El Teorema De Pitagoras

60,137 views
59,823 views

Published on

Explicacion del teorema de Pitágoras, ejemplos ilustrativos

Published in: Education, Travel
0 Comments
9 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
60,137
On SlideShare
0
From Embeds
0
Number of Embeds
5,925
Actions
Shares
0
Downloads
586
Comments
0
Likes
9
Embeds 0
No embeds

No notes for slide

El Teorema De Pitagoras

  1. 1. Matemáticas Yolimar Atacho a 2 + b 2 = c 2
  2. 2. Pitágoras <ul><li>Nació en 572 a. de c. aproximadamente. En la isla de Samos, una de las islas del mar Egeo, cerca de la ciudad de Mileto, donde nació Tales. </li></ul><ul><li>Es muy probable que haya sido alumno de este último. </li></ul>
  3. 3. <ul><li>Teorema </li></ul><ul><li>Proposición científica demostrable. </li></ul><ul><li>Teorema de Pitágoras </li></ul><ul><li>Es uno de los Teoremas más conocidos del mundo y uno de los más estudiados. </li></ul><ul><li>Expresa la relacion </li></ul>a 2 + b 2 = c 2
  4. 4. Triángulos rectángulos Los catetos son perpendiculares Un triángulo es rectángulo si tiene un ángulo recto. Catetos C B A a c b Ángulo recto Hipotenusa C B A a c b
  5. 5. Triángulos rectángulos: propiedades Dos propiedades de interés: Primera En un triángulo rectángulo la suma de los ángulos agudos vale 90º C B A a c b son complementarios Segunda La altura sobre el lado desigual de un triángulo isósceles lo divide en dos triángulos rectángulos iguales. M A B C BM = MC Los triángulos ABM y AMC son iguales
  6. 6. Teorema de Pitágoras: idea intuitiva Área = b 2 Área = a 2 Área = c 2 el área del cuadrado construido sobre la hipotenusa c 2 = a 2 + b 2 a la suma de las áreas de los cuadrados construidos sobre los catetos En un triángulo rectángulo: a c b es igual
  7. 7. Teorema de Pitágoras: segunda comprobación 4 3 7 c 2 25 cm 2 6 cm 2 c Consideramos un cuadrado de 7 cm de lado. Su área será 49 cm 2 Cuatro triángulos rectángulos de catetos 3 y 4 cm. Cuyas áreas valen 6 cm 2 cada uno. Observa que en ese cuadrado caben: Además cabe un cuadrado de lado c, cuya superficie es c 2 . Se tiene pues: 49 = 4·6 + c 2 c 2 = 49 - 24 = 25 c 2 = 25 = 5 2 25 = 9 + 16 Por tanto, 5 2 = 3 2 + 4 2
  8. 8. Teorema de Pitágoras: ejercicio primero En un triángulo rectángulo los catetos miden 5 y 12 cm, calcula la hipotenusa. 5 12 c? Como c 2 = a 2 + b 2 se tiene: c 2 = 5 2 + 12 2 = 25 + 144 = 169 c = 13 cm Haciendo la raíz cuadrada
  9. 9. Teorema de Pitágoras: ejercicio segundo 6 a? 10 a 2 = 10 2 - 6 2 = 100 - 36 = 64 a = 8 cm Luego: Haciendo la raíz cuadrada: En un triángulo rectángulo un cateto mide 6 cm y la hipotenusa 10 cm. Calcula el valor del otro cateto. Como c 2 = a 2 + b 2 se tiene: a 2 = c 2 - b 2
  10. 10. Reconociendo triángulos rectángulos Pero 60 2 + 80 2 = 3600 + 6400 = 10000 La ventana está mal construida a b c Mientras que 102 2 = 10404 Son distintos Un carpintero ha construido un marco de ventana. Sus dimensiones son 60 cm de ancho y 80 de largo. Como los lados de la ventana y la diagonal deben formar un triángulo rectángulo, tiene que cumplirse que: a 2 + b 2 = c 2 ¿Estará bien construido si la diagonal mide 102 cm? 80 cm 60 cm 102 cm
  11. 11. Cálculo de la diagonal de un rectángulo Luego, d 2 = 36 + 64 = 100 Cumplirá que: d 2 = 6 2 + 8 2 d = 10 Tenemos un rectángulo cuyos lados miden 6 y 8 cm. La diagonal es la hipotenusa de un triángulo rectángulo cuyos catetos miden 6 y 8 cm, respectivamente. ¿Cuánto mide su diagonal? 6 8 d
  12. 12. Cálculo de la altura de un triángulo isósceles Luego, 64 = 9 + h 2 6 8 Cumplirá que: 8 2 = 3 2 + h 2 h 3 3 h 2 = 55 8 Tenemos un triángulo isósceles cuyos lados iguales 8 cm, y el otro 6 cm. La altura es un cateto de un triángulo rectángulo cuyo hipotenusa miden 8 cm y el otro cateto 3 cm. ¿Cuánto mide su altura? Como se sabe, la altura es perpendicular a la base y la divide en dos partes iguales

×