• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
City Mood Based on Twitter Conversation
 

City Mood Based on Twitter Conversation

on

  • 14,753 views

City mood parameter detection based on Twitter conversation in Indonesia

City mood parameter detection based on Twitter conversation in Indonesia

Statistics

Views

Total Views
14,753
Views on SlideShare
1,940
Embed Views
12,813

Actions

Likes
2
Downloads
42
Comments
0

17 Embeds 12,813

http://mediawave.biz 10508
http://www.mediawave.biz 2208
http://localhost 40
http://203.29.26.169 14
http://translate.googleusercontent.com 13
https://twitter.com 6
http://www.linkedin.com 5
http://webcache.googleusercontent.com 3
http://103.16.198.101 3
https://www.google.com 3
http://mail.mediawave.biz 2
http://www.google.com.mx 2
https://translate.googleusercontent.com 2
http://cache.yahoofs.jp 1
http://honyaku.yahoofs.jp 1
http://74.6.116.71 1
http://www.google.co.id 1
More...

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    City Mood Based on Twitter Conversation City Mood Based on Twitter Conversation Presentation Transcript

    • Mood Parameter Research Based on Twitter ConversationFor: Research by:
    • Method of Analysis •Track twitter conversation that indicates mood of user, exclude Retweet * From 9 cities in Indonesia 1. Jabodetabek 2. Bandung 3. Surabaya 4. Yogyakarta 5. Semarang 6. Malang 7. Denpasar 8. Palembang 9. Medan • Research Period 05/12/2011 – 29/01/2012. Devide into 4 time interval a day Period 1 = 00:00:00 – 06:00:00 (real 00:00:00 – 05:59:59) Period 2 = 06:00:00 – 12:00:00 (real 06:00:00 – 11:59:59) Period 3 = 12:00:00 – 18:00:00 (real 12:00:00 – 17:59:59) Period 4 = 18:00:00 – 00:00:00 (real 18:00:00 – 23:59:59) * Analyze qualilatively from the social media data.Research by:
    • General Scheme Internal Entities Injected (MediaWave Server) Bad Mood & Good Mood Keywords Twitter Good Mood Crawler Good Mood GET Facebook XML (Mizone Server ) Data Good Mood Storage External Crawler API Entities for OR Aggregator externa Twitter l access Bad Mood JSO GET Crawler Bad N Mood Facebook Data Bad Mood Storage CrawlerNote:Example of Bad Mood : Bete, Sebel, Kesel, Kecewa, Marah, Gak Semangat, Gak hepi etcExample of Good Mood : Seneng, Gembira, Hepi, Gak bete, Semangat, Bahagia etc
    • Data Crawl & Data Feed Scheme Twitter 1. For Twitter using Realtime Stream API Good Mood Crawler Good Mood 2. For Facebook using Search API Data Facebook Storage Good MoodTwitter and Facebook API Crawler to API for Aggregator external Twitter Bad Mood access Crawler Bad Mood Facebook Data Bad Mood Storage Crawler
    • City DetectionMethod (Twitter) "id_str": "276483979", "default_profile": false, "follow_request_sent": null, "verified": false, "profile_link_color": "0084B4", "location": "UT: -8.547824,115.172388", "id": 276483979, Good Mood "utc_offset": null Data Storage Extract City Aggregator Bad Mood Data Storage
    • In these period there are 2.856.382 conversations about bad mood and 2.293.067 people who havebad mood.Otherwise there are 2.350.052 conversations about good mood and 1.770.030 people who have goodmood
    • susah sekolah males pagi jelek Palembang sakit galau telat tai males libur susah sekolah lama bolosTop 10 Bad Mood
    • Palembang cantik membuat semoga senin kelancaran selamat pagi semoga ujian semangat beraktifitas amin sukses cantik kemudahan usekTop 10 Good Mood
    • Most bad mood day is Wednesday with 539.104 conversation (18,87%) from all bad moodconversations), followed by Thursday with 508.699 conversation (17,81%) from all badmood conversations).Most bad mood period is beetween 6 AM - 12 AM (36,43%), followed by 12 AM - 6 PM(35,44%) from all bad mood conversation
    • Top 10 bad mood words are Parah, Males, Cape, Bete, lemot, nungguin, lama, ga enak, Galau, Payah Visualize bad mood relation
    • Social media has changed the communication betweenbrand and consumer. Nowadays communications are twoways communication and horizontally. The consumersperception over your product is determined by otherconsumers experience sharing about the product, notdetermined by your promotion material and advertisinganymore. MediaWave is the first Social Media Monitoring &Analytics Platform in Indonesia. MediaWave helps you toobserve and measures the consumer perception upon yourbrand in Social Media.We provide you the most valuable insight directly fromconsumer voiceFind more about us at www.mediawave.bizContact us :- contact@mediawave.co.id / @mediawave_id- yose@mediawave.co.id / @yoseazka- erik@mediawave.co.id / @erikpalupi- dwi@mediawave.co.id / @dwiwahyono