SlideShare una empresa de Scribd logo
1 de 86
PROPIEDADES FISICAS 
MORFOLOGÍA DE LOS CRISTALES 
Forma 
Consideramos aquí el juego de formas base con sus índices (hkl) determinados que 
constituyen las caras del cristal. 
Hábito cristalino 
Se llama hábito cristalino el tipo de facetas dominantes en el facetado del cristal. Esta 
característica se suele estimar visualmente, destacando los tipos de facetas que tienen 
áreas más amplias, por ejemplo, hábito cubooctaédrico, hábito dipiramidal, etc. 
Berilo de hábito prismático. Siberia, Rusia. Foto J.M.Sanchís Calvete.
Superficie de los cristales 
• Las caras de los cristales casi nunca son perfectas. 
Escalones y polígonos de crecimiento, superficies de 
inducción, figuras de disolución son algunos de los 
defectos superficiales más habituales. Estos defectos 
pueden aparecer tanto durante el crecimiento del 
cristal, como durante su alteración posterior. 
Figuras de disolución en las caras de esmeralda 
de Kazakjstan. Foto E.V.Gavrilenko
Anatomía del cristal 
• Algunos cristales presentan una variación de morfología y de composición en el 
volumen del cristal, debida a los cambios en las condiciones de formación del 
cristal a lo largo de su crecimiento (zonado), o bien al comportamiento diferente 
de distintas caras cristalinas respecto al atrapamiento de impurezas químicas 
(coloración sectorial de cristales) o inclusiones (esmeraldas trapiche). 
Un cristal cortado de berilo zonal con el núcleo y la zona exterior de 
esmeralda y berilo incoloro en el centro. Los Urales, Rusia. Foto 
E.V.Gavrilenko.
Agregados cristalinos 
• Existen numerosas denominaciones para describir los agregados cristalinos de 
minerales. No puede establecerse una lista sistemática ni una definición 
estricta para cada uno de los términos. 
• Como términos más frecuentes podemos citar: 
• Acicular: cristales delgados parecidos a agujas 
Azurita: Cu2+ 
3(CO3)2(OH)2 - 5 cm
Arborescente: de aspecto similar a un árbol 
Plata: Ag, sobre calcita
Filiforme: parecidos a cabellos o hebras 
Jamesonita: Pb4FeSb6S14 - 5x5x4 cm
Dendrítico: en ramas divergentes similares a plantas 
Pirolusita: Mn4+O2
Reticulado: cristales delgados entrelazados simulando redes 
Rutilo: TiO2 - 7x6 cm
Radiante: cristales dispuestos de manera radial a partir de un 
centro 
Prehnita: Ca2Al2Si3O10·(OH)2 - 11x10x7 cm
Columnar: En forma de columna. 
Aragonito: CaCO3
Fibroso: En forma de pequeñas fibras paralelas, facilmente separables 
entre sí 
Grunerita 
Fórmula química: (Fe2+,Mg)7Si8O22(OH)2 
Clase: Silicatos 
Subclase: Inosilicatos 
Grupo: Anfíboles 
Subgrupo: Anfíboles monoclínicos 
Etimología: Deriva del nombre de L. G. Grüner químico francés del siglo XIX que estudió los 
términos férricos de la serie. 
Cristalografía: 
Sistema y clase: Monoclínico 2/m. 
Grupo espacial: C2/m. 
a = 9.62 Å, b = 18.45 Å, c = 5.34 Å; b = 103º00´; Z = 2. 
Líneas de DRX(intensidades) d´s: 9.21(5) - 8.33(10) - 3.07(8) - 2.76(9) - 2.51(6).
• Propiedades físicas: 
• Color: 
• Diversos matices de castaño claro. 
• Raya: 
• 
• Brillo: 
• Sedoso. 
• Dureza: 
• 5 a 6 
• Densidad: 
• 3.6 g/cm3 
• Óptica: 
• Biáxica negativa. Débil pleocroismo en tonos pardo verdosos. 
• Otras: 
• 
• Química: Contiene 49.01% de SiO2, 44.99% de FeO, 3.17% de H2O y hasta un 1% de F. 
• Forma de presentarse: Cristales lamelares, con variedades finamente aciculares de tipo 
asbestoide llamadas Amosita abreviatura de Asbestos Mine Of South Africa que alcanzan 
gran longitud. 
• Génesis: Es característica del metamorfismo dinamotérmico de sedimentos silíceos ricos 
en hierro.
Estrellado: Cristales en formas concéntricas simulando estrellas 
Mesolita: Na2Ca2Al6Si9O30.8H2O - 11x9x9 
cm
Globular: Individuos de forma esférica 
Esferocobaltita: CoCO3 - con cuarzo 
hialino
Botrioidal: Formas globulares agrupadas en racimos 
Apatito: Ca5(PO4)3(F,Cl,OH) - 5 cm
Reniforme: minerales radiales terminados en formas 
arriñonadas 
Goethita: Fe3+O(OH)
Mamilar: Grandes formas redondeadas a modo de mamas 
Smithsonita: ZnCO3 - 7x4 cm
Coraloide: En formas puntiagudas ramificadas que recuerdan al 
coral 
Aragonito: CaCO3
Exfoliable: mineral que se separa facilmente en capas. Cuando esas 
capas son hojosas muy finas se dice micáceo 
Biotita: K(Mg,Fe2+)(Al,Fe3+)Si3O10(OH,F)2
Tabular: Individuos planos a modo de tablas 
Vanadinita: Pb5(VO4)Cl
Masivo: Agregados minerales compactos y sin forma particular 
Bismuto: Bi - 7x6x3 cm
Discoidal: En forma de discos superpuestos 
Yeso: CaSO4·2H2O - "Rosa del desierto", 
17x8x8 cm
Hojoso: Cristales alargados planos a modo de hojas de cuchillo 
Crocoita: PbCrO4
Estalactítico: En forma de conos o cilindros colgantes a modo de 
estalactitas 
Goethita: Fe3+O(OH) - 15x10 cm
Concrecionado: Masas de mineral depositadas sobre un núcleo, 
en ocasiones de formas esféricas 
Malaquita: Cu2+ 
2(CO3)(OH)2
Plumoso: Formado por escamas finas superpuestas con estructuras 
parecidas a plumas 
Limonita:
Oolítico: Agregados esféricos a modo de huevas de pescado 
Calcita: CaCO3
Drusa: Superficie cubierta por una capa de pequeños cristales 
Fluorita: CaF2 - cristales de 1 a 5 cm
EXFOLIACIÓN, PARTICIÓN Y 
FRACTURA 
• Cuando un mineral es sometido a una fuerza 
externa se produce un proceso tensional que induce 
a una deformación del cristal. La resitencia y el tipo 
de deformación resultante están relacionados con 
los mecanismos de enlace interatómicos y por la 
presencia o no de defectos estructurales. Una vez 
que la deformación sobrepase cierto valor, 
excediendo su resistencia, el mineral se rompe.
• Exfoliación 
• Ciertos minerales tienden a romper según planos paralelos a direcciones 
muy concretas que corresponden a planos atómicos con densidad mínima 
de enlaces. Estos planos se definen mediante índices de Miller de igual 
manera que se hace con las caras externas de un cristal. Así por ejemplo 
las micas tienen tendencia a romper según planos basales {0001}. Esta 
propiedad se denomina exfoliación. 
• Al describir la exfoliación se debe precisar: 
• La calidad de la misma mediante términos tales como perfecta, buena, 
regular, mala, etc. 
• La dirección expresada por el nombre o dirección a la que es paralela la 
exfoliación, por ejemplo cúbica {001} propia de la galena, octaédrica 
{111} en el caso del diamante o de la fluorita, romboédrica {1011}, 
prismática {110} o basal o pinacoidal {0001} caso de las micas o del 
grafito.
Galena: PbS - 10 cm 
Diamante: C - 1.01 quilates 
Fluorita: 
CaF2 - 40x20 cm 
Grafito: 
C - 12x9x4 cm 
La exfoliación de un mineral concuerda 
con su simetría, así si se desarrolla una 
dirección octaédrica necesariamente 
deberan existir otras tres direcciones 
semejantes. 
No todos los minerales presentan 
exfoliación ni en el mismo grado, así 
mientras que es muy marcada en el caso 
de la exfoliación basal de las micas, puede 
estar menos marcado como en el caso del 
berilo o no existir como con el cuarzo
• Partición 
• Cuando un mineral rompe a lo largo de planos con debilidad 
estructural, debidos a la presencia de maclas, tensiones 
anteriores acumuladas o procesos de desmezcla se dice que 
ha sufrido una partición. No es pues una propiedad intrínseca 
del mineral, como en el caso de la exfoliación, sino que 
depende de la historia" del ejemplar. 
No obstante en cada mineral solo existiran 
ciertos planos suceptibles de generar 
partición tales como la partición octaédrica 
de la magnetita, la básica del piroxeno o 
la rómboédrica del corindón 
Corindón: Al2O3 - variedad Rubí
• Fractura 
• Cuando un mineral rompe sin seguir ninguna 
de las pautas antes expuestas se dice que se 
fractura. 
• Estas facturas en función de la forma y 
aspecto de las superficies generadas pueden 
denominarse:
• Concoidal si los planos de fractura presentan 
superficies lisas y suaves, pero con bordes 
agudos y cortantes, siendo un caso típico el 
cuarzo y su variedad el sílex. 
Cuarzo:SiO2 - 4x3 cm
Astillosa o fibrosa 
Anhidrita: CaSO4 - 6x3.5 cm
Ganchuda el mineral rompe según 
una superficie dentada, con filos 
puntiagudos 
Plata: Ag - 3x3 cm
DUREZA Y TENACIDAD 
Definición de dureza 
• Se denomina dureza a la resistencia a ser rayado que ofrece la superficie 
lisa de un mineral, y refleja, de alguna manera, su resistencia a la 
abrasión. Mediante el estudio de la dureza de un mineral se evalúa, en 
parte, la estructura atómica del mismo pués es la expresión de su enlace 
más débil. 
• La dureza es una forma de evaluación de la reacción de una estructura 
cristalina a una tensión sin rotura. En los cristales con enlaces metálicos, 
que pueden fluir plásticamente, el rayado da lugar a una ranura o surco. 
Por el contrario, en materiales frágiles el rayado es la manifestación de 
una microfractura.
Escala de Mohs 
• El grado de dureza se mide en mineralogía por comparación, determinándose la 
facilidad o dificultad en que un mineral es rayado por otro. Un mineral blando 
siempre es rayado por cualquier mineral más duro y nunca al revés. 
• Numéricamente esta dureza relativa, designada por H, se establece gracias a la 
escala de diez minerales corrientes definida por F. Mohs en 1824.
• 1 
1 Talco: Mg3Si4O10(OH)2 - 25x8 cm 
2 Yeso: CaSO4·2H2O - 15 cm 
3 Calcita: CaCO3 - 10 cm 
4 Fluorita: CaF2 - 5 cm
5 Apatito: Ca5(PO4)3(F,Cl,OH) - 7x3 cm 6 Ortoclasa: KAlSi3O8 - 15 cm 
7 Cuarzo 8 Topacio 
9 Corindón: Al2O3 
Diamante: C - 1.01 quilates
• Esta escala no es en modo alguno proporcional, en efecto, la diferencia entre la 
dureza del diamante (10 en la escala) y el corindón (9 en la escala) es mucho 
mayor que la existente entre el corindón y el talco (1 en la escala). 
• En otras escalas, los valores cuantitativos permiten apreciar mejor estas 
diferencias, y están basadas en resultados sobre profundidad de penetración de 
una punta de diamante al mineral (Berkovich, Knoop, Wilks), evaluación del pulido 
de las facetas (Denning, Winchell, Wilks), abrasión con arena (Eppler) u otros 
(Rosiwal). Si se consideran estos valores de la dureza, llamada dureza absoluta, 
puede observarse esta no linealidad entre los elementos de la escala de Mohs:
• Algunos productos artificiales han logrado alcanzar valores un poco más altos que 
el corindón (carburo de silicio, carburo de boro, carburo de wolframio). 
• La dureza de un mineral es una propiedad vectorial, pudiendo presentar un mismo 
mineral diversos valores dependiendo de la dirección según la cual se les raye. Por 
lo general, esa diferencia es muy ligera, pero en el caso de la cianita H = 5 
paralelamente a su alargamiento y H = 7 normalmente a este. La calcita tiene una 
H = 3 en todas sus direcciones excepto según {0001} en la que vale H = 2. 
• En el diamante el plano menos duro es el de cara de rombododecaedro (110), y el 
más duro el de cara de octaedro (111), muy dificil de pulir. En una misma cara de 
diamante hay varias direcciones de mayor y menor dureza. Es posible representar 
estas variaciones por medio de diagramas vectoriales. El diagrama de la dureza de 
un plano (111) en diamante es un triángulo; para el plano (100) es una estrella de 
cuatro puntas; y para el plano (110) una elipse:
Test de dureza 
• El test de dureza de Mohs consiste simplemente en encontrar cual es el último 
mineral de la escala que puede ser rayado por el ejemplar a medir y cual es el 
primero que no puede serlo. 
• Este test requiere tomar una serie de precuaciones: 
• Tomar caras frescas pues la alteración provoca una disminución de la dureza de un 
mineral. 
• No confundir la raya con la huella que dejan los minerales más blandos. Mientrar 
la huella puede ser limpiada, la raya es irreversible. 
• Tener en cuenta la la naturaleza de un mineral pues los minerales pulverulentos, 
granulares o astillosos pueden romperse y quedar aparentemente rayados por 
minerales realmentemás blandos. 
• Cuando se encuentra un mineral en el campo, rara vez se dispone de 10 minerales 
para efectuar el test de dureza. Por el contrario, puede obtenerse un 
aproximación bastante buena usando simplemente: 
• La uña del dedo (H = 2.5). 
• Una moneda de cobre (H = 3). 
• Una punta de acero, por ejemplo una punta de cuchillo, un clavo etc. (H = 5). 
• Un fragmento de vidrio (H = 5.5). 
• Empleando estos objetos comunes se consigue una buena orden de magnitud de 
dicha dureza.
Tenacidad 
• Se denomina tenacidad a la resistencia que opone un mineral a ser partido, 
molido, doblado o desgarrado, siendo, en cierto modo, una medida de su 
cohesión. 
• Se definen una serie de objetivos relacionados con este concepto: 
• Un mineral frágil es aquél que se rompe o reduce a polvo fácilmente, siendo una 
propiedad característica de minerales con enlaces iónicos dominantes. 
Berilo:Be3Al2(Si6O18)
• Se dirá de un mineral que es maleable cuando 
puede ser conformado en hojas delgadas por 
percusión 
Cobre: Cu - 7x7 cm cristal de 2 cm
• Un mineral séctil puede cortarse fácilmente en virutas delgadas con un cuchillo. 
• Si un mineral puede estirarse fácilmente hasta formar un hilo se dice dúctil. 
Ductilidad, sectilidad y maleabilidad son propiedades características de minerales 
con enlaces metálicos pues dicho enlace transmite a la materia la capacidad de 
convertir toda tensión aplicada en deformación plástica. 
• Cuando un mineral puede ser doblado y pero no tiene la capacidad de recuperar 
su forma original, manteniendo la deformación de forma permanente, se 
denomina flexible. Los minerales en los que existan fuerzas de enlace de tipo Van 
der Waals o de hidrógeno tales como el talco o las cloritas lo son. 
• Por en contrario cuando un mineral recupera su forma original tras ser deformado 
se dice elástico. Las micas con enlaces iónicos son típicamente elásticos.
PESO ESPECÍFICO 
Definición 
• Se denomina peso específico de un mineral al cociente entre su peso y el peso de 
un volumen equivalente de agua a 4ºC (condiciones de máxima densidad del 
agua), siendo un valor adimensional. Por el contrario, la densidad relativa es un 
valor equivalente correspondiente a la masa por unidad de volumen y viene 
expresado en unidades tales como g/cm3. 
• El peso específico es una propiedad intrínseca y constante para un mineral de 
composición química determinada y depende basicamente de dos factores: 
• De los átomos que constituyen el mineral. 
• Del tipo de empaquetamiento de los átomos. 
• En los elementos isoestructurales, con idéntico tipo de empaquetamiento, los 
elementos de mayor peso atómico tienen mayor densidad relativa. En una serie de 
soluciones sólidas existe un cambio continuo de densidad relativa . Así, en el caso 
de la serie de las wolframitas, los términos extremos ferberita (MnWO4) y 
hubnerita (FeWO4) tienen por valores respectivamente: 7.51 y 7.18. 
• El caso contrario lo constituyen los compuestos polimorfos, de misma 
composición pero diferente tipo de empaquetamiento. Así, en el caso del carbono, 
pasamos de valores de 3.515 para el diamante a solo 2.23 para el grafito pese a 
tener idéntica fórmula
• Pesos específicos de algunos minerales 
• La estimación del valor del peso específico es en muchas ocasiones determinante 
el la clasificación de un mineral a estudiar, por ello a continuación se especifica 
dicho valor para algunos minerales: 
Medidas del peso específico 
Los métodos de medida del peso específico se basan en el principio de 
Arquímedes y consisten en medir el peso en aire del mineral P y 
posteriormente el peso de dicho mineral sumergido en agua P(agua). A 
continuación se presenta un esquema de una balanza hidrostática clásica.
• La utilización de líquidos más densos y con menor fuerza de tensión superficial 
para esta medida permite realizar la determinación del peso específico de 
minerales con más precisión. En este caso en la fórmula anterior hay que 
introducir el valor de la densidad del líquido usadoL 
• las muestras a estudiar deberán ser homogéneas y puras, compactas y sin 
microgrietas o microcavidades que pudiesen contener fluidos o gases que 
reduzcan el peso específico a medir. Normalmente se requiere un volumen 
cercano a 1 cm3 de muestra. A partir de dicho principio se emplean diversos 
procedimientos de medida: 
• La balanza de Jolly en los que se miden los pesos en función del alargamiento de 
un muelle helicoidal. 
• La balanza de Penfield, donde el peso específico se determina por la posición de 
pesas en el brazo derecho graduado.
• La balanza de Berman, de tipo torsión, se emplea para pequeñas partículas de 
menos de 25 mg. Si bien las medidas son muy precisas requiere una corrección por 
efecto de la temperatura. 
• El Picnómetro empleado en los casos en los que no se disponga de suficiente 
cantidad de muestra para emplear los métodos anteriores. Consiste, básicamente, 
en una botella de vidrio con un tapón de ese mismo material esmerilado y 
atravesado por un fino orificio capilar. Se pesa inicialmente el picnómetro vacío 
con su tapón (P), se introduce entonces el mineral a medir y se vuelve a pesar (M). 
Tras rellenar completamente el recipiente con agua destilada se mide de nuevo (S) 
y por fin se vacía el picnómetro y se rellena unicamente con agua destilada 
obteniéndose el peso W. 
• El peso específico vendrá dado por: Peso específico = (M - P) / W + (M - P) - S 
• El método de juego de liquidos densos permite por flotación selectiva determinar, 
aproximadamente, el peso específico de un mineral. Partiendo de un líquido de 
densidad relativamente alta, bromoformo (2.89) o yoduro de metileno (3.33), y 
disolviendo los mismos se puede conseguir un conjunto de disoluciones patrón, en 
los que el mineral flotará cuando su peso específico sea menor al del líquido y se 
hundirá cuando sea mayor. Este método se emplea también para separar especies 
minerales con diferentes densidades relativas.
• A base de soluciónes de líquidos densos se puede obtener igualmente las 
medidas de peso específico de gran presición. Para eso hay que partir del líquido 
con el peso específico alto, donde el grano de mineral estará flotando. Luego se 
añade el diluyente a gotas, hasta obtener una solución del mismo peso específico 
que el mineral. En este momento el grano del último quedará en suspensión, sin 
hundirse ni flotar. Para medir el peso específico del líquido obtenido se puede 
utilizar una balanza hidrostática con un patrón de peso específico conocido 
• Existe también una balanza especial, basada en el mismo método, donde la 
medida del peso específico del líquido viene directamente de la posición de las 
pesas en el brazo de la balanza (balanza Westfal)
INDICE DE REFRACCIÓN. 
BIRREFRINGENCIA 
• El comportamiento de la luz al introducirse en un cristal está controlado 
fundamentalmente por la estructura cristalina. En este sentido la propiedad más 
importante de un cristal es el índice de refracción (n), que se define como la 
relación entre la velocidad de la luz en el vacío y la velocidad de la luz en esa 
sustancia: n = Vv / V 
• Se asume que el índice de refracción de la luz en el aire es esencialmente el mismo 
que en el vacio, = 1. Como en general, la luz cambia de velocidad al atravesar 
diferentes medios, es precisamente el inverso de esta velocidad lo que constituye 
el índice de refracción (n = 1/v) característico de cada sustancia. 
• La luz disminuye su velocidad cuando entra en una sustancia, así el índice de 
refracción será siempre mayor que 1. La mayor parte de los cristales minerales 
tienen índices de refracción entre 1,32 y 2,40. 
• La relación entre las trayectorias del rayo incidente y del rayo refractado fueron 
determinadas por la Ley de Snell (1621): 
ni . sen i = nr . sen r
• Siendo ni y nr los índices de refracción de cada medio y sen i y sen r los senos de los ángulos 
de incidencia y de refracción con la normal. 
• Así, la trayectoria de la luz durante este proceso de refracción originado al cambiar de medio 
(ej. aire/cristal) queda determinado por la Ley de Snell, con ni = 1 (aire): 
• nr = sen i / sen r 
• Sin embargo, el índice de refracción de un cristal no es necesariamente el mismo en todas las 
direcciones. La simetría interna de un cristal es un reflejo de la orientación de los átomos y 
ésto determinará la interactuación de la luz con el cristal. Así, se reconocen dos tipos básicos 
de comportamiento óptico: 
ISÓTROPO - igual índice de refracción en todas las direcciones. En esta categoría se 
encuentran los materiales vítreos y los cristales isométricos (granate, fluorita). 
ANISÓTROPO - diferente índice de refracción en diferentes direcciones cristalográficas. Los 
cristales de todos los demás sistemas pertenecen a esta categoría. Los cristales anisótropos 
son divisibles en dos tipos: 
• Uniáxico - tienen dos índices de refracción (sistema tetragonal y hexagonal) 
Biáxico - caracterizado por tres índices de refracción (triclínico, monoclínico y ortorrómbico) 
En los cristales anisótropos la luz se descompone en dos rayos de vibración perpendicular y 
de velocidades diferentes debido a las diferencias en los índices de refracción, que se 
denominan N (rayo lento) y n (rayo rápido). 
La diferencia entre los índices de refracción extremos (N-n) se denomina BIRREFRINGENCIA. 
Es una propiedad característica de cada cristal. 
• .
• El estudio de las propiedades ópticas determinadas por esta birrefringencia, así 
como de toodas las características del cristal observadas al microscopio óptico de 
polarización las tiene en microscopía óptica de polarización 
DISPERSIÓN 
• La refracción de un rayo de luz no es igual para la luz distintos rangos del espectro 
visible. Así, el mismo material proporciona los valores de índices de refracción 
distintos para la luz monocromática de distintas longitudes de onda, siendo 
siempre los índices más bajos para la luz de longitud de onda más alta. 
• Refracción de la luz a su paso por un prisma de vidrio. Dependiendo de la longitud 
de onda (color) del haz que incide desde la izquierda, el ángulo de refracción varía, 
es decir, se dispersa
Por ejemplo, para el diamante, los índices de refracción determinados para las 
distintas longitudes de onda se presentan en la tabla siguiente: 
Longitud de 
onda Color de luz Índice de 
refracción 
686,7 nm roja 2,4074 
656,3 nm naranja 2,4103 
589,3 nm amarilla 2,4168 
527,0 nm verde 2,4269 
486,1 nm azul 2,4349 
430,8 nm violeta 2,4512
• En mineralogía se considera como índice de refracción el valor correspondiente a 
la luz de sodio (589,3 nm). El valor de dispersión viene determinado por la 
diferencia entre los índices de refracción obtenidos con luz roja (686,7 nm) y luz 
violeta (430,8 nm), extremos ambos del espectro visible. Por lo tanto, 
consideramos que el diamante tiene el índice de refracción 2,4168 y la dispersión 
0,044. 
• La dispersión es una característica importante para los minerales gemas, 
dependiendo de esta propiedad el "fuego" una la piedra tallada. La dispersión de 
diamante es relativamente alta, pero algunos minerales y, sobre todo, sustancias 
artificiales la tienen más alta aún, como es el caso de rutilo sintético, presentado 
en la foto abajo.
COLOR 
• El color es, probablemente, una de las características más espectaculares y 
atractivas de los minerales, confiriendo una indiscutible belleza a los cristales, 
muy especialmente en el caso de algunas gemas. Sin pecar de exageración puede 
decirse que los minerales, en su conjunto, abarcan todo el espectro de colores del 
visible, con todos los matices que pueda uno imaginar.
• Incluso, un único mineral puede presentar, en ocasiones, una enorme variedad de 
colores como en el caso de la fluorita con tonalidades azules, amarillas, verdes, 
moradas, naranjas o rosas. 
• Los minerales están coloreados porque absorben ciertas longitudes de onda de la 
luz que incide sobre ellos y reflejan el resto, siendo el color la combinación de 
aquellas longitudes de onda que inciden en el ojo. 
• Pueden considerarse hasta seis causas específicas que justifican el color de un 
mineral:
• La coloración idiocromática esta producida por la presencia de iones metálicos de 
elementos de la serie de transición, en los cuales los orbitales 3d no están 
completos. Dichos iones provocan en los cristales que los albergan un 
desdoblamiento del campo cristalino y la energía absorbida corresponderá en 
cada caso a la diferencia de energía causada en los orbitales 3d por dicho 
desdoblamiento. Así por ejemplo en el caso del olivino la absorción tiene lugar 
dentro del campo del infrarrojo con una ligera extensión dentro del campo del 
visible en el rojo, por lo que la luz reflejada, descontada el componente rojo del 
espectro, será amarillo - verdosa. 
Ejemplos de olivinos con su característico color verdoso
• Existen hasta doce iones metálicos responsables de la coloración de los minerales: 
el titanio en su forma Ti2+, el vanadio como V3+ o V4+, el cromo Cr3+ y Cr4+, el 
manganeso Mn2+ y Mn3+, el hierro Fe2+ y Fe3+, el cobalto Co2+ , el niquel Ni2+ y el cobre 
Cu2+. 
• En los minerales idiocromáticos estos iones figuran en cantidades tales que 
forman parte de la fórmula química del mineral con lo que la coloración resultante 
es propia y característica del mismo. Como ejemplos de minerales idiocromáticos, 
además del olivino pueden citarse la malaquita de color verde, la azurita de color 
azul etc.
Azurita y malaquita. 
• La coloración alocromática es producida por los iones anteriormente citados 
cuando figuran como trazas en los minerales. Se trata de impurezas que confieren 
determinados colores a minerales generalmente incoloros. Así en el caso del 
berilo la presencia de Cr3+ provoca la intensa coloración verde de la variedad 
esmeralda. La presencia de iones Fe2+explican, en parte, los tonos azules de la 
aguamarina. Ciertas variedades de esmeraldas procedentes de Brasil deben su 
color verde a la presencia de V3+. 
•
• Tres variedades del berilo: incoloro, esmeralda y aguamarina. 
• Otro ejemplo de coloración alocromática es la kuncita variedad rosacea - lila de la 
espodumena debida a la presencia de Mn2+. 
Kuncita 
• Se denominan centros de color a un conjunto de defectos en la estructura de los 
cristales debidos a irradiaciones naturales o artificiales. Estos defectos pueden ser 
iones en exceso (intersticiales) o agujeros debidos a la falta de algun electrón. En 
el caso de la Fluorita (CaF2) la coloración púrpura se debe a un centro de color 
producido por la ausencia de un ión F-. Su posición es ocupada por un electrón 
libre para mantener el balance de cargas. Este electrón puede ocupar diversos 
estados excitados que son los responsables de la coloración y de la fluorescencia 
característica de este mineral.
• Tres ejemplos de fluoritas 
• El color ahumado de ciertos cuarzos se debe a un centro de color de tipo agujero, 
en donde algunos Al3+ sustituyen al Si4+ apareciendo iones Na+ o H+ intersticiales a 
fin de mantener la neutralidad eléctrica. Sometido a radiación estos cuarzos 
algunos oxígenos adyacentes al Al3+ pierden un electrón (el ausente) dejando un 
electrón desparejado. Este electrón posee diversos estados excitados 
responsables del color. 
Ejemplares de cuarzos ahumados.
• Existe otro tipo de coloración de los minerales relacionada con los fenómenos de 
transferencia de cargas. Un electrón (carga negativa) puede ser compartido 
pasado de un átomo a otro formándose orbitales híbridos. Existen tres formas de 
transferencia de carga: 
• Transferencia de carga oxígeno - ión metálico 
• Transferencia de carga de intervalencia o sea ión metálico - oxígeno - ión 
metálico. 
• Transferencia de carga de deslocalización en el caso de no existir iones metálicos. 
• En el caso de la aguamarina su característico color azul es debido tanto a la 
presencia de Fe2+ en forma de impurezas como a fenómenos de transferencia de 
cargas de intervalencia Fe2+ - O - Fe2+. 
• 
Ejemplares de cuarzos ahumados. 
Ejemplos de aguamarinas
• En el caso de los metales la teoría de las bandas de valencia explica la coloración 
de los mismos. En esta caso es la estructura del cristal en su conjunto la 
responsable del color. Los electrones del cristal metálico o semimetálico aparecen 
deslocalizados en el interior del cristal produciendo una interacción con la luz 
visible (fotones) responsable del color. Este color no es posible provocarlo ni 
mejorarlo con procedimientos artificiales contrariamente al caso de las imprurezas 
o defectos 
Tres característicos minerales metálicos con colores debidos a 
fenómenos de banda de valencia: oro, plata y cobre.
• En algunos casos el color de un mineral puede deberse a fenómenos ópticos tales 
como la dispersión, difusión interferencia o difracción de la luz denominándose 
entonces coloración pseudocromática. Este tipo de coloración se explica por la 
intercción de la luz con ciertas características físicas del cristal tales como 
inclusiones, texturas particulares o estructuras particulares. Uno de los casos más 
llamativos es el del ópalo noble con sus espectaculares efectos de irisación. Son 
debidos a la difracción de la luz a traves de su estructura formada por un 
apilamiento compacto, más o menos regular de minúsculas esferas de silicio. 
Dos ejemplos de ópalos nobles y sus juegos de 
colores 
• El ópalo es una de las raras gemas que puede presentar todos los colores del espectro visible 
en una única y misma piedra. El color de cada parcela del ópalo dependerá de la orientación 
de la fuente de luz incidente. Al moverse la piedra el color cambia es lo que le confiere "vida" 
al ópalo. Además, el color dependerá igualmente del grosor de las esferas que lo componen y 
del espaciado de las diferentes capas paralelas en las que están regularmente dispuestas
BRILLO 
• Se denomina brillo al aspecto de la superficie de un mineral cuando se refleja en 
ella la luz. 
• Se suele distinguir los minerales con brillo metálico de aquellos con brillo no 
metálico, si bien una clara separación entre ambos grupos es algo ambigua, al 
punto de considerarse en ocasiones un grupo de minerales con brillo submetálico. 
• El brillo metálico es propio de aquellos minerales con enlace metálico puro o 
predominante, siendo totalmente opacos a la luz. En ellos los huecos entre los 
estados fundamentales y excitados son bastante menores que en el caso de las 
estructuras covalentes e iónicas. 
• Sin embargo existen numerosos estados excitados con energías disponibles dentro 
del intervalo completo de la luz visible, permitiendo la absorción de la luz 
incidente y la posterior emisión de dicha luz en forma visible. Por ello los 
materiales con brillo metálico reflejan totalmente la luz visible. Los metales 
nativos y la mayor parte de los sulfuros pertenecen a este grupo.
• Los minerales con brillo no metálico son, por lo general, de colores claros y 
transmiten la luz, por lo menos, en secciones delgadas. Se emplean diversos 
calificativos para describir los tipos de brillos no metálicos entre ellos: 
• Vítreo: Parecido al brillo del vidrio. Lo presentan minerales tales como el cuarzo o 
las turmalinas. 
• Resinoso: De aspecto similar a la de la resina. Ejemplos de ello son la blenda o el 
azuf 
• Nacarado: Con aspecto nacarado que recuerda a las perlas. Aparece en las 
superficies de los minerales paralelas a los planos de exfoliación, por ejemplo en el 
caso del talco o en los planos basales de la apofilita. 
• Graso: Las superficies presentan un aspecto como si estuviesen recubiertas por 
una delgada capa de aceite y es propia de minerales con superficies 
microrrugosas. Lo puden presentar ciertas nefelinas, algunas especies de 
esfaleritas o el cuarzo masivo. 
• Sedoso: Resulta de la reflexión de la luz sobre paralelo de finas fibras. Lo 
presentan el yeso fibroso, la malaquita o el crisotilo. 
• Adamantino: Reflejo fuerte y brillante como el diamante. Es propio de minerales 
con un alto índice de refracción, como en el caso de la cerusita o la anglesita.
PROPIEDADES ELÉCTRICAS 
Conductividad 
• El tipo de enlace atómico determina la conductividad eléctrica de un mineral. 
Aquellos minerales con enlaces de tipo metálico, tales como los metales nativos, 
son excelentes conductores. 
• Los sulfuros, con enlaces sólo parcialmente metálicos, son semiconductores, 
mientras que los minerales con enlaces iónicos o covalentes son, generalmente, 
no conductores. 
• La conductividad es una magnitud vectorial y para los minerales no cúbicos varía 
en función de la orientación cristalográfica. Así , en el caso del grafito su 
conducción es mucho mayor según direcciones perpendiculares al eje c que según 
direcciones paralelas al mismo.
Piezoelectricidad 
• Se denomina piezoelectricidad a la facultad que presentan ciertos minerales de 
producir una corriente de electrones si se ejerce una presión sobre un extremo de 
su eje polar. Todos los minerales que cristalicen según sistemas que presenten 
dichos ejes polares presentarán esta propiedad, pero sólo unos pocos de ellos lo 
hacen con una intensidad suficiente para ser medida. 
• Con esta propiedad, el cuarzo es empleado para el control de radiofrecuencias. Si a 
una lámina de cuarzo cortada convenientemente se la somete a una corriente 
alterna se deforma mecánicamente y vibra por flexión en una dirección y en otra 
alternativamente. Al colocar una lámina de este tipo en el campo de eléctrico 
generado por un circuito de radio, puede controlarse la frecuencia de emisión y 
transmisión haciéndola coincidir con la frecuencia del cuarzo. Igualmente se emplea 
esta característica en los relojes de cuarzo. 
• La turmalina, si bien en menor medida que el cuarzo igualmente presenta 
características piezoeléctricas bien marcadas especialmente en direcciones paralelas 
al eje c. Se emplean en la elaboración de manómetros, espacialmente utilizados en 
los controles de detonaciones nucleares
Piroelectricidad 
• Los minerales que presentan un eje polar único al ser sometidos a un gradiente de 
temperaturas desarrollan simultaneamente cargas positivas y negativas en los 
extremos opuestos del eje. Esta propiedad se denomina piroelectricidad. 
• Los minerales como el cuarzo con más de un eje polar pueden presentar una 
polaridad piroelectricidad denominada secundaria resultante de la deformación 
producida por un
PROPIEDADES MAGNÉTICAS 
• Se clasifican las características magnéticas de un mineral en función del 
comportamiento del mismo al ser expuesto a un campo magnético externo. Se 
denomina suceptibilidad magnética a dicha propiedad y es sensible a la 
temperatura especialmente al sobrepasarse la denominada temperatura de 
transición magnética. 
• El espín de los electrones es el principal responsable de las propiedades 
magnéticas de átomos y moléculas. En efecto un electrón en rotación puede 
identificarse con un dipolo magnético teniendo un momento magnético igual a 
• mB = 9.27x10-24Am2. 
• Aquellos materiales que posean todo sus orbitales completos con dos electrones 
de espines opuestos tendrán un momento magnético resultante nulo y se 
denominan diamagnéticos. Son muy numerosos los minerales de este tipo 
destacando, entre otros, la calcita, la albita, el cuarzo o el apatito. Al estar 
sometidos a un campo magnético externo apenas se ven afectados, si no es por 
una muy ligeras variaciones en los orbitales electrónicos que producen una 
pequeña suceptibilidad magnética negativa en algunos minerales máficos.
• Por el contrario aquellos materiales con electrones no compartidos en orbitales 3d 
tendran momentos resultantes no nulo. En este grupo aparecen algunos 
constituyentes muy comunes de los minerales tales como el Fe, Mn, Ti o Cr. El 
momento magnético será proporcional al número de electrones desapareados 
Elemento Ión Momento magnético 
Sc Ti3+, V4+ mB 
Ti Ti2+, V3+ 2 mB 
V V2+, Cr3+, Mn4+ 3 mB 
Cr Cr2+, Mn3+ 4 mB 
Mn Mn2+, Fe3+ 5 mB 
Fe Fe2+, Co3+ 4 mB 
Co Co2+ 3 mB 
Ni Ni2+ 2 mB 
Cu Cu2+ mB
• Pero aparte del mayor o menor momento magnético de los componentes de un 
mineral, debe igualmente tenerse en cuenta las interacciones de dichos 
componentes en las estructuras cristalinas. 
• Si un mineral posee una distrubución aleatoria de sus dipolos magnéticos 
provocados por componentes del tipo descrito anteriormente se dice 
paramagnético, siendo ejemplos de este tipo de minerales los olivinos y la augita. 
• Al ser sometido a un campo magnético, solo una pequeña parte de los dipolos 
tenderán a orientarse paralelamente a este, por ello estos minerales solo seran 
débilmente influidos por campos externos, no siendo, además, dicha 
magnetización permanente. 
• En los minerales ferromagnéticos, tales como el hierro nativo, los dipolos están 
alineados por fuerzas de intercambio debidas al solapamiento de los orbitales de 
los átomos e iones vecinos. 
• Se presentan ciertas áreas dento de un mismo cristal denominadas dominios en 
los cuales existen un número grande de átomos paramagnéticos con sus 
momentos magnéticos bien alineados. Al ser sometido a un campo magnético, los 
dominios se alinéan con él presentando el mineral una fuerte atracción frente a 
dicho campo, al punto que los dominios tienden a mantener su orientación aún en 
ausencia del campo externo, induciendo un magnetismo permanente. Todo 
material ferromagnético con magnetismo permanente sometido a calentado por 
encima de la denominada temperatura de Curie perderá sus propiedades.
• Los minerales ferrimagnéticos presentan, contrariamente al caso anterior, 
momentos de espín iónicos antiparalelos pero no de igual valor, por lo que 
existirán momentos magnéticos permanentes. Tal es el caso de la magnetita , de 
los miembros de la serie sólida hematites - ilmenita y de la pirrotina. 
• En el caso de la magnetita Fe3+ (Fe2+Fe3+)O4 los iones Fe3+ se distribuyen en la red en 
direcciones opuestas de espín magnético, mientras que los Fe2+ serán responsables 
del espín no apareado neto y, por tanto, de unos dominios magnéticos 
permanentes. 
• La piedra imán natural es una sustancia ferrimagnética con la composición de la 
magnetita con todos los momentos magnéticos netos fuertemente alineados. 
Este magnetismo natural se debe al enfriamiento de material fundido bajo la 
influencia del campo magnético terrestre. 
• a expansión térmica desigual.
LUMINISCENCIA 
Concepto y definición 
• La energía radiante que recibimos del sol cubre una amplia 
gama de longitudes de onda de las cuales sólo una pequeña 
parte constituye el llamado espectro de la luz visible. 
• La luz es una forma de energía y para crearla es necesario 
suministrar energía bajo otra forma. Existen, 
fundamentalmente, dos formas para que ello ocurra: 
• La incandescencia es el fenómeno de emisión de luz debida 
a la energía calorífica. Un cuerpo, alcanzando cierta 
temperatura, emite una radiación luminosa que es, además, 
característica de cada sustancia. Es este el fenómeno 
observado cuando un metal es "calentado al rojo" y está a la 
base de utilizaciones industriales tan comunes como la 
bombilla en la que un filamento de wolframio, atravesado 
por corriente eléctrica, alcanza la incandescencia y emite 
una luz brillante. Las estrellas y el propio sol irradian luz por 
incandescencia. 
• La luminiscencia, por el contrario, es una forma de "luz fría" 
en la que la emisión de radiación lumínica es provocada en 
condiciones de temperatura normal o baja. 
• 
Espectro de la luz, con 
la zona visible (380 - 780 
nm) y los diferente 
colores de la misma
• Esquemáticamente puede describirse una átomo como un núcleo alrededor del 
cual gravitan un conjunto de electrones con trayectorias orbitales precisas. 
• Cuando una cierta forma de energía alcanza un átomo, ciertos electrones son 
excitados, alcanzando, de manera transitoria, un mayor nivel de energía saltando a 
un orbital superior; para recuperan su estado inicial deben desprenderse del 
excedente de energía, emitiendo un fotón, generalmente con longitud de onda 
dentro del espectro de la luz visible. 
• Este fenómeno se observa normalmente en minerales que poseen iones extraños, 
llamados "activadores", siendo una emisión débil, sólo observable en la oscuridad. 
Otros elementos como el hierro o el cobalto son llamados "desactivadores" pues 
impiden la fluorescencia incluso en presencia de un activador. 
• El poeta y científico alemán Johann Wolfgang von Goethe (1749-1832), gran 
apasionado de las Ciencias Naturales, fue el primero en notar que la luz 
ultravioleta podía provocar fluorescencia en los minerales. Posteriormente los 
físicos franceses Antoine y Edmond Becquerel estudiaron el efecto de diferentes 
longitudes de onda sobre numerosos materiales fluorescentes. Este último empleó 
placas fotográficas para medir el espectro de la luz ultravioleta. Pusieron en 
evidencia que la fluorescencia de color rojo observable en la Calcita era debida a la 
presencia de manganeso poniendo en evidencia, por primera vez, el papel de los 
activadores en este fenómeno.
LA RADIACTIVIDAD 
Introducción 
• Algunos núcleos atómicos naturales no son estables sino que se alteran de manera 
espontánea dando lugar a núcleos diferentes de los iniciales. 
• Predecir cuando un núcleo va a sufrir este fenómeno es, hoy en día, totalmente 
imposible, pero sobre un amplio conjunto de átomos agrupados en cristales si 
puede determinarse un ratio de desintegración radiactiva, proporcional con el 
número de átomos presentes y específico para cada tipo de isótopo radiactivo. Se 
considera generalmente el intervalo de tiempo necesario para la desintegración 
de la mitad de los átomos presentes de una sustancia dada, denominado periodo 
de desintegración nuclear.
El proceso de desintegración nuclear 
• Un núcleo puede emitir una partícula a, o sea un ión He2+, produciendo un núcleo 
hijo que estará dos posiciones por debajo en la tabla periódica de los elementos y 
tendrá cuatro unidades de masa menos. Así, por ejemplo, un ión uranio con 
número atómico 92 y masa 235 o 238 se transformará por emisión de una 
partícula a en un ión torio con número atómico 90 y masa 331 o 234 
respectivamente. 
• También es posible una emisión de partículas b o electrones. En este caso, la masa 
efectiva no varía pero la partícula resultante estará una posición más adelante en 
la tabla periódica de los elementos, al emitir un neutrón un electrón y 
transformarse en protón. Así, por ejemplo, un isótopo 87Rb se transformará en 87Sr. 
• Otra posibilidad es la captura por el núcleo de un electrón K que provoca que un 
protón sea transmutado en neutrón con lo que la partícula resultante estará una 
posición por debajo en la tabla periódica de los elementos. 
• El proceso de fisión nuclear es el cuarto modelo de desintegración y consiste en la 
división de un núcleo en dos o mas isótopos, estables o no. Estos procesos pueden 
estar acompañados por emisiones de partículas.
• El proceso de fisión nuclear es el cuarto modelo de desintegración y consiste en la 
división de un núcleo en dos o mas isótopos, estables o no. Estos procesos pueden 
estar acompañados por emisiones de partículas. 
• Los procesos naturales de desintegración nuclear pueden comprender complejas 
cadenas de reacciones con más procesos. A modo de ejemplo, se presenta la 
desintegración nuclear del 238U hasta llegar a 82Pb estable.
La metamictización 
• Algunas propiedades y consecuencias de la descomposición radiactiva tienen 
notables consecuencias a nivel mineralógico, especialmente la metamictización. 
• Se denomina así al proceso de destrucción de la estructura cristalina como 
consecuencia de procesos radiactivos. En efecto, aquellos minerales con 
cantidades significativas de U o Th ven sus redes distorsionadas y/o destruidas 
como consecuencia de los drásticos cambios de los radios iónicos entre las 
partículas originales y las obtenidas tras descomposición radiactiva y por el 
borbardeo por partículas a, provocando que el mineral se vuelva opaco a los rayos 
X cuando al menos un 20% de sus iones han sido desplazados. 
• La cristalinidad podrá, en parte, ser restaurada al calentar el mineral metamíctico 
a temperaturas entre 500 y 900º C. 
• Una intensa emisión de partículas a, puede alterar los minerales que rodeen a los 
granos radiactivos, como ocurre en el caso de numerosos granitos en los que de 
las biotitas y/o cloritas que envuelven a ciertos circones aparecen con halos 
pleocroicos de alteraci
LOS MINERALES DE URANIO 
Introducción 
• El uranio y el torio son los elementos radiactivos naturales esenciales, a los que 
hay que añadir los elementos de vida corta que resultan de su desintegración, 
tales como el radio o el radón y a elementos ligeros radiactivos. El uranio es con 
diferencia el más abundante, apareciendo en numerosos minerales. 
• El metal uranio fue descubierto por Kalproth (1789) en un mineral negro y pesado 
llamado pechblenda que, hasta ese momento, se suponía compuesto por hierro y 
cinc. Hasta 1841 no pudo ser aislado el metal puro, pero ya mucho antes se 
conocían otros minerales que lo contenían (uraninita, autunita, torbernita, 
gummita, etc.) y no es hasta mucho tiempo después que las propiedades 
radiactivas del uranio se conocieron.
• Algunos aspectos químicos del uranio 
• Si se considera el conjunto de especies minerales identificadas que contienen 
uranio como constituyente principal, destaca el número elevado de ellas, más de 
200 especies, lo que, sobre un total de minerales conocidos de unos 3.600, supone 
más del 5%, cuando el uranio es un elemento muy escaso que, como media, 
alcanza sólo 2.5 ppm en la corteza terrestre. 
• Esta abundancia relativa que se debe a diversas características del uranio: 
• En primer lugar, el uranio es un elemento muy pesado, del grupo de los actínidos, 
emparentado, por tanto, con el torio, el protoactinio y los llamados transuránicos. 
También guarda estrecha relación con los elementos de las "tierras raras" o 
lantánidos, que muchas veces se encuentran asociados con él en los mismos 
yacimientos y minerales. 
• El átomo de uranio tiene, además, un núcleo grande con gran número de orbitales 
electrónicos, algunos débilmente unidos al núcleo, por lo que son posibles 
diversos estados de oxidación. De hecho, se sabe que son posibles todos los 
estados de valencia entre +2 y +6, aunque en la naturaleza sólo se conocen 
minerales en los que el uranio presenta los estados de oxidación +4 y +6.
• En segundo lugar, el uranio (al igual que el torio), es un elemento notablemente 
litófilo, es decir, que tiende a combinarse con el oxígeno formando óxidos o sales 
que contienen oxígeno (silicatos, fosfatos, sulfatos, carbonatos etc.) pero nunca 
aparece en forma nativa, como sulfuro, arseniuro, sulfosal o teleruro. 
• Resulta pues abundante en la superficie terrestre, normalmente relacionado con 
rocas graníticas, así como en rocas sedimentarias. Concretamente, las rocas 
graníticas poseen un contenido medio de uranio bastante mayor al de la corteza 
terrestre, siendo, posiblemente, la meteorización de estas rocas la fuente lejana de 
todo el uranio contenido en rocas sedimentarias. Por el contrario, en basaltos y 
peridotitas los contenidos de uranio son muy bajos (1 ppm en basaltos, 0.001 ppm 
en peridotitas). 
• Por otra parte, el uranio es un metal con un radio iónico próximo al del calcio, torio, 
circonio, lantano y otras tierras raras, por lo que sustituye a estos elementos en 
muchos minerales (circón, xenotimo, monacita, apatito, etc.) encontrándose en ellos 
en pequeñas proporciones. 
• Desde que se conoce su importancia como recurso energético fundamental, los 
minerales de uranio han sido buscados con intensidad y se ha investigado mucho 
sobre su composición y estructura. Con un instrumental moderno se pueden 
determinar nuevas especies, incluso disponiendo de muy pequeñas cantidades de 
mineral. 
• Por último, muchos minerales de uranio presentan colores llamativos, que 
aumentan el interés de los coleccionistas por clasificar e identificar especies, a veces 
sólo detectables a simple vista por sutiles cambios de tonalidad
Criterios de clasificación de los minerales de uranio 
• Normalmente, los minerales de uranio se clasifican según criterios genéticos, en 
primarios y secundarios según se hayan formado a partir de soluciones o por 
alteración, respectivamente. 
• Otra clasificación posible se basa en el estado de oxidación del ión uranio en los 
distintos minerales, distinguiéndose los minerales en los que el uranio aparece en 
forma reducida, es decir, el U4+ y otra en la que el estado predominante es el 
oxidado U6+. En esta segunda familia, la mayor parte de las especies contienen el 
ión uranilo (UO2)2+. Una subdivisión de la familia oxidada puede realizarse teniendo 
en cuenta el grupo aniónico con el que se asocia el uranilo (carbonato, sulfato, 
fosfato, vanadato, etc.). 
• La mayor parte de los minerales de uranio se presentan en varios tipos de 
yacimiento, aunque los minerales reducidos, mucho menos frecuentes que los 
oxidados, rara vez aparecen en más de dos variedades para un yacimiento dado. 
• La presencia de uno o varios minerales viene determinada por las condiciones de 
oxidación/reducción del entorno, así como por la acidez o basicidad del medio. 
Estudiando los diagramas Eh/pH o el diagrama composicional uranio/oxígeno, es 
fácil observar la gran cantidad de fases que son posibles con leves variaciones de 
las condiciones del yacimiento.
PROPIEDADES FISICAS MORFOLOGÍA DE LOS CRISTALES

Más contenido relacionado

La actualidad más candente

Elementos nativos!
Elementos nativos!Elementos nativos!
Elementos nativos!Geo Noticias
 
Discontinuidades estratigráficas
Discontinuidades estratigráficasDiscontinuidades estratigráficas
Discontinuidades estratigráficasjmsantaeufemia
 
Cristalografía y mineralogía
Cristalografía y mineralogíaCristalografía y mineralogía
Cristalografía y mineralogía2603 96
 
Introducción a la Mineralogía y Cristalografía
Introducción a la Mineralogía y CristalografíaIntroducción a la Mineralogía y Cristalografía
Introducción a la Mineralogía y CristalografíaDiego Vits
 
Atlas digital de_minerales_en_seccion_delgada
Atlas digital de_minerales_en_seccion_delgadaAtlas digital de_minerales_en_seccion_delgada
Atlas digital de_minerales_en_seccion_delgadamedzel100
 
Química de los minerales
Química de los mineralesQuímica de los minerales
Química de los mineralesjmsantaeufemia
 
Mineralogia parte
Mineralogia parteMineralogia parte
Mineralogia partemayrayiyi
 
Cristalografia 1bachillerato
Cristalografia  1bachilleratoCristalografia  1bachillerato
Cristalografia 1bachilleratoRocioGuerrero46
 
Introducción y diagrama de flujo
Introducción y diagrama de flujoIntroducción y diagrama de flujo
Introducción y diagrama de flujoLuis Rodriguez
 
Metales alcalinoterreos y terreos
Metales alcalinoterreos y terreosMetales alcalinoterreos y terreos
Metales alcalinoterreos y terreosJavier Ramos
 
253350440 hidrometalurgia-tecsup-01
253350440 hidrometalurgia-tecsup-01253350440 hidrometalurgia-tecsup-01
253350440 hidrometalurgia-tecsup-01Zathex Kaliz
 
Espacio y forma cristalina
Espacio y forma  cristalinaEspacio y forma  cristalina
Espacio y forma cristalinaRedy Mamani
 
Clase azufre
Clase azufreClase azufre
Clase azufremnilco
 
Cristalografia para Quimicos Teoria Y Practicas
Cristalografia  para Quimicos   Teoria Y Practicas Cristalografia  para Quimicos   Teoria Y Practicas
Cristalografia para Quimicos Teoria Y Practicas Particular Spanish teacher
 

La actualidad más candente (20)

metalurgia cristalografia
metalurgia cristalografiametalurgia cristalografia
metalurgia cristalografia
 
Elementos nativos!
Elementos nativos!Elementos nativos!
Elementos nativos!
 
Discontinuidades estratigráficas
Discontinuidades estratigráficasDiscontinuidades estratigráficas
Discontinuidades estratigráficas
 
ÍNDICES DE MILLER
ÍNDICES DE MILLERÍNDICES DE MILLER
ÍNDICES DE MILLER
 
Cristalografía y mineralogía
Cristalografía y mineralogíaCristalografía y mineralogía
Cristalografía y mineralogía
 
Introducción a la Mineralogía y Cristalografía
Introducción a la Mineralogía y CristalografíaIntroducción a la Mineralogía y Cristalografía
Introducción a la Mineralogía y Cristalografía
 
Atlas digital de_minerales_en_seccion_delgada
Atlas digital de_minerales_en_seccion_delgadaAtlas digital de_minerales_en_seccion_delgada
Atlas digital de_minerales_en_seccion_delgada
 
Estructura cristalina
Estructura cristalinaEstructura cristalina
Estructura cristalina
 
Silicatos
SilicatosSilicatos
Silicatos
 
Química de los minerales
Química de los mineralesQuímica de los minerales
Química de los minerales
 
Mineralogia parte
Mineralogia parteMineralogia parte
Mineralogia parte
 
Cristalografia 1bachillerato
Cristalografia  1bachilleratoCristalografia  1bachillerato
Cristalografia 1bachillerato
 
Introducción y diagrama de flujo
Introducción y diagrama de flujoIntroducción y diagrama de flujo
Introducción y diagrama de flujo
 
Metales alcalinoterreos y terreos
Metales alcalinoterreos y terreosMetales alcalinoterreos y terreos
Metales alcalinoterreos y terreos
 
253350440 hidrometalurgia-tecsup-01
253350440 hidrometalurgia-tecsup-01253350440 hidrometalurgia-tecsup-01
253350440 hidrometalurgia-tecsup-01
 
2 alteraciones hidrotermales
2 alteraciones hidrotermales2 alteraciones hidrotermales
2 alteraciones hidrotermales
 
Espacio y forma cristalina
Espacio y forma  cristalinaEspacio y forma  cristalina
Espacio y forma cristalina
 
Tema 04 mg-estudio minerales
Tema 04 mg-estudio mineralesTema 04 mg-estudio minerales
Tema 04 mg-estudio minerales
 
Clase azufre
Clase azufreClase azufre
Clase azufre
 
Cristalografia para Quimicos Teoria Y Practicas
Cristalografia  para Quimicos   Teoria Y Practicas Cristalografia  para Quimicos   Teoria Y Practicas
Cristalografia para Quimicos Teoria Y Practicas
 

Similar a PROPIEDADES FISICAS MORFOLOGÍA DE LOS CRISTALES

Guión de prácticas de Mineralogía Óptica.pdf
Guión de prácticas de Mineralogía Óptica.pdfGuión de prácticas de Mineralogía Óptica.pdf
Guión de prácticas de Mineralogía Óptica.pdfMaraMata14
 
Minerales1ºbach un2
Minerales1ºbach un2Minerales1ºbach un2
Minerales1ºbach un2VidalBanez
 
Propiedades físicas
Propiedades físicasPropiedades físicas
Propiedades físicasRuffo Oswaldo
 
Propiedades físicas de los minerales
Propiedades físicas de los mineralesPropiedades físicas de los minerales
Propiedades físicas de los mineralesRuffo Oswaldo
 
Mineralogía y rocas
Mineralogía y rocasMineralogía y rocas
Mineralogía y rocasJUANCA650
 
03 propiedades fisicas
03   propiedades fisicas03   propiedades fisicas
03 propiedades fisicasGeo Noticias
 
Rocas y minerales
Rocas y mineralesRocas y minerales
Rocas y mineralesjujosansan
 
Corteza terrestre
Corteza terrestreCorteza terrestre
Corteza terrestreedafoIPA
 
Los minerales y su formación
Los minerales y su formaciónLos minerales y su formación
Los minerales y su formaciónAmaiamartinez
 
Minerales
MineralesMinerales
MineralesV.G.Z
 
LC - Semana 06 - Rocas y Minerales.pdf
LC - Semana 06 - Rocas y Minerales.pdfLC - Semana 06 - Rocas y Minerales.pdf
LC - Semana 06 - Rocas y Minerales.pdfJONATHANMANUELVELASQ
 

Similar a PROPIEDADES FISICAS MORFOLOGÍA DE LOS CRISTALES (20)

Guión de prácticas.pdf
Guión de prácticas.pdfGuión de prácticas.pdf
Guión de prácticas.pdf
 
Guión de prácticas de Mineralogía Óptica.pdf
Guión de prácticas de Mineralogía Óptica.pdfGuión de prácticas de Mineralogía Óptica.pdf
Guión de prácticas de Mineralogía Óptica.pdf
 
Guía_ mineralogía. (1).pdf
Guía_ mineralogía. (1).pdfGuía_ mineralogía. (1).pdf
Guía_ mineralogía. (1).pdf
 
Minerales1ºbach un2
Minerales1ºbach un2Minerales1ºbach un2
Minerales1ºbach un2
 
mineralogia
 mineralogia mineralogia
mineralogia
 
mineralogia
mineralogiamineralogia
mineralogia
 
Propiedades físicas
Propiedades físicasPropiedades físicas
Propiedades físicas
 
Propiedades físicas de los minerales
Propiedades físicas de los mineralesPropiedades físicas de los minerales
Propiedades físicas de los minerales
 
Mineralogía y rocas
Mineralogía y rocasMineralogía y rocas
Mineralogía y rocas
 
minerales
mineralesminerales
minerales
 
Prop. minerales
Prop. mineralesProp. minerales
Prop. minerales
 
03 propiedades fisicas
03   propiedades fisicas03   propiedades fisicas
03 propiedades fisicas
 
Rocas y minerales
Rocas y mineralesRocas y minerales
Rocas y minerales
 
Los minerales clase 4
Los minerales clase 4Los minerales clase 4
Los minerales clase 4
 
Corteza terrestre
Corteza terrestreCorteza terrestre
Corteza terrestre
 
Los minerales y su formación
Los minerales y su formaciónLos minerales y su formación
Los minerales y su formación
 
Mineralogia 1x ACB
Mineralogia 1x ACBMineralogia 1x ACB
Mineralogia 1x ACB
 
MINERALOGÍA
MINERALOGÍAMINERALOGÍA
MINERALOGÍA
 
Minerales
MineralesMinerales
Minerales
 
LC - Semana 06 - Rocas y Minerales.pdf
LC - Semana 06 - Rocas y Minerales.pdfLC - Semana 06 - Rocas y Minerales.pdf
LC - Semana 06 - Rocas y Minerales.pdf
 

Último

EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxEJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxFabianValenciaJabo
 
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJODIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJOLeninCariMogrovejo
 
DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...
DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...
DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...Martin M Flynn
 
Amor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdfAmor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdfAlejandrino Halire Ccahuana
 
Fichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdfFichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdfssuser50d1252
 
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...GIANCARLOORDINOLAORD
 
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...MagalyDacostaPea
 
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdfMEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdfJosé Hecht
 
libro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguajelibro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguajeKattyMoran3
 
Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Rosabel UA
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfssuser50d1252
 
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docxMagalyDacostaPea
 
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).hebegris04
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Angélica Soledad Vega Ramírez
 
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdfPRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdfGabrieldeJesusLopezG
 
Presentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxPresentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxRosabel UA
 
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/FEl PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/FJulio Lozano
 

Último (20)

Acuerdo segundo periodo - Grado Noveno.pptx
Acuerdo segundo periodo - Grado Noveno.pptxAcuerdo segundo periodo - Grado Noveno.pptx
Acuerdo segundo periodo - Grado Noveno.pptx
 
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxEJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
 
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJODIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
 
DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...
DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...
DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...
 
Amor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdfAmor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdf
 
Fichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdfFichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdf
 
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...
 
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
 
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdfMEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
 
libro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguajelibro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguaje
 
Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
 
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docx
 
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...
 
Sesión ¿Amor o egoísmo? Esa es la cuestión
Sesión  ¿Amor o egoísmo? Esa es la cuestiónSesión  ¿Amor o egoísmo? Esa es la cuestión
Sesión ¿Amor o egoísmo? Esa es la cuestión
 
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdfPRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdf
 
Presentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxPresentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptx
 
Aedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptxAedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptx
 
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/FEl PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
 

PROPIEDADES FISICAS MORFOLOGÍA DE LOS CRISTALES

  • 1. PROPIEDADES FISICAS MORFOLOGÍA DE LOS CRISTALES Forma Consideramos aquí el juego de formas base con sus índices (hkl) determinados que constituyen las caras del cristal. Hábito cristalino Se llama hábito cristalino el tipo de facetas dominantes en el facetado del cristal. Esta característica se suele estimar visualmente, destacando los tipos de facetas que tienen áreas más amplias, por ejemplo, hábito cubooctaédrico, hábito dipiramidal, etc. Berilo de hábito prismático. Siberia, Rusia. Foto J.M.Sanchís Calvete.
  • 2. Superficie de los cristales • Las caras de los cristales casi nunca son perfectas. Escalones y polígonos de crecimiento, superficies de inducción, figuras de disolución son algunos de los defectos superficiales más habituales. Estos defectos pueden aparecer tanto durante el crecimiento del cristal, como durante su alteración posterior. Figuras de disolución en las caras de esmeralda de Kazakjstan. Foto E.V.Gavrilenko
  • 3. Anatomía del cristal • Algunos cristales presentan una variación de morfología y de composición en el volumen del cristal, debida a los cambios en las condiciones de formación del cristal a lo largo de su crecimiento (zonado), o bien al comportamiento diferente de distintas caras cristalinas respecto al atrapamiento de impurezas químicas (coloración sectorial de cristales) o inclusiones (esmeraldas trapiche). Un cristal cortado de berilo zonal con el núcleo y la zona exterior de esmeralda y berilo incoloro en el centro. Los Urales, Rusia. Foto E.V.Gavrilenko.
  • 4. Agregados cristalinos • Existen numerosas denominaciones para describir los agregados cristalinos de minerales. No puede establecerse una lista sistemática ni una definición estricta para cada uno de los términos. • Como términos más frecuentes podemos citar: • Acicular: cristales delgados parecidos a agujas Azurita: Cu2+ 3(CO3)2(OH)2 - 5 cm
  • 5. Arborescente: de aspecto similar a un árbol Plata: Ag, sobre calcita
  • 6. Filiforme: parecidos a cabellos o hebras Jamesonita: Pb4FeSb6S14 - 5x5x4 cm
  • 7. Dendrítico: en ramas divergentes similares a plantas Pirolusita: Mn4+O2
  • 8. Reticulado: cristales delgados entrelazados simulando redes Rutilo: TiO2 - 7x6 cm
  • 9. Radiante: cristales dispuestos de manera radial a partir de un centro Prehnita: Ca2Al2Si3O10·(OH)2 - 11x10x7 cm
  • 10. Columnar: En forma de columna. Aragonito: CaCO3
  • 11. Fibroso: En forma de pequeñas fibras paralelas, facilmente separables entre sí Grunerita Fórmula química: (Fe2+,Mg)7Si8O22(OH)2 Clase: Silicatos Subclase: Inosilicatos Grupo: Anfíboles Subgrupo: Anfíboles monoclínicos Etimología: Deriva del nombre de L. G. Grüner químico francés del siglo XIX que estudió los términos férricos de la serie. Cristalografía: Sistema y clase: Monoclínico 2/m. Grupo espacial: C2/m. a = 9.62 Å, b = 18.45 Å, c = 5.34 Å; b = 103º00´; Z = 2. Líneas de DRX(intensidades) d´s: 9.21(5) - 8.33(10) - 3.07(8) - 2.76(9) - 2.51(6).
  • 12. • Propiedades físicas: • Color: • Diversos matices de castaño claro. • Raya: • • Brillo: • Sedoso. • Dureza: • 5 a 6 • Densidad: • 3.6 g/cm3 • Óptica: • Biáxica negativa. Débil pleocroismo en tonos pardo verdosos. • Otras: • • Química: Contiene 49.01% de SiO2, 44.99% de FeO, 3.17% de H2O y hasta un 1% de F. • Forma de presentarse: Cristales lamelares, con variedades finamente aciculares de tipo asbestoide llamadas Amosita abreviatura de Asbestos Mine Of South Africa que alcanzan gran longitud. • Génesis: Es característica del metamorfismo dinamotérmico de sedimentos silíceos ricos en hierro.
  • 13. Estrellado: Cristales en formas concéntricas simulando estrellas Mesolita: Na2Ca2Al6Si9O30.8H2O - 11x9x9 cm
  • 14. Globular: Individuos de forma esférica Esferocobaltita: CoCO3 - con cuarzo hialino
  • 15. Botrioidal: Formas globulares agrupadas en racimos Apatito: Ca5(PO4)3(F,Cl,OH) - 5 cm
  • 16. Reniforme: minerales radiales terminados en formas arriñonadas Goethita: Fe3+O(OH)
  • 17. Mamilar: Grandes formas redondeadas a modo de mamas Smithsonita: ZnCO3 - 7x4 cm
  • 18. Coraloide: En formas puntiagudas ramificadas que recuerdan al coral Aragonito: CaCO3
  • 19. Exfoliable: mineral que se separa facilmente en capas. Cuando esas capas son hojosas muy finas se dice micáceo Biotita: K(Mg,Fe2+)(Al,Fe3+)Si3O10(OH,F)2
  • 20. Tabular: Individuos planos a modo de tablas Vanadinita: Pb5(VO4)Cl
  • 21. Masivo: Agregados minerales compactos y sin forma particular Bismuto: Bi - 7x6x3 cm
  • 22. Discoidal: En forma de discos superpuestos Yeso: CaSO4·2H2O - "Rosa del desierto", 17x8x8 cm
  • 23. Hojoso: Cristales alargados planos a modo de hojas de cuchillo Crocoita: PbCrO4
  • 24. Estalactítico: En forma de conos o cilindros colgantes a modo de estalactitas Goethita: Fe3+O(OH) - 15x10 cm
  • 25. Concrecionado: Masas de mineral depositadas sobre un núcleo, en ocasiones de formas esféricas Malaquita: Cu2+ 2(CO3)(OH)2
  • 26. Plumoso: Formado por escamas finas superpuestas con estructuras parecidas a plumas Limonita:
  • 27. Oolítico: Agregados esféricos a modo de huevas de pescado Calcita: CaCO3
  • 28. Drusa: Superficie cubierta por una capa de pequeños cristales Fluorita: CaF2 - cristales de 1 a 5 cm
  • 29. EXFOLIACIÓN, PARTICIÓN Y FRACTURA • Cuando un mineral es sometido a una fuerza externa se produce un proceso tensional que induce a una deformación del cristal. La resitencia y el tipo de deformación resultante están relacionados con los mecanismos de enlace interatómicos y por la presencia o no de defectos estructurales. Una vez que la deformación sobrepase cierto valor, excediendo su resistencia, el mineral se rompe.
  • 30. • Exfoliación • Ciertos minerales tienden a romper según planos paralelos a direcciones muy concretas que corresponden a planos atómicos con densidad mínima de enlaces. Estos planos se definen mediante índices de Miller de igual manera que se hace con las caras externas de un cristal. Así por ejemplo las micas tienen tendencia a romper según planos basales {0001}. Esta propiedad se denomina exfoliación. • Al describir la exfoliación se debe precisar: • La calidad de la misma mediante términos tales como perfecta, buena, regular, mala, etc. • La dirección expresada por el nombre o dirección a la que es paralela la exfoliación, por ejemplo cúbica {001} propia de la galena, octaédrica {111} en el caso del diamante o de la fluorita, romboédrica {1011}, prismática {110} o basal o pinacoidal {0001} caso de las micas o del grafito.
  • 31. Galena: PbS - 10 cm Diamante: C - 1.01 quilates Fluorita: CaF2 - 40x20 cm Grafito: C - 12x9x4 cm La exfoliación de un mineral concuerda con su simetría, así si se desarrolla una dirección octaédrica necesariamente deberan existir otras tres direcciones semejantes. No todos los minerales presentan exfoliación ni en el mismo grado, así mientras que es muy marcada en el caso de la exfoliación basal de las micas, puede estar menos marcado como en el caso del berilo o no existir como con el cuarzo
  • 32. • Partición • Cuando un mineral rompe a lo largo de planos con debilidad estructural, debidos a la presencia de maclas, tensiones anteriores acumuladas o procesos de desmezcla se dice que ha sufrido una partición. No es pues una propiedad intrínseca del mineral, como en el caso de la exfoliación, sino que depende de la historia" del ejemplar. No obstante en cada mineral solo existiran ciertos planos suceptibles de generar partición tales como la partición octaédrica de la magnetita, la básica del piroxeno o la rómboédrica del corindón Corindón: Al2O3 - variedad Rubí
  • 33. • Fractura • Cuando un mineral rompe sin seguir ninguna de las pautas antes expuestas se dice que se fractura. • Estas facturas en función de la forma y aspecto de las superficies generadas pueden denominarse:
  • 34. • Concoidal si los planos de fractura presentan superficies lisas y suaves, pero con bordes agudos y cortantes, siendo un caso típico el cuarzo y su variedad el sílex. Cuarzo:SiO2 - 4x3 cm
  • 35. Astillosa o fibrosa Anhidrita: CaSO4 - 6x3.5 cm
  • 36. Ganchuda el mineral rompe según una superficie dentada, con filos puntiagudos Plata: Ag - 3x3 cm
  • 37. DUREZA Y TENACIDAD Definición de dureza • Se denomina dureza a la resistencia a ser rayado que ofrece la superficie lisa de un mineral, y refleja, de alguna manera, su resistencia a la abrasión. Mediante el estudio de la dureza de un mineral se evalúa, en parte, la estructura atómica del mismo pués es la expresión de su enlace más débil. • La dureza es una forma de evaluación de la reacción de una estructura cristalina a una tensión sin rotura. En los cristales con enlaces metálicos, que pueden fluir plásticamente, el rayado da lugar a una ranura o surco. Por el contrario, en materiales frágiles el rayado es la manifestación de una microfractura.
  • 38. Escala de Mohs • El grado de dureza se mide en mineralogía por comparación, determinándose la facilidad o dificultad en que un mineral es rayado por otro. Un mineral blando siempre es rayado por cualquier mineral más duro y nunca al revés. • Numéricamente esta dureza relativa, designada por H, se establece gracias a la escala de diez minerales corrientes definida por F. Mohs en 1824.
  • 39. • 1 1 Talco: Mg3Si4O10(OH)2 - 25x8 cm 2 Yeso: CaSO4·2H2O - 15 cm 3 Calcita: CaCO3 - 10 cm 4 Fluorita: CaF2 - 5 cm
  • 40. 5 Apatito: Ca5(PO4)3(F,Cl,OH) - 7x3 cm 6 Ortoclasa: KAlSi3O8 - 15 cm 7 Cuarzo 8 Topacio 9 Corindón: Al2O3 Diamante: C - 1.01 quilates
  • 41. • Esta escala no es en modo alguno proporcional, en efecto, la diferencia entre la dureza del diamante (10 en la escala) y el corindón (9 en la escala) es mucho mayor que la existente entre el corindón y el talco (1 en la escala). • En otras escalas, los valores cuantitativos permiten apreciar mejor estas diferencias, y están basadas en resultados sobre profundidad de penetración de una punta de diamante al mineral (Berkovich, Knoop, Wilks), evaluación del pulido de las facetas (Denning, Winchell, Wilks), abrasión con arena (Eppler) u otros (Rosiwal). Si se consideran estos valores de la dureza, llamada dureza absoluta, puede observarse esta no linealidad entre los elementos de la escala de Mohs:
  • 42. • Algunos productos artificiales han logrado alcanzar valores un poco más altos que el corindón (carburo de silicio, carburo de boro, carburo de wolframio). • La dureza de un mineral es una propiedad vectorial, pudiendo presentar un mismo mineral diversos valores dependiendo de la dirección según la cual se les raye. Por lo general, esa diferencia es muy ligera, pero en el caso de la cianita H = 5 paralelamente a su alargamiento y H = 7 normalmente a este. La calcita tiene una H = 3 en todas sus direcciones excepto según {0001} en la que vale H = 2. • En el diamante el plano menos duro es el de cara de rombododecaedro (110), y el más duro el de cara de octaedro (111), muy dificil de pulir. En una misma cara de diamante hay varias direcciones de mayor y menor dureza. Es posible representar estas variaciones por medio de diagramas vectoriales. El diagrama de la dureza de un plano (111) en diamante es un triángulo; para el plano (100) es una estrella de cuatro puntas; y para el plano (110) una elipse:
  • 43. Test de dureza • El test de dureza de Mohs consiste simplemente en encontrar cual es el último mineral de la escala que puede ser rayado por el ejemplar a medir y cual es el primero que no puede serlo. • Este test requiere tomar una serie de precuaciones: • Tomar caras frescas pues la alteración provoca una disminución de la dureza de un mineral. • No confundir la raya con la huella que dejan los minerales más blandos. Mientrar la huella puede ser limpiada, la raya es irreversible. • Tener en cuenta la la naturaleza de un mineral pues los minerales pulverulentos, granulares o astillosos pueden romperse y quedar aparentemente rayados por minerales realmentemás blandos. • Cuando se encuentra un mineral en el campo, rara vez se dispone de 10 minerales para efectuar el test de dureza. Por el contrario, puede obtenerse un aproximación bastante buena usando simplemente: • La uña del dedo (H = 2.5). • Una moneda de cobre (H = 3). • Una punta de acero, por ejemplo una punta de cuchillo, un clavo etc. (H = 5). • Un fragmento de vidrio (H = 5.5). • Empleando estos objetos comunes se consigue una buena orden de magnitud de dicha dureza.
  • 44. Tenacidad • Se denomina tenacidad a la resistencia que opone un mineral a ser partido, molido, doblado o desgarrado, siendo, en cierto modo, una medida de su cohesión. • Se definen una serie de objetivos relacionados con este concepto: • Un mineral frágil es aquél que se rompe o reduce a polvo fácilmente, siendo una propiedad característica de minerales con enlaces iónicos dominantes. Berilo:Be3Al2(Si6O18)
  • 45. • Se dirá de un mineral que es maleable cuando puede ser conformado en hojas delgadas por percusión Cobre: Cu - 7x7 cm cristal de 2 cm
  • 46. • Un mineral séctil puede cortarse fácilmente en virutas delgadas con un cuchillo. • Si un mineral puede estirarse fácilmente hasta formar un hilo se dice dúctil. Ductilidad, sectilidad y maleabilidad son propiedades características de minerales con enlaces metálicos pues dicho enlace transmite a la materia la capacidad de convertir toda tensión aplicada en deformación plástica. • Cuando un mineral puede ser doblado y pero no tiene la capacidad de recuperar su forma original, manteniendo la deformación de forma permanente, se denomina flexible. Los minerales en los que existan fuerzas de enlace de tipo Van der Waals o de hidrógeno tales como el talco o las cloritas lo son. • Por en contrario cuando un mineral recupera su forma original tras ser deformado se dice elástico. Las micas con enlaces iónicos son típicamente elásticos.
  • 47. PESO ESPECÍFICO Definición • Se denomina peso específico de un mineral al cociente entre su peso y el peso de un volumen equivalente de agua a 4ºC (condiciones de máxima densidad del agua), siendo un valor adimensional. Por el contrario, la densidad relativa es un valor equivalente correspondiente a la masa por unidad de volumen y viene expresado en unidades tales como g/cm3. • El peso específico es una propiedad intrínseca y constante para un mineral de composición química determinada y depende basicamente de dos factores: • De los átomos que constituyen el mineral. • Del tipo de empaquetamiento de los átomos. • En los elementos isoestructurales, con idéntico tipo de empaquetamiento, los elementos de mayor peso atómico tienen mayor densidad relativa. En una serie de soluciones sólidas existe un cambio continuo de densidad relativa . Así, en el caso de la serie de las wolframitas, los términos extremos ferberita (MnWO4) y hubnerita (FeWO4) tienen por valores respectivamente: 7.51 y 7.18. • El caso contrario lo constituyen los compuestos polimorfos, de misma composición pero diferente tipo de empaquetamiento. Así, en el caso del carbono, pasamos de valores de 3.515 para el diamante a solo 2.23 para el grafito pese a tener idéntica fórmula
  • 48. • Pesos específicos de algunos minerales • La estimación del valor del peso específico es en muchas ocasiones determinante el la clasificación de un mineral a estudiar, por ello a continuación se especifica dicho valor para algunos minerales: Medidas del peso específico Los métodos de medida del peso específico se basan en el principio de Arquímedes y consisten en medir el peso en aire del mineral P y posteriormente el peso de dicho mineral sumergido en agua P(agua). A continuación se presenta un esquema de una balanza hidrostática clásica.
  • 49. • La utilización de líquidos más densos y con menor fuerza de tensión superficial para esta medida permite realizar la determinación del peso específico de minerales con más precisión. En este caso en la fórmula anterior hay que introducir el valor de la densidad del líquido usadoL • las muestras a estudiar deberán ser homogéneas y puras, compactas y sin microgrietas o microcavidades que pudiesen contener fluidos o gases que reduzcan el peso específico a medir. Normalmente se requiere un volumen cercano a 1 cm3 de muestra. A partir de dicho principio se emplean diversos procedimientos de medida: • La balanza de Jolly en los que se miden los pesos en función del alargamiento de un muelle helicoidal. • La balanza de Penfield, donde el peso específico se determina por la posición de pesas en el brazo derecho graduado.
  • 50. • La balanza de Berman, de tipo torsión, se emplea para pequeñas partículas de menos de 25 mg. Si bien las medidas son muy precisas requiere una corrección por efecto de la temperatura. • El Picnómetro empleado en los casos en los que no se disponga de suficiente cantidad de muestra para emplear los métodos anteriores. Consiste, básicamente, en una botella de vidrio con un tapón de ese mismo material esmerilado y atravesado por un fino orificio capilar. Se pesa inicialmente el picnómetro vacío con su tapón (P), se introduce entonces el mineral a medir y se vuelve a pesar (M). Tras rellenar completamente el recipiente con agua destilada se mide de nuevo (S) y por fin se vacía el picnómetro y se rellena unicamente con agua destilada obteniéndose el peso W. • El peso específico vendrá dado por: Peso específico = (M - P) / W + (M - P) - S • El método de juego de liquidos densos permite por flotación selectiva determinar, aproximadamente, el peso específico de un mineral. Partiendo de un líquido de densidad relativamente alta, bromoformo (2.89) o yoduro de metileno (3.33), y disolviendo los mismos se puede conseguir un conjunto de disoluciones patrón, en los que el mineral flotará cuando su peso específico sea menor al del líquido y se hundirá cuando sea mayor. Este método se emplea también para separar especies minerales con diferentes densidades relativas.
  • 51. • A base de soluciónes de líquidos densos se puede obtener igualmente las medidas de peso específico de gran presición. Para eso hay que partir del líquido con el peso específico alto, donde el grano de mineral estará flotando. Luego se añade el diluyente a gotas, hasta obtener una solución del mismo peso específico que el mineral. En este momento el grano del último quedará en suspensión, sin hundirse ni flotar. Para medir el peso específico del líquido obtenido se puede utilizar una balanza hidrostática con un patrón de peso específico conocido • Existe también una balanza especial, basada en el mismo método, donde la medida del peso específico del líquido viene directamente de la posición de las pesas en el brazo de la balanza (balanza Westfal)
  • 52. INDICE DE REFRACCIÓN. BIRREFRINGENCIA • El comportamiento de la luz al introducirse en un cristal está controlado fundamentalmente por la estructura cristalina. En este sentido la propiedad más importante de un cristal es el índice de refracción (n), que se define como la relación entre la velocidad de la luz en el vacío y la velocidad de la luz en esa sustancia: n = Vv / V • Se asume que el índice de refracción de la luz en el aire es esencialmente el mismo que en el vacio, = 1. Como en general, la luz cambia de velocidad al atravesar diferentes medios, es precisamente el inverso de esta velocidad lo que constituye el índice de refracción (n = 1/v) característico de cada sustancia. • La luz disminuye su velocidad cuando entra en una sustancia, así el índice de refracción será siempre mayor que 1. La mayor parte de los cristales minerales tienen índices de refracción entre 1,32 y 2,40. • La relación entre las trayectorias del rayo incidente y del rayo refractado fueron determinadas por la Ley de Snell (1621): ni . sen i = nr . sen r
  • 53. • Siendo ni y nr los índices de refracción de cada medio y sen i y sen r los senos de los ángulos de incidencia y de refracción con la normal. • Así, la trayectoria de la luz durante este proceso de refracción originado al cambiar de medio (ej. aire/cristal) queda determinado por la Ley de Snell, con ni = 1 (aire): • nr = sen i / sen r • Sin embargo, el índice de refracción de un cristal no es necesariamente el mismo en todas las direcciones. La simetría interna de un cristal es un reflejo de la orientación de los átomos y ésto determinará la interactuación de la luz con el cristal. Así, se reconocen dos tipos básicos de comportamiento óptico: ISÓTROPO - igual índice de refracción en todas las direcciones. En esta categoría se encuentran los materiales vítreos y los cristales isométricos (granate, fluorita). ANISÓTROPO - diferente índice de refracción en diferentes direcciones cristalográficas. Los cristales de todos los demás sistemas pertenecen a esta categoría. Los cristales anisótropos son divisibles en dos tipos: • Uniáxico - tienen dos índices de refracción (sistema tetragonal y hexagonal) Biáxico - caracterizado por tres índices de refracción (triclínico, monoclínico y ortorrómbico) En los cristales anisótropos la luz se descompone en dos rayos de vibración perpendicular y de velocidades diferentes debido a las diferencias en los índices de refracción, que se denominan N (rayo lento) y n (rayo rápido). La diferencia entre los índices de refracción extremos (N-n) se denomina BIRREFRINGENCIA. Es una propiedad característica de cada cristal. • .
  • 54. • El estudio de las propiedades ópticas determinadas por esta birrefringencia, así como de toodas las características del cristal observadas al microscopio óptico de polarización las tiene en microscopía óptica de polarización DISPERSIÓN • La refracción de un rayo de luz no es igual para la luz distintos rangos del espectro visible. Así, el mismo material proporciona los valores de índices de refracción distintos para la luz monocromática de distintas longitudes de onda, siendo siempre los índices más bajos para la luz de longitud de onda más alta. • Refracción de la luz a su paso por un prisma de vidrio. Dependiendo de la longitud de onda (color) del haz que incide desde la izquierda, el ángulo de refracción varía, es decir, se dispersa
  • 55. Por ejemplo, para el diamante, los índices de refracción determinados para las distintas longitudes de onda se presentan en la tabla siguiente: Longitud de onda Color de luz Índice de refracción 686,7 nm roja 2,4074 656,3 nm naranja 2,4103 589,3 nm amarilla 2,4168 527,0 nm verde 2,4269 486,1 nm azul 2,4349 430,8 nm violeta 2,4512
  • 56. • En mineralogía se considera como índice de refracción el valor correspondiente a la luz de sodio (589,3 nm). El valor de dispersión viene determinado por la diferencia entre los índices de refracción obtenidos con luz roja (686,7 nm) y luz violeta (430,8 nm), extremos ambos del espectro visible. Por lo tanto, consideramos que el diamante tiene el índice de refracción 2,4168 y la dispersión 0,044. • La dispersión es una característica importante para los minerales gemas, dependiendo de esta propiedad el "fuego" una la piedra tallada. La dispersión de diamante es relativamente alta, pero algunos minerales y, sobre todo, sustancias artificiales la tienen más alta aún, como es el caso de rutilo sintético, presentado en la foto abajo.
  • 57. COLOR • El color es, probablemente, una de las características más espectaculares y atractivas de los minerales, confiriendo una indiscutible belleza a los cristales, muy especialmente en el caso de algunas gemas. Sin pecar de exageración puede decirse que los minerales, en su conjunto, abarcan todo el espectro de colores del visible, con todos los matices que pueda uno imaginar.
  • 58. • Incluso, un único mineral puede presentar, en ocasiones, una enorme variedad de colores como en el caso de la fluorita con tonalidades azules, amarillas, verdes, moradas, naranjas o rosas. • Los minerales están coloreados porque absorben ciertas longitudes de onda de la luz que incide sobre ellos y reflejan el resto, siendo el color la combinación de aquellas longitudes de onda que inciden en el ojo. • Pueden considerarse hasta seis causas específicas que justifican el color de un mineral:
  • 59. • La coloración idiocromática esta producida por la presencia de iones metálicos de elementos de la serie de transición, en los cuales los orbitales 3d no están completos. Dichos iones provocan en los cristales que los albergan un desdoblamiento del campo cristalino y la energía absorbida corresponderá en cada caso a la diferencia de energía causada en los orbitales 3d por dicho desdoblamiento. Así por ejemplo en el caso del olivino la absorción tiene lugar dentro del campo del infrarrojo con una ligera extensión dentro del campo del visible en el rojo, por lo que la luz reflejada, descontada el componente rojo del espectro, será amarillo - verdosa. Ejemplos de olivinos con su característico color verdoso
  • 60. • Existen hasta doce iones metálicos responsables de la coloración de los minerales: el titanio en su forma Ti2+, el vanadio como V3+ o V4+, el cromo Cr3+ y Cr4+, el manganeso Mn2+ y Mn3+, el hierro Fe2+ y Fe3+, el cobalto Co2+ , el niquel Ni2+ y el cobre Cu2+. • En los minerales idiocromáticos estos iones figuran en cantidades tales que forman parte de la fórmula química del mineral con lo que la coloración resultante es propia y característica del mismo. Como ejemplos de minerales idiocromáticos, además del olivino pueden citarse la malaquita de color verde, la azurita de color azul etc.
  • 61. Azurita y malaquita. • La coloración alocromática es producida por los iones anteriormente citados cuando figuran como trazas en los minerales. Se trata de impurezas que confieren determinados colores a minerales generalmente incoloros. Así en el caso del berilo la presencia de Cr3+ provoca la intensa coloración verde de la variedad esmeralda. La presencia de iones Fe2+explican, en parte, los tonos azules de la aguamarina. Ciertas variedades de esmeraldas procedentes de Brasil deben su color verde a la presencia de V3+. •
  • 62. • Tres variedades del berilo: incoloro, esmeralda y aguamarina. • Otro ejemplo de coloración alocromática es la kuncita variedad rosacea - lila de la espodumena debida a la presencia de Mn2+. Kuncita • Se denominan centros de color a un conjunto de defectos en la estructura de los cristales debidos a irradiaciones naturales o artificiales. Estos defectos pueden ser iones en exceso (intersticiales) o agujeros debidos a la falta de algun electrón. En el caso de la Fluorita (CaF2) la coloración púrpura se debe a un centro de color producido por la ausencia de un ión F-. Su posición es ocupada por un electrón libre para mantener el balance de cargas. Este electrón puede ocupar diversos estados excitados que son los responsables de la coloración y de la fluorescencia característica de este mineral.
  • 63. • Tres ejemplos de fluoritas • El color ahumado de ciertos cuarzos se debe a un centro de color de tipo agujero, en donde algunos Al3+ sustituyen al Si4+ apareciendo iones Na+ o H+ intersticiales a fin de mantener la neutralidad eléctrica. Sometido a radiación estos cuarzos algunos oxígenos adyacentes al Al3+ pierden un electrón (el ausente) dejando un electrón desparejado. Este electrón posee diversos estados excitados responsables del color. Ejemplares de cuarzos ahumados.
  • 64. • Existe otro tipo de coloración de los minerales relacionada con los fenómenos de transferencia de cargas. Un electrón (carga negativa) puede ser compartido pasado de un átomo a otro formándose orbitales híbridos. Existen tres formas de transferencia de carga: • Transferencia de carga oxígeno - ión metálico • Transferencia de carga de intervalencia o sea ión metálico - oxígeno - ión metálico. • Transferencia de carga de deslocalización en el caso de no existir iones metálicos. • En el caso de la aguamarina su característico color azul es debido tanto a la presencia de Fe2+ en forma de impurezas como a fenómenos de transferencia de cargas de intervalencia Fe2+ - O - Fe2+. • Ejemplares de cuarzos ahumados. Ejemplos de aguamarinas
  • 65. • En el caso de los metales la teoría de las bandas de valencia explica la coloración de los mismos. En esta caso es la estructura del cristal en su conjunto la responsable del color. Los electrones del cristal metálico o semimetálico aparecen deslocalizados en el interior del cristal produciendo una interacción con la luz visible (fotones) responsable del color. Este color no es posible provocarlo ni mejorarlo con procedimientos artificiales contrariamente al caso de las imprurezas o defectos Tres característicos minerales metálicos con colores debidos a fenómenos de banda de valencia: oro, plata y cobre.
  • 66. • En algunos casos el color de un mineral puede deberse a fenómenos ópticos tales como la dispersión, difusión interferencia o difracción de la luz denominándose entonces coloración pseudocromática. Este tipo de coloración se explica por la intercción de la luz con ciertas características físicas del cristal tales como inclusiones, texturas particulares o estructuras particulares. Uno de los casos más llamativos es el del ópalo noble con sus espectaculares efectos de irisación. Son debidos a la difracción de la luz a traves de su estructura formada por un apilamiento compacto, más o menos regular de minúsculas esferas de silicio. Dos ejemplos de ópalos nobles y sus juegos de colores • El ópalo es una de las raras gemas que puede presentar todos los colores del espectro visible en una única y misma piedra. El color de cada parcela del ópalo dependerá de la orientación de la fuente de luz incidente. Al moverse la piedra el color cambia es lo que le confiere "vida" al ópalo. Además, el color dependerá igualmente del grosor de las esferas que lo componen y del espaciado de las diferentes capas paralelas en las que están regularmente dispuestas
  • 67. BRILLO • Se denomina brillo al aspecto de la superficie de un mineral cuando se refleja en ella la luz. • Se suele distinguir los minerales con brillo metálico de aquellos con brillo no metálico, si bien una clara separación entre ambos grupos es algo ambigua, al punto de considerarse en ocasiones un grupo de minerales con brillo submetálico. • El brillo metálico es propio de aquellos minerales con enlace metálico puro o predominante, siendo totalmente opacos a la luz. En ellos los huecos entre los estados fundamentales y excitados son bastante menores que en el caso de las estructuras covalentes e iónicas. • Sin embargo existen numerosos estados excitados con energías disponibles dentro del intervalo completo de la luz visible, permitiendo la absorción de la luz incidente y la posterior emisión de dicha luz en forma visible. Por ello los materiales con brillo metálico reflejan totalmente la luz visible. Los metales nativos y la mayor parte de los sulfuros pertenecen a este grupo.
  • 68. • Los minerales con brillo no metálico son, por lo general, de colores claros y transmiten la luz, por lo menos, en secciones delgadas. Se emplean diversos calificativos para describir los tipos de brillos no metálicos entre ellos: • Vítreo: Parecido al brillo del vidrio. Lo presentan minerales tales como el cuarzo o las turmalinas. • Resinoso: De aspecto similar a la de la resina. Ejemplos de ello son la blenda o el azuf • Nacarado: Con aspecto nacarado que recuerda a las perlas. Aparece en las superficies de los minerales paralelas a los planos de exfoliación, por ejemplo en el caso del talco o en los planos basales de la apofilita. • Graso: Las superficies presentan un aspecto como si estuviesen recubiertas por una delgada capa de aceite y es propia de minerales con superficies microrrugosas. Lo puden presentar ciertas nefelinas, algunas especies de esfaleritas o el cuarzo masivo. • Sedoso: Resulta de la reflexión de la luz sobre paralelo de finas fibras. Lo presentan el yeso fibroso, la malaquita o el crisotilo. • Adamantino: Reflejo fuerte y brillante como el diamante. Es propio de minerales con un alto índice de refracción, como en el caso de la cerusita o la anglesita.
  • 69. PROPIEDADES ELÉCTRICAS Conductividad • El tipo de enlace atómico determina la conductividad eléctrica de un mineral. Aquellos minerales con enlaces de tipo metálico, tales como los metales nativos, son excelentes conductores. • Los sulfuros, con enlaces sólo parcialmente metálicos, son semiconductores, mientras que los minerales con enlaces iónicos o covalentes son, generalmente, no conductores. • La conductividad es una magnitud vectorial y para los minerales no cúbicos varía en función de la orientación cristalográfica. Así , en el caso del grafito su conducción es mucho mayor según direcciones perpendiculares al eje c que según direcciones paralelas al mismo.
  • 70. Piezoelectricidad • Se denomina piezoelectricidad a la facultad que presentan ciertos minerales de producir una corriente de electrones si se ejerce una presión sobre un extremo de su eje polar. Todos los minerales que cristalicen según sistemas que presenten dichos ejes polares presentarán esta propiedad, pero sólo unos pocos de ellos lo hacen con una intensidad suficiente para ser medida. • Con esta propiedad, el cuarzo es empleado para el control de radiofrecuencias. Si a una lámina de cuarzo cortada convenientemente se la somete a una corriente alterna se deforma mecánicamente y vibra por flexión en una dirección y en otra alternativamente. Al colocar una lámina de este tipo en el campo de eléctrico generado por un circuito de radio, puede controlarse la frecuencia de emisión y transmisión haciéndola coincidir con la frecuencia del cuarzo. Igualmente se emplea esta característica en los relojes de cuarzo. • La turmalina, si bien en menor medida que el cuarzo igualmente presenta características piezoeléctricas bien marcadas especialmente en direcciones paralelas al eje c. Se emplean en la elaboración de manómetros, espacialmente utilizados en los controles de detonaciones nucleares
  • 71. Piroelectricidad • Los minerales que presentan un eje polar único al ser sometidos a un gradiente de temperaturas desarrollan simultaneamente cargas positivas y negativas en los extremos opuestos del eje. Esta propiedad se denomina piroelectricidad. • Los minerales como el cuarzo con más de un eje polar pueden presentar una polaridad piroelectricidad denominada secundaria resultante de la deformación producida por un
  • 72. PROPIEDADES MAGNÉTICAS • Se clasifican las características magnéticas de un mineral en función del comportamiento del mismo al ser expuesto a un campo magnético externo. Se denomina suceptibilidad magnética a dicha propiedad y es sensible a la temperatura especialmente al sobrepasarse la denominada temperatura de transición magnética. • El espín de los electrones es el principal responsable de las propiedades magnéticas de átomos y moléculas. En efecto un electrón en rotación puede identificarse con un dipolo magnético teniendo un momento magnético igual a • mB = 9.27x10-24Am2. • Aquellos materiales que posean todo sus orbitales completos con dos electrones de espines opuestos tendrán un momento magnético resultante nulo y se denominan diamagnéticos. Son muy numerosos los minerales de este tipo destacando, entre otros, la calcita, la albita, el cuarzo o el apatito. Al estar sometidos a un campo magnético externo apenas se ven afectados, si no es por una muy ligeras variaciones en los orbitales electrónicos que producen una pequeña suceptibilidad magnética negativa en algunos minerales máficos.
  • 73. • Por el contrario aquellos materiales con electrones no compartidos en orbitales 3d tendran momentos resultantes no nulo. En este grupo aparecen algunos constituyentes muy comunes de los minerales tales como el Fe, Mn, Ti o Cr. El momento magnético será proporcional al número de electrones desapareados Elemento Ión Momento magnético Sc Ti3+, V4+ mB Ti Ti2+, V3+ 2 mB V V2+, Cr3+, Mn4+ 3 mB Cr Cr2+, Mn3+ 4 mB Mn Mn2+, Fe3+ 5 mB Fe Fe2+, Co3+ 4 mB Co Co2+ 3 mB Ni Ni2+ 2 mB Cu Cu2+ mB
  • 74. • Pero aparte del mayor o menor momento magnético de los componentes de un mineral, debe igualmente tenerse en cuenta las interacciones de dichos componentes en las estructuras cristalinas. • Si un mineral posee una distrubución aleatoria de sus dipolos magnéticos provocados por componentes del tipo descrito anteriormente se dice paramagnético, siendo ejemplos de este tipo de minerales los olivinos y la augita. • Al ser sometido a un campo magnético, solo una pequeña parte de los dipolos tenderán a orientarse paralelamente a este, por ello estos minerales solo seran débilmente influidos por campos externos, no siendo, además, dicha magnetización permanente. • En los minerales ferromagnéticos, tales como el hierro nativo, los dipolos están alineados por fuerzas de intercambio debidas al solapamiento de los orbitales de los átomos e iones vecinos. • Se presentan ciertas áreas dento de un mismo cristal denominadas dominios en los cuales existen un número grande de átomos paramagnéticos con sus momentos magnéticos bien alineados. Al ser sometido a un campo magnético, los dominios se alinéan con él presentando el mineral una fuerte atracción frente a dicho campo, al punto que los dominios tienden a mantener su orientación aún en ausencia del campo externo, induciendo un magnetismo permanente. Todo material ferromagnético con magnetismo permanente sometido a calentado por encima de la denominada temperatura de Curie perderá sus propiedades.
  • 75. • Los minerales ferrimagnéticos presentan, contrariamente al caso anterior, momentos de espín iónicos antiparalelos pero no de igual valor, por lo que existirán momentos magnéticos permanentes. Tal es el caso de la magnetita , de los miembros de la serie sólida hematites - ilmenita y de la pirrotina. • En el caso de la magnetita Fe3+ (Fe2+Fe3+)O4 los iones Fe3+ se distribuyen en la red en direcciones opuestas de espín magnético, mientras que los Fe2+ serán responsables del espín no apareado neto y, por tanto, de unos dominios magnéticos permanentes. • La piedra imán natural es una sustancia ferrimagnética con la composición de la magnetita con todos los momentos magnéticos netos fuertemente alineados. Este magnetismo natural se debe al enfriamiento de material fundido bajo la influencia del campo magnético terrestre. • a expansión térmica desigual.
  • 76. LUMINISCENCIA Concepto y definición • La energía radiante que recibimos del sol cubre una amplia gama de longitudes de onda de las cuales sólo una pequeña parte constituye el llamado espectro de la luz visible. • La luz es una forma de energía y para crearla es necesario suministrar energía bajo otra forma. Existen, fundamentalmente, dos formas para que ello ocurra: • La incandescencia es el fenómeno de emisión de luz debida a la energía calorífica. Un cuerpo, alcanzando cierta temperatura, emite una radiación luminosa que es, además, característica de cada sustancia. Es este el fenómeno observado cuando un metal es "calentado al rojo" y está a la base de utilizaciones industriales tan comunes como la bombilla en la que un filamento de wolframio, atravesado por corriente eléctrica, alcanza la incandescencia y emite una luz brillante. Las estrellas y el propio sol irradian luz por incandescencia. • La luminiscencia, por el contrario, es una forma de "luz fría" en la que la emisión de radiación lumínica es provocada en condiciones de temperatura normal o baja. • Espectro de la luz, con la zona visible (380 - 780 nm) y los diferente colores de la misma
  • 77. • Esquemáticamente puede describirse una átomo como un núcleo alrededor del cual gravitan un conjunto de electrones con trayectorias orbitales precisas. • Cuando una cierta forma de energía alcanza un átomo, ciertos electrones son excitados, alcanzando, de manera transitoria, un mayor nivel de energía saltando a un orbital superior; para recuperan su estado inicial deben desprenderse del excedente de energía, emitiendo un fotón, generalmente con longitud de onda dentro del espectro de la luz visible. • Este fenómeno se observa normalmente en minerales que poseen iones extraños, llamados "activadores", siendo una emisión débil, sólo observable en la oscuridad. Otros elementos como el hierro o el cobalto son llamados "desactivadores" pues impiden la fluorescencia incluso en presencia de un activador. • El poeta y científico alemán Johann Wolfgang von Goethe (1749-1832), gran apasionado de las Ciencias Naturales, fue el primero en notar que la luz ultravioleta podía provocar fluorescencia en los minerales. Posteriormente los físicos franceses Antoine y Edmond Becquerel estudiaron el efecto de diferentes longitudes de onda sobre numerosos materiales fluorescentes. Este último empleó placas fotográficas para medir el espectro de la luz ultravioleta. Pusieron en evidencia que la fluorescencia de color rojo observable en la Calcita era debida a la presencia de manganeso poniendo en evidencia, por primera vez, el papel de los activadores en este fenómeno.
  • 78. LA RADIACTIVIDAD Introducción • Algunos núcleos atómicos naturales no son estables sino que se alteran de manera espontánea dando lugar a núcleos diferentes de los iniciales. • Predecir cuando un núcleo va a sufrir este fenómeno es, hoy en día, totalmente imposible, pero sobre un amplio conjunto de átomos agrupados en cristales si puede determinarse un ratio de desintegración radiactiva, proporcional con el número de átomos presentes y específico para cada tipo de isótopo radiactivo. Se considera generalmente el intervalo de tiempo necesario para la desintegración de la mitad de los átomos presentes de una sustancia dada, denominado periodo de desintegración nuclear.
  • 79. El proceso de desintegración nuclear • Un núcleo puede emitir una partícula a, o sea un ión He2+, produciendo un núcleo hijo que estará dos posiciones por debajo en la tabla periódica de los elementos y tendrá cuatro unidades de masa menos. Así, por ejemplo, un ión uranio con número atómico 92 y masa 235 o 238 se transformará por emisión de una partícula a en un ión torio con número atómico 90 y masa 331 o 234 respectivamente. • También es posible una emisión de partículas b o electrones. En este caso, la masa efectiva no varía pero la partícula resultante estará una posición más adelante en la tabla periódica de los elementos, al emitir un neutrón un electrón y transformarse en protón. Así, por ejemplo, un isótopo 87Rb se transformará en 87Sr. • Otra posibilidad es la captura por el núcleo de un electrón K que provoca que un protón sea transmutado en neutrón con lo que la partícula resultante estará una posición por debajo en la tabla periódica de los elementos. • El proceso de fisión nuclear es el cuarto modelo de desintegración y consiste en la división de un núcleo en dos o mas isótopos, estables o no. Estos procesos pueden estar acompañados por emisiones de partículas.
  • 80. • El proceso de fisión nuclear es el cuarto modelo de desintegración y consiste en la división de un núcleo en dos o mas isótopos, estables o no. Estos procesos pueden estar acompañados por emisiones de partículas. • Los procesos naturales de desintegración nuclear pueden comprender complejas cadenas de reacciones con más procesos. A modo de ejemplo, se presenta la desintegración nuclear del 238U hasta llegar a 82Pb estable.
  • 81. La metamictización • Algunas propiedades y consecuencias de la descomposición radiactiva tienen notables consecuencias a nivel mineralógico, especialmente la metamictización. • Se denomina así al proceso de destrucción de la estructura cristalina como consecuencia de procesos radiactivos. En efecto, aquellos minerales con cantidades significativas de U o Th ven sus redes distorsionadas y/o destruidas como consecuencia de los drásticos cambios de los radios iónicos entre las partículas originales y las obtenidas tras descomposición radiactiva y por el borbardeo por partículas a, provocando que el mineral se vuelva opaco a los rayos X cuando al menos un 20% de sus iones han sido desplazados. • La cristalinidad podrá, en parte, ser restaurada al calentar el mineral metamíctico a temperaturas entre 500 y 900º C. • Una intensa emisión de partículas a, puede alterar los minerales que rodeen a los granos radiactivos, como ocurre en el caso de numerosos granitos en los que de las biotitas y/o cloritas que envuelven a ciertos circones aparecen con halos pleocroicos de alteraci
  • 82. LOS MINERALES DE URANIO Introducción • El uranio y el torio son los elementos radiactivos naturales esenciales, a los que hay que añadir los elementos de vida corta que resultan de su desintegración, tales como el radio o el radón y a elementos ligeros radiactivos. El uranio es con diferencia el más abundante, apareciendo en numerosos minerales. • El metal uranio fue descubierto por Kalproth (1789) en un mineral negro y pesado llamado pechblenda que, hasta ese momento, se suponía compuesto por hierro y cinc. Hasta 1841 no pudo ser aislado el metal puro, pero ya mucho antes se conocían otros minerales que lo contenían (uraninita, autunita, torbernita, gummita, etc.) y no es hasta mucho tiempo después que las propiedades radiactivas del uranio se conocieron.
  • 83. • Algunos aspectos químicos del uranio • Si se considera el conjunto de especies minerales identificadas que contienen uranio como constituyente principal, destaca el número elevado de ellas, más de 200 especies, lo que, sobre un total de minerales conocidos de unos 3.600, supone más del 5%, cuando el uranio es un elemento muy escaso que, como media, alcanza sólo 2.5 ppm en la corteza terrestre. • Esta abundancia relativa que se debe a diversas características del uranio: • En primer lugar, el uranio es un elemento muy pesado, del grupo de los actínidos, emparentado, por tanto, con el torio, el protoactinio y los llamados transuránicos. También guarda estrecha relación con los elementos de las "tierras raras" o lantánidos, que muchas veces se encuentran asociados con él en los mismos yacimientos y minerales. • El átomo de uranio tiene, además, un núcleo grande con gran número de orbitales electrónicos, algunos débilmente unidos al núcleo, por lo que son posibles diversos estados de oxidación. De hecho, se sabe que son posibles todos los estados de valencia entre +2 y +6, aunque en la naturaleza sólo se conocen minerales en los que el uranio presenta los estados de oxidación +4 y +6.
  • 84. • En segundo lugar, el uranio (al igual que el torio), es un elemento notablemente litófilo, es decir, que tiende a combinarse con el oxígeno formando óxidos o sales que contienen oxígeno (silicatos, fosfatos, sulfatos, carbonatos etc.) pero nunca aparece en forma nativa, como sulfuro, arseniuro, sulfosal o teleruro. • Resulta pues abundante en la superficie terrestre, normalmente relacionado con rocas graníticas, así como en rocas sedimentarias. Concretamente, las rocas graníticas poseen un contenido medio de uranio bastante mayor al de la corteza terrestre, siendo, posiblemente, la meteorización de estas rocas la fuente lejana de todo el uranio contenido en rocas sedimentarias. Por el contrario, en basaltos y peridotitas los contenidos de uranio son muy bajos (1 ppm en basaltos, 0.001 ppm en peridotitas). • Por otra parte, el uranio es un metal con un radio iónico próximo al del calcio, torio, circonio, lantano y otras tierras raras, por lo que sustituye a estos elementos en muchos minerales (circón, xenotimo, monacita, apatito, etc.) encontrándose en ellos en pequeñas proporciones. • Desde que se conoce su importancia como recurso energético fundamental, los minerales de uranio han sido buscados con intensidad y se ha investigado mucho sobre su composición y estructura. Con un instrumental moderno se pueden determinar nuevas especies, incluso disponiendo de muy pequeñas cantidades de mineral. • Por último, muchos minerales de uranio presentan colores llamativos, que aumentan el interés de los coleccionistas por clasificar e identificar especies, a veces sólo detectables a simple vista por sutiles cambios de tonalidad
  • 85. Criterios de clasificación de los minerales de uranio • Normalmente, los minerales de uranio se clasifican según criterios genéticos, en primarios y secundarios según se hayan formado a partir de soluciones o por alteración, respectivamente. • Otra clasificación posible se basa en el estado de oxidación del ión uranio en los distintos minerales, distinguiéndose los minerales en los que el uranio aparece en forma reducida, es decir, el U4+ y otra en la que el estado predominante es el oxidado U6+. En esta segunda familia, la mayor parte de las especies contienen el ión uranilo (UO2)2+. Una subdivisión de la familia oxidada puede realizarse teniendo en cuenta el grupo aniónico con el que se asocia el uranilo (carbonato, sulfato, fosfato, vanadato, etc.). • La mayor parte de los minerales de uranio se presentan en varios tipos de yacimiento, aunque los minerales reducidos, mucho menos frecuentes que los oxidados, rara vez aparecen en más de dos variedades para un yacimiento dado. • La presencia de uno o varios minerales viene determinada por las condiciones de oxidación/reducción del entorno, así como por la acidez o basicidad del medio. Estudiando los diagramas Eh/pH o el diagrama composicional uranio/oxígeno, es fácil observar la gran cantidad de fases que son posibles con leves variaciones de las condiciones del yacimiento.