
Chapter 12
 
Chapter 11
Chapter 11Chapter 11
Chapter 11
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
Chapter 9
Chapter 9Chapter 9
Chapter 9
 
Chapter 8
Chapter 8Chapter 8
Chapter 8
 
Chapter 7
Chapter 7Chapter 7
Chapter 7
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
ICDIM 2012 presentation
ICDIM 2012 presentationICDIM 2012 presentation
ICDIM 2012 presentation
 
Phase Diagram, ZrO2 and Al2O3 System
Phase Diagram, ZrO2 and Al2O3 SystemPhase Diagram, ZrO2 and Al2O3 System
Phase Diagram, ZrO2 and Al2O3 System
 
Electron irradiation effect on Al2O3
Electron irradiation effect on Al2O3Electron irradiation effect on Al2O3
Electron irradiation effect on Al2O3
 
Line Spectra (Rydberg’s Constant)
Line Spectra (Rydberg’s Constant)Line Spectra (Rydberg’s Constant)
Line Spectra (Rydberg’s Constant)
 
توسعه روش شكست سنجي براي تعيين درصد
توسعه روش شكست سنجي براي تعيين درصدتوسعه روش شكست سنجي براي تعيين درصد
توسعه روش شكست سنجي براي تعيين درصد
 
Nuclear Radiation, the chart of nuclides
Nuclear Radiation, the chart of nuclidesNuclear Radiation, the chart of nuclides
Nuclear Radiation, the chart of nuclides
 

Recently uploaded

The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersRaghuram Pandurangan
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESmohitsingh558521
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 

Recently uploaded (20)

The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information Developers
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 

A presentation by Younes Sina: Backscattering spectrometry

  • 1. The University of Tennessee, Knoxville Backscattering Spectrometry Part 1 Professor C.J.McHargue Younes Sina
  • 2. Backscattering spectrometry using ion beams with energies in the megaelectronvolt range has been used extensively for accurate determination of stoichiometry , elemental areal density ,and impurity distributions in thin films.
  • 3. Kinematic factor K E /E i i 1 0 2  (M 2  M 2sin 2 )  M cos  1/ 2   2 1 1 K   M M   1 2 Z2 M2 E0 M1 Z1 M1 Z1 E0 -ΔE
  • 4.
  • 5. Areal density Integrated peak count Areal density, Nt, as atoms per unit area Ai cos i Nt  i Qi ( E ,  ) Cross section Incident ions Detector solid angle
  • 6. Rutherford scattering cross section e2≈1.44x10-13 2  Z Z e2  4[(M 2  M 1 sin 2 )  M 2 cos ] 2 2 1/ 2  ( E , )    1 2 2 R  4E  M 2sin 4 (M 2  M 1 sin 2 ) 1/ 2   2 2 Z2 M2 E0 M1 Z1 M1 Z1 E0 -ΔE
  • 7. The average stoichiometric ratio for the compound film AmBn nABN 0  AB N B MAB n NB AB A( E , )   . m NA AA B ( E , ) Cross section ratio Ratio of measured integrated peak count mABN 0  AB N A MAB
  • 8. Physical film thickness AmBn ( Nt ) A ( Nt ) B t AB  AB N A N B mABN 0 nABN 0   AB AB N A MAB N B MAB MAB  mMA  nMB
  • 9. FUNDAMENTALS Energy separation  dK  E1  E 0 EM 2  dM 2  E Minimum energy separation that can be M 2  experimentally resolved  dK  E 0   dM 2  mass resolution for fixed θ:
  • 10.
  • 11. Elastic scattering cross section Fraction of incident particles Average differential cross section scattered to the detector  1  dQ( E ) 1  ( , E )   ( )  Nt  Q ( ) Detector solid angle Number of target atoms per unit area
  • 12. Rutherford cross section Z2 M2 E0 M1 Z1 M1 Z1 2  Z Z    ( E , )  0.02073      M 1   sin 1 2 4 R    2   2   M 2   4E   Unit: barn/ sr 1 b(barn)=10-24 cm2
  • 13. Non-Rutherford cross section Low energy L’Ecuyer Eq. for Low energy ion 4/3   1 0.049Z 1Z 2  R E CM Center-of-mass kinetic energy (keV) Wenzel and Whaling for light ion with MeV energy ECM≈Elab 7/2   1 0.0326Z 1Z 2  R E CM
  • 14. Laboratory projectile kinetic energy Non-Rutherford For 1H:  (0.12  0.01) Z 2  (0.5  0.1) NR E Laboratory projectile kinetic energy(MeV) Lab For 4He:  (0.25  0.01) Z 2  (0.4  0.2) NR E Lab For 7Li:  (0.330  0.005)Z 2  (1.4  0.1) NR E Lab
  • 15.
  • 16. Experimental geometry θ1 θ2   π   1  2 cosθ2= cos (π-θ).cosθ1
  • 17. Experimental geometry For IBM geometry x x din  dout  cos  1 cos  2 For Cornel x x din  dout  cos  1 cos  1, cos  2
  • 18. Effects of energy loss of ions in solids Atomic density dE  N Stopping cross section dx stopping power For a compound of AmBn: εAB =mεA+nεB AB  dE    N   N A A  N B B AB AB AB AB  dx  Atomic density Molecular density
  • 19. Example: Calculate the stopping cross section and stopping power of 2 MeV 4He+ in Al2O3 using Bragg rule From appendix 3: εAl= 44x10-15 eVcm2 εO= 35x10-15 eVcm2 For a compound of AmBn: εAB =mεA+nεB εAl2O3=(2x44+3x35)x10-15 =193x10-15eVcm2 g 23 molecules N 0 4 cm 3  6 10 mol 22 Al2O3molecules N  M   2.35 10 Al 2 O 3 102 g cm 3 mol Al 2 O 3  dE  eV      2.35 10 22 193 10 15  46 Al 2 O 3 Al 2 O 3 N 0  dx  A Al atoms O atoms  3  2.35 10 22  7.11022 Al 2 O 3  2  2.35 1022  4.7 1022 Al 2O 3 N Al cm 3 N O cm 3
  • 20. Example: Al 2 O 3  dE  eV   N   2.35 10 193 10 15  46 Al 2 O 3 Al 2 O 3 22 0  dx  A 15 15 eV  4.7 10  44 10 22  7.110  35 10 22  46 10 8 cm eV  46 0 A x E   (dE / dx)dx 0
  • 21. Depth scale x E   (dE / dx)dx 0 Energy loss factor E  S  x   dE   dE  1  S    K   1      dx in cos  1  dx out cos  2  E   N .x Stopping cross section factor  1      K in 1   out   cos  1 cos  2   1 1     K A  in   out, A AB AB AB E A   A N x  AB AB A  cos  1 cos  2 
  • 22. Depth resolution Calculate the depth- scattered ion energy differences Example for 2 MeV 4He+ in Al2O3 θ1=0°and θ2=10° K factor for4He on Al=0.5525 K factor for4He on O=03625  0.5525  2  1.105 MeV Al E1  KE0 E 1  0.3625  2  0.725 MeV O E 1 Using the surface-energy approximation ε at E0,surface εAB =mεA+nεB   2   in  3   in  2  44 1015  3  35 1015  193 1015 eVcm 2 Al 2 O 3 Al O in ε at E1  out, Al  2   out, Al  3   out, Al  2  511015  3  46 1015  240 1015 eVcm 2 Al 2 O 3 Al O   2   out,O  3   out,O  2  54 1015  3  48 1015  252 1015 eVcm 2 Al 2 O 3 Al O out,O
  • 23. Example We can now calculate the stopping cross section factors  1  [ ] 1   K Al  in   out, Al Al 2 O 3 Al 2 O 3 Al 2 O 3  cos  1 cos  2  0 Al  [ ] Al 2O 3 0  0.5525 193 1015  240 1015 1.015  350 1015 eVcm 2 Al  1  [ ] 1   K O  in   out,O Al 2 O 3 Al 2 O 3 Al 2 O 3  cos  1 cos  2  0 O  [ ] Al 2O 3 0  0.3625 193 1015  252 1015 1.015  326 1015 eVcm 2 O Using the molecular density N Al2O3=2.35x1022 molecules/cm3 we find:  E Al   0 Al 2 O 3 Al N Al 2 O 3  x  eV   82.3 0   x  A   EO   0 Al 2 O 3 O N Al 2 O 3  x  eV   76.6 0   x  A 
  • 24. Surface spectrum height Energy width per channel  ( E )QE H 0  [ ] cos  1 0 stopping cross section factors Surface height of the two elemental peaks in the compound AmBn are given by A( E 0)QmE  H A, 0  0 AB A cos  1 B ( E 0)QnE  H B ,0  0 AB B cos  2
  • 25. Mean energy in thin films Surface Energy Approximation Ai cos i SEA Nt   ( Nt ) i Qi ( E ,  ) E  E0 i r E   ( E ) ( Nt ) SEA i SEA in 0 i i 1  E 0  E in SEA (1) Mean energy of the ions in the film ,Ē(1) E 2 E2 E1 E0
  • 26. Mean energy in thin films For the second iteration, the values of (Nt)i(1) should Ai cos i be calculated using N ti  Qi ( E , ) with E= Ē(1) then ∆Ei(1) and Ē(2) r E   (1) i (1) in E (1) ( Nt ) i i 1 E (1) ( 2) E  E0  in 2 E2 E1 E0
  • 27. Example Calculate surface height for 2 MeV 4He+ on Al2O3: Ω=10-3sr E=1 keV/channel Q=6.24x1013 incident particles (10μC charge) θ1=0°, θ2=10° (scattering angle=170°) From appendix 6: σRAl=0.2128x10-24 & σRO=0.0741x10-24 From previous example: [ ] [ ] Al 2O 3 Al 2O 3 0  350 1015 eVcm 2 0  326 1015 eVcm 2 Al O A( E 0)QmE H A, 0   0AB A cos  1 AlQ 2 E 0.2128 10 24 10 3  6.24 10 3  2 103    76cnt H Al , 0  0 Al 2 O 3 Al 350 10 15 OQ3E 0.074110 24 10 3  6.24 10 3  3 103    43cnt H O,0  0 Al 2 O 3 O 326 10 15
  • 28. For not too thick film E=Ē(f) 2  E( f )  ( Nt )    ( Nt ) (f) SEA  E0  i i   E2 E1 E0
  • 29. Sample analysis Typical experimental operating conditions and parameter ranges used during acquisition of backscattering spectra Experimental Parameter Units Values Analysis ion energy MeV 1.0-5.0 Beam cross section mm x mm 1.5x1.5 Beam current nA 10-200 Integrated charge μC 5-100 Detector energy resolution for 4He ions keV 15 Data acquisition time min 5-10 Vacuum Torr 2x10-6 Pump-down time min 15
  • 30. Thin-film analysis The peak integration method Integrated peak counts That can be accurately determined from the spectrum Correction factor Ai cos  1 CBi e  DTR Dead time ratio ( Nt )i   Q'  R ( E ,  )( ) i i R Integrated charge deposited on the sample during the run Non Rutherford correction factor solid angle subtended by the detector at the target
  • 31. Example an application of the peak integration method of analysis of the two-element thin film E0=3776 keV θ=170˚ θ1=0˚ θ2=10˚ Ω=0.78 msr CBi=(0.99±0.03) E=(3.742±0.005)keV/channel É=(8±3) keV E1= nE+ É KFe=(170˚)=0.7520 Energy intercept KGd=(170˚)=0.90390
  • 32. Example From appendix 6 3.521 cm 2  ( E0 ,170 )  10  24  0.2469 10 24 Fe R 2 3.776 sr 21.53 cm 2  ( E0 ,170 )   24 10  1.510 10  24 Gd  R 2 3.776 sr 4/3 From   1 0.049Z 1Z 2 R E CM   4/3 (0.049)(2)(26) Center-of-mass energy    1  0.998  R  Fe 3776   4/3 (0.049)(2)(64)    1  0.993  R Gd 3776
  • 33. Example From Trim 1985:  (3776 keV )  51.4 10 Fe 15 eVcm 2  (3676 keV )  52.2 10 Fe 15 eVcm 2  Gd (3776 keV )  86.3 10 15 eVcm 2  Gd (3676 keV )  87.5 10 15 eVcm 2
  • 34. Example Q '  20.01 C nB  (757  1) nB '  (660  1)  (1020  20) cts AB H A, 0 DTR  1.008 nA  (910  1) nA'  (812  1)  (640  20) cts AB H B ,0 Integrated counts in spectral regions of interest (initial and final channel numbers are listed: Channels (789-918)=103978 cts; (920-960)=49 cts Channels (640-767)=64957 cts; (768-788)=79 cts
  • 35. Example From: E1= nE+ É and Ki=Ei1/E0 :  nB E  E '  (757  1)(3.742  0.005)  (8  3)  (2841  6)keV B E 1  nAE  E '  (910  1)(3.742  0.005)  (8  3)  (3413  7)keV A E 1 E1  (2841  6)  0.752  0.002 B Energy intercept KB  E0 (3776  5) E1  (3413  7)  0.904  0.002 A KA  E0 (3776  5) Therefore, element A and B are Gd and Fe, respectively. Note that element A could also be Tb, because KTb=0.9048
  • 36. Example Calculation of elemental areal densities,(Nt) Values of Ai are calculated from the integrated counts in the regions of interests 79 AFe  64957  (128)  (64475  261)cts 21 49 AGd  103978  (130)  (103823  323)cts 41 In this case, the background correction is almost negligible
  • 37. Example The areal densities in the surface-energy approximation,(Nt)SEA i using E=E0 1 Ai cos  1 CBi e  DTR ( Nt )i   Q'   ( E ,  )( i )i R R Ai DTR CBi 0.998 e SEA (64475  261)(1.008)(0.99  0.03)(1.602 1019 ) atoms ( Nt )  6 3  24 Fe (20.0110 )(0.78 10 )(0.2469 10 )(0.998) cm 2 Q’ Ω σ  (2.68  0.08) 10 18 atoms cm 2 SEA ( Nt )  (0.709  0.021) 1018 atoms Gd cm 2
  • 38. Example The mean energy of the 4He ion in the film, Ē(1), is calculated (to first order) using the following equation r E   SEA i SEA in ( E 0) ( Nt ) i i 1 For the first-order energy loss, ΔESEAin ,of the ions in the film: E   SEA SEA   SEA Fe Gd in ( E 0) ( Nt ) ( E 0) ( Nt ) Fe Gd  (51.4 10 15 )(2.68 1018 )  (86.3 10 15 )(0.709 1018 ) eV  199 keV  E 0  E in SEA (1) (1) 199 E  E  3776   3676 keV 2 2
  • 39. Example From the following Eq. we can calculate the areal densities: 2 E (f)    (N ) (f ) S EA ( Nt ) i  E0  i   2  3676  ( Nt )    (N ) (1) SEA  2.54 1018 atoms / cm 2  3776  Fe Fe (1) ( Nt )  0.672 1018 atoms / cm 2 Gd
  • 40. Example Results of an additional iteration of this procedure using the following equations we have: (Note that Fe and Gd are evaluated at Ē(1) )  E r (1) E   (1) i (1) ( 2) in E (1) ( Nt ) i E  E0 2 in i 1 2 E ( f )    ( Nt ) ( f ) S EA ( Nt ) i  E0  i   E  (52.2 1015 )(2.54 1018 )  (87.5 1015 )(0.672 1018 ) eV  191 eV (1) in 192 E  3776   3681 eV ( 2) in 2 2  3681  ( Nt )    ( Nt ) ( 2) SEA  (2.55  0.08) 1018 atoms / cm 2  3776  Fe Fe ( 2) ( Nt )  (0.674  0.021) 1018 atoms / cm 2 Gd
  • 41. Example The average stoichiometric ratio for this film using the following Eq.: n NB AB A( E , )   . m NA AA B ( E , ) N Fe  AFe   Gd ( E0 ,170 ) /  R  ( E ,170 )  /  R  R Gd . N Gd AGd  Fe R 0  Fe (64475  261) 21.53 0.993  . .  3.78  0.02 103823  323 3.521 0.998
  • 42. Example If the molecular formula for the film is written as GdmFen , then: m=0.209±0.001 and n=0.791±0.001 n+m=1
  • 43. Example The value of the physical film thickness: ( Nt ) A ( Nt ) B t AB  AB N A N B  Fe N 0 Elemental bulk density N Fe   8.44 1022 atoms / cm 3 M Fe Gd N 0 N Gd   3.02 1022 atoms / cm 3 M Gd 2.55 1018 0.674 1018 t Fe  cm  302 nm tGd  cm  223 nm 8.44 10 22 3.02 10 22 tGdFe  525 nm