Introduction to the Java bytecode - So@t - 20130924
Upcoming SlideShare
Loading in...5
×
 

Introduction to the Java bytecode - So@t - 20130924

on

  • 1,148 views

 

Statistics

Views

Total Views
1,148
Views on SlideShare
1,147
Embed Views
1

Actions

Likes
1
Downloads
48
Comments
0

1 Embed 1

https://twitter.com 1

Accessibility

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Introduction to the Java bytecode - So@t - 20130924 Introduction to the Java bytecode - So@t - 20130924 Presentation Transcript

    • 2013-09-24 Java ByteCode 1 Yohan BESCHI – Java Developer @yohanbeschi +Yohan Beschi
    • A word about me ⦿ Started coding more than 15 years ago ⦿ Expertise ⦿ RIAs ⦿ Performances ⦿ Industrialization ⦿ Writings ⦿ So@t Blogger ⦿ Developpez.com Writer ⦿ InfoQ FR Editor 2013-09-24 Java ByteCode 2
    • 2013-09-24 Java ByteCode 3
    • Why this talk ? ⦿ To understand JVM exceptions ⦿ Can help dealing with performance issues ⦿ To write a compiler for the JVM ⦿ And the most important, it’s fun ! 2013-09-24 Java ByteCode 4
    • What we won’t see ⦿ A detailed explanation of the JVMS ⦿ Features from Java 5 and higher ⦿ Tools like ASM, BCEL, Javassist, etc. ⦿ JSR-292 2013-09-24 Java ByteCode 5
    • What we will see ⦿ An introduction to the inner working of the JVM ⦿ A big part of the JVM instruction set ⦿ Unicode and Java ⦿ An introduction to the Class File Format 2013-09-24 Java ByteCode 6
    • Terminology used in this talk ⦿ A JVM, THE JVM or Hotspot = A virtual machine following the JVMS ⦿ Java Compiler = javac 2013-09-24 Java ByteCode 7
    • Bytecode - What and Why ? ⦿ Intermediate language between the Java Source Code and machine code ⦿ Close to an Assembly Language ⦿ Efficient execution by an interpreter 2013-09-24 Java ByteCode 8
    • JIT Compilation ⦿ JIT = Just In Time ⦿ Interpreted bytecode is slower than compiled machine code ⦿ Used to improve the runtime performances ⦿ Optimizations ⦿ Caching 2013-09-24 Java ByteCode 9
    • What will I learn ? (1/6) package org.bytecode; public class Demo { public static void main(String[] args) { final int sum = add(3, 5); System.out.println(sum); } private static int add(int i, int j) { return i + j; } } 2013-09-24 Java ByteCode 10 $ javac -g:none org/bytecode/Demo.java
    • What will I learn ? (2/6) public class org.bytecode.Demo minor version: 0 major version: 51 flags: ACC_PUBLIC, ACC_SUPER ... to be continued ... 2013-09-24 Java ByteCode 11 $ javap –verbose -p org/bytecode/Demo
    • What will I learn ? (3/6) Constant pool: #1 = Methodref #6.#14 // java/lang/Object."<init>":()V #2 = Methodref #5.#15 // org/bytecode/Demo.add:(II)I #3 = Fieldref #16.#17 // java/lang/System.out:Ljava/io/PrintStream; #4 = Methodref #18.#19 // java/io/PrintStream.println:(I)V #5 = Class #20 // org/bytecode/Demo #6 = Class #21 // java/lang/Object #7 = Utf8 <init> #8 = Utf8 ()V #9 = Utf8 Code #10 = Utf8 main #11 = Utf8 ([Ljava/lang/String;)V #12 = Utf8 add #13 = Utf8 (II)I #14 = NameAndType #7:#8 // "<init>":()V #15 = NameAndType #12:#13 // add:(II)I #16 = Class #22 // java/lang/System #17 = NameAndType #23:#24 // out:Ljava/io/PrintStream; #18 = Class #25 // java/io/PrintStream #19 = NameAndType #26:#27 // println:(I)V #20 = Utf8 org/bytecode/Demo #21 = Utf8 java/lang/Object #22 = Utf8 java/lang/System #23 = Utf8 out #24 = Utf8 Ljava/io/PrintStream; #25 = Utf8 java/io/PrintStream #26 = Utf8 println #27 = Utf8 (I)V 2013-09-24 Java ByteCode 12
    • What will I learn ? (4/6) { public org.bytecode.Demo(); flags: ACC_PUBLIC Code: stack=1, locals=1, args_size=1 0: aload_0 1: invokespecial #1 // Method java/lang/Object."<init>":()V 4: return ... to be continued ... 2013-09-24 Java ByteCode 13
    • What will I learn ? (5/6) public static void main(java.lang.String[]); flags: ACC_PUBLIC, ACC_STATIC Code: stack=2, locals=2, args_size=1 0: iconst_3 1: iconst_5 2: invokestatic #2 // Method add:(II)I 5: istore_1 6: getstatic #3 // Field java/lang/System.out:Ljava/io/PrintStream; 9: iload_1 10: invokevirtual #4 // Method java/io/PrintStream.println:(I)V 13: return ... to be continued ... 2013-09-24 Java ByteCode 14
    • What will I learn ? (6/6) private static int add(int, int); flags: ACC_PRIVATE, ACC_STATIC Code: stack=2, locals=2, args_size=2 0: iload_0 1: iload_1 2: iadd 3: ireturn } ... end ... 2013-09-24 Java ByteCode 15
    • Class File as a Text File using PJBA* .class org/isk/bytecode/Adder .method add(II)I iload_0 iload_1 iadd ireturn .methodend .classend 2013-09-24 Java ByteCode 16 *PJBA: Plume Java Bytecode Assembler
    • Descriptors (1/2) 2013-09-24 Java ByteCode 17 Descriptor Type Z boolean B byte S short C char I int J long F float D double V void [<type> Array of type <type> L<type>; Object of type <type>
    • Descriptors (2/2) ⦿ Descriptors are used to define fields and methods 2013-09-24 Java ByteCode 18 Bytecode Java add(II)I int add(int i1, int i2) concat(Ljava/lang/String;Ljava/lang/String;)Lj ava/lang/String; String concat(String s1, String s2) merge([Z[Z)[Z boolean[] merge(boolean[] a1, boolean[] a2)
    • Introduction to the JVM 2013-09-24 Java ByteCode 19
    • The JVM in few words ⦿ Application Virtual Machine ⦿ Stack based ⦿ Symbolic references ⦿ Garbage collection ⦿ Platform independent ⦿ Network Byte Order (ie. Big-endian) 2013-09-24 Java ByteCode 20
    • From Source code to the JVM (1/2) 2013-09-24 Java ByteCode 21 Java Code (.java) Java ByteCode (.class) Java Compiler (javac) Class Loader Execution Engine Runtime Data Areas Java Virtual Machine
    • From Source code to the JVM (2/2) ⦿ ClassLoader: loads the bytecode from class files into the Runtime Data Areas ⦿ Execution Engine: executes the bytecode ⦿ Runtime Data Areas: areas used during a program execution ⦿ Some areas are created during the initialization of the JVM and others are by threads. 2013-09-24 Java ByteCode 22
    • Run-Time Data Areas (1/2) 2013-09-24 Java ByteCode 23 Run-Time Data Areas Thread Program Counter Java Stack Native Method Stack Heap Method Area Run-Time Constant Pool
    • Run-Time Data Areas (2/2) ⦿ Heap: run-time data area from which memory for all class instances and arrays is allocated ⦿ Method Area: stores per-class structures ⦿ Run-Time Constant Pool: is a per-class or per-interface run-time representation of the constantPool table in a class file 2013-09-24 Java ByteCode 24
    • Runtime Data Areas (2/2) ⦿Threads: daemon and non-daemon ⦿ Program counter: address of the Java Virtual Machine instruction currently being executed ⦿ JVM Stacks: LIFO stacks of Frames ⦿ Native Method Stacks ⦿ Frames: stores data and partial results, performs dynamic linking, returns values for methods, and dispatches exceptions. 2013-09-24 Java ByteCode 25
    • Threads and Stack Frames 2013-09-24 Java ByteCode 26 Java Virtual Machine Thread 4 Thread 3 Thread 2 Thread 1F1 F1 F1 F1 F2 F3 F2 F2 F3 F4 F5 F6
    • Frames (1/2) 2013-09-24 Java ByteCode 27 Java Virtual Machine PC Frame Class Local Variables 0 1 2 3 4 5 6 7 8 Operand Stack Method Code Constant Pool
    • Frames (2/2) ⦿ Local Variables: array of variables ⦿ Operand Stack: LIFO stack of operands ⦿ Dynamic Linking: translates symbolic method references into concrete method references and translates variable accesses into appropriate offsets in storage structures associated with the run-time location of these variables. ⦿ Java Stack (Frame) != Operand Stack 2013-09-24 Java ByteCode 28
    • Frame 1 Class Local Variables 0 1 2 3 4 5 6 7 8 Stack public static void main(String[] a) { push literal 1 push literal 2 invoke static method add() store the result in lv1 // … } ra PC 1/102013-09-24 Java ByteCode 29
    • Frame 1 Class Local Variables 0 1 2 3 4 5 6 7 8 Stack public static void main(String[] a) { push literal 1 push literal 2 invoke static method add() store the result in lv1 // … } ra PC 1 2/102013-09-24 Java ByteCode 30
    • Frame 1 Class Local Variables 0 1 2 3 4 5 6 7 8 Stack public static void main(String[] a) { push literal 1 push literal 2 invoke static method add() store the result in lv1 // … } ra PC 2 1 3/102013-09-24 Java ByteCode 31
    • Class public static void main(String[] a) { push literal 1 push literal 2 invoke static method add() store the result in lv1 // … } Frame 2 Class Local Variables 0 1 2 3 4 5 6 7 8 Stack public static int add(int i1, int i2) { push lv0 push lv1 add the top of the stack return the top of the stack } 1 PC 2 Frame 1 Local Variables 0 1 2 3 4 5 6 7 8 Stack ra 2 1 Inactive Frame 4/102013-09-24 Java ByteCode 32
    • Cadre 1 Class Variables Locales 0 1 2 3 4 5 6 7 8 Pile public static void main(String[] a) { push literal 1 push literal 2 invoke static method add() store the result in lv1 // … } ra Frame 2 Class Local Variables 0 1 2 3 4 5 6 7 8 Stack public static int add(int i1, int i2) { push lv0 push lv1 add the top of the stack return the top of the stack } 1 PC 2 2 1 Cadre inactif Frame 1 Local Variable 0 1 2 3 4 5 6 7 8 Stack ra 2 1 Inactive Frame Frame 1 Local Variables 0 1 2 3 4 5 6 7 8 Stack ra 2 1 Inactive Frame 5/102013-09-24 Java ByteCode 33
    • Class public static void main(String[] a) { push literal 1 push literal 2 invoke static method add() store the result in lv1 // … } Frame 2 Class Local Variables 0 1 2 3 4 5 6 7 8 Stack public static int add(int i1, int i2) { push lv0 push lv1 add the top of the stack return the top of the stack } 1 PC 2 1 Cadre 1 Variables Locales 0 1 2 3 4 5 6 7 8 Pile ra 2 1 Cadre inactif Cadre 1 Variables Locales 0 1 2 3 4 5 6 7 8 Pile ra 2 1 Cadre inactif Frame 1 Local Variable 0 1 2 3 4 5 6 7 8 Stack ra 2 1 Inactive Frame Frame 1 Local Variables 0 1 2 3 4 5 6 7 8 Stack ra 2 1 Inactive Frame 6/102013-09-24 Java ByteCode 34
    • Class public static void main(String[] a) { push literal 1 push literal 2 invoke static method add() store the result in lv1 // … } Frame 2 Class Local Variables 0 1 2 3 4 5 6 7 8 Stack public static int add(int i1, int i2) { push lv0 push lv1 add the top of the stack return the top of the stack } 1 PC 2 2 1 Cadre 1 Variables Locales 0 1 2 3 4 5 6 7 8 Pile ra 2 1 Cadre inactif Frame 1 Local Variable 0 1 2 3 4 5 6 7 8 Stack ra 2 1 Inactive Frame Frame 1 Local Variables 0 1 2 3 4 5 6 7 8 Stack ra 2 1 Inactive Frame 7/102013-09-24 Java ByteCode 35
    • Class public static void main(String[] a) { push literal 1 push literal 2 invoke static method add() store the result in lv1 // … } Frame 2 Class Local Variables 0 1 2 3 4 5 6 7 8 Stack public static int add(int i1, int i2) { push lv0 push lv1 add the top of the stack return the top of the stack } 1 PC 2 3 Cadre 1 Variables Locales 0 1 2 3 4 5 6 7 8 Pile ra 2 1 Cadre inactif Frame 1 Local Variable 0 1 2 3 4 5 6 7 8 Stack ra 2 1 Inactive Frame Frame 1 Local Variables 0 1 2 3 4 5 6 7 8 Stack ra 2 1 Inactive Frame 8/102013-09-24 Java ByteCode 36
    • Class public static void main(String[] a) { push literal 1 push literal 2 invoke static method add() store the result in lv1 // … } Frame 2 Class Local Variables 0 1 2 3 4 5 6 7 8 Stack public static int add(int i1, int i2) { push lv0 push lv1 add the top of the stack return the top of the stack } 1 PC 2 3 Cadre 1 Variables Locales 0 1 2 3 4 5 6 7 8 Pile ra 3 Cadre inactif Frame 1 Local Variable 0 1 2 3 4 5 6 7 8 Stack ra 2 1 Inactive Frame Frame 1 Local Variables 0 1 2 3 4 5 6 7 8 Stack ra 2 1 Inactive Frame 9/102013-09-24 Java ByteCode 37
    • Class public static void main(String[] a) { push literal 1 push literal 2 invoke static method add() store the result in lv1 // … } PC Frame 1 Local Variables 0 1 2 3 4 5 6 7 8 Stack ra 3 3 10/102013-09-24 Java ByteCode 38
    • JVM Instructions 2013-09-24 Java ByteCode 39
    • JVM types (1/2) ⦿ int ⦿ long ⦿ float ⦿ double ⦿ reference 2013-09-24 Java ByteCode 40
    • JVM types (2/2) ⦿ boolean, byte, short and char are treated as int ⦿ But we can have arrays of byte, short and char ⦿ long and double values take two slots in the operand stack and the local variables ⦿ A reference is a pointer to an object in the heap 2013-09-24 Java ByteCode 41
    • Mnemonics (1/3) ⦿ An mnemonic is a textual form of an operation (iadd, lload_1, etc.) ⦿ Each mnemonic matches a number between 0 and 255 (1 byte) in a class file. ⦿ This number is called an operation code or simply an opcode 2013-09-24 Java ByteCode 42
    • Mnemonics (2/3) 2013-09-24 Java ByteCode 43 Letter Type Size (in bit) b byte 8 s short 16 c char 16 i int 32 l long 64 f float 32 d double 64 a reference 32/64* * Depending on the JVM
    • Mnemonics (3/3) ⦿ Instructions dealing with the stack or the local variables start with a letter corresponding to a type ⦿ The instruction « iadd » will add 2 integers ⦿ In a class file, instructions can only exist in a method. 2013-09-24 Java ByteCode 44
    • Arguments and operands ⦿ An argument follows an instruction ⦿ ldc « Hello World! » ⦿ An operand is from the operand stack ⦿ iadd 2013-09-24 Java ByteCode 45
    • Returning a value (1/2) 2013-09-24 Java ByteCode 46 Hex Mnemonic 0xac ireturn 0xad lreturn 0xae freturn 0xaf dreturn 0xb0 areturn 0xb1 return
    • Returning a value (2/2) public static void doNothing() { return; // Optional } 2013-09-24 Java ByteCode 47 .method doNothing()V return .methodend
    • Predifined Constants (1/3) 2013-09-24 Java ByteCode 48 Hex Mnemonic 0x01 aconst_null 0x02 iconst_m1 0x03 iconst_0 0x04 iconst_1 0x05 iconst_2 0x06 iconst_3 0x07 iconst_4 0x08 iconst_5 Hex Mnemonic 0x09 lconst_0 0x0a lconst_1 0x0b fconst_0 0x0c fconst_1 0x0d fconst_2 0x0e dconst_0 0x0f dconst_1
    • Predifined Constants (2/3) ⦿ The JVM supports constants of type int, float, long, double and String ⦿ These instructions push the constant to the stack 2013-09-24 Java ByteCode 49
    • Returning a value (3/3) public static double get() { return 1.0; } 2013-09-24 Java ByteCode 50 .method get()D dconst_1 dreturn .methodend
    • User defined constants (1/3) 2013-09-24 Java ByteCode 51 Hex Mnemonic Argument 0x10 bipush n 0x11 sipush n 0x12 ldc n 0x13 ldc_w n 0x14 ldc2_w n
    • User defined constants (2/3) ⦿ These instructions push the constant to the stack ⦿ bipush is used for constants between -128 and 127 ⦿ sipush is used for constants between -32 768 and 32 767 ⦿ « ldc »’s instructions are used for every other values. 2013-09-24 Java ByteCode 52
    • User defined constants (3/3) public static short get() { return 14909; } 2013-09-24 Java ByteCode 53 .method get()S sipush 14909 ireturn .methodend
    • ldc, ldc_w, ldc2_w ⦿ For these instructions the argument (n) is not the actual value, but an index in the Constant Pool ⦿ « _w » means wide. The size of the index is 2 bytes instead of 1. ⦿ « ldc » and « ldc_w » are used for values of type int, float and String ⦿ « ldc2_w » is used for values of type double and long. « 2 » means two slots in the operand stack 2013-09-24 Java ByteCode 54
    • Local Variables (1/6) – Loading 2013-09-24 Java ByteCode 55 Hex Mnemonic Argument 0x15 iload n 0x16 lload n 0x17 fload n 0x18 dload n 0x19 aload n 0x1a iload_0 0x1b iload_1 0x1c iload_2 0x1d iload_3 Hex Mnemonic 0x1e lload_0 0x1f lload_1 0x20 lload_2 0x21 lload_3 0x22 fload_0 0x23 fload_1 0x24 fload_2 0x25 fload_3 Hex Mnemonic 0x26 dload_0 0x27 dload_1 0x28 dload_2 0x29 dload_3 0x2a aload_0 0x2b aload_1 0x2c aload_2 0x2d aload_3
    • Local Variables (2/6) – Loading public static int load(int i) { return i; } 2013-09-24 Java ByteCode 56 .method load(I)I iload_0 ireturn .methodend
    • Local Variables (3/6) - Storing 2013-09-24 Java ByteCode 57 Hex Mnemonic Argument 0x36 istore n 0x37 lstore n 0x38 fstore n 0x39 dstore n 0x3a astore n 0x3b istore_0 0x3c istore_1 0x3d istore_2 0x3e istore_3 Hex Mnemonic 0x3f lstore_0 0x40 lstore_1 0x41 lstore_2 0x42 lstore_3 0x43 fstore_0 0x44 fstore_1 0x45 fstore_2 0x46 fstore_3 Hex Mnemonic 0x47 dstore_0 0x48 dstore_1 0x49 dstore_2 0x4a dstore_3 0x4b astore_0 0x4c astore_1 0x4d astore_2 0x4e astore_3
    • Local Variables (4/6) – Storing public static void store() { int i = 17; double d = 3.5; } 2013-09-24 Java ByteCode 58 .method store()V bipush 17 istore_0 ldc2_w 3.5 dstore_1 return .methodend
    • Local Variables (5/6) ⦿ « n » is the index in the Local Variables ⦿ Slots in Local Variables are not typed, but you need to be careful about the size of each type (example following) 2013-09-24 Java ByteCode 59
    • Local Variables (6/6) ldc "hello world" astore_2 ldc2_w 3.14d dstore_1 aload_2 # error! # dstore_1 stored a double at index 1 and 2. Therefore, we can’t access to the String anymore 2013-09-24 Java ByteCode 60
    • Math (1/5) – Arithmetic Operations 2013-09-24 Java ByteCode 61 0x60 iadd 0x61 ladd 0x62 fadd 0x63 dadd 0x64 isub 0x65 lsub 0x66 fsub 0x67 dsub 0x68 imul 0x69 lmul 0x6a fmul 0x6b dmul 0x6c idiv 0x6d ldiv 0x6e fdiv 0x6f ddiv 0x70 irem 0x71 lrem 0x72 frem 0x73 drem 0x74 ineg 0x75 lneg 0x76 fneg 0x77 dneg
    • Math (2/5) – Notations ⦿ Infix notation : 3 + 4 * 7 ⦿ Prefix notation : + 3 * 4 7 ⦿ Postfix notation : 3 4 7 * + Let’s see an example !! 2013-09-24 Java ByteCode 62
    • Local Variables (3/5) – Loading public static int add() { return 2 * (7 – 5) * (8 – 5); } 2013-09-24 Java ByteCode 63 # Infix: 2 * (7 – 5) * (8 – 5) # Postfix: 2 7 5 - * 8 5 - *
    • Math (4/5) – Notations .method add()I # Stack before -> after iconst_2 # [] -> 2 bipush 7 # 2 -> 2, 7 iconst_5 # 2, 7 -> 2, 7, 5 isub # 2, 7, 5 - > 2, 2 (7 - 5 = 2) imul # 2, 2 -> 4 (2 * 2 = 4) bipush 8 # 4 -> 4, 8 iconst_5 # 4, 8 -> 4, 8, 5 isub # 4, 8, 5 -> 4, 3 (8 - 5 = 3) imul # 4, 3 -> 12 (4 * 3 = 12) ireturn .methodend 2013-09-24 Java ByteCode 64
    • Math (5/5) – few more… 2013-09-24 Java ByteCode 65 << >> >>> 0x78 ishl 0x79 lshl 0x7a ishr 0x7b lshr 0x7c iushr 0x7b lushr & | ^ 0x7e iand 0x7f land 0x80 ior 0x81 lor 0x82 ixor 0x83 lxor casting 0x85 i2l 0x86 i2f 0x87 i2d 0x88 l2i 0x89 l2f 0x8a l2d 0x8b f2i 0x8c f2l 0x8d f2d 0x8e d2i 0x8f d2l 0x90 d2f int to byte, char and short 0x91 i2b 0x92 i2c 0x93 i2s
    • Stack instructions (1/2) 2013-09-24 Java ByteCode 66 Hex Mnemonic Description 0x57 pop Pop the first element off the stack 0x58 pop2 Pop the first two elements off the stack 0x59 dup Duplicate the first element and push it to the stack 0x5a dup_x1 Duplicate the first element and add it under the second 0x5b dup_x2 Duplicate the first element and add it under the third 0x5c dup2 Duplicate the first two elements and push them to the stack (keeping the order) 0x5d dup2_x1 Duplicate the first two elements and add them under the third one (keeping the order) 0x5e dup2_x2 Duplicate the first two elements and add them under the fourth one (keeping the order) 0x5f swap Swap the first two elements
    • Stack instructions (2/2) ⦿ One element = one slot in the operand stack ⦿ long and double values must be considered as two elements each ⦿ The JVMS is refering to long and double as types of category 2 (taking 2 slots), other types are of category 1 (see « Types and the Java Virtual Machine » in the JVMS) 2013-09-24 Java ByteCode 67
    • pop - 1/2 2013-09-24 Java ByteCode 68 Cadre 1 Classe Variables Locales 0 1 2 3 4 5 6 7 8 Pile iconst_1 pop PC 1
    • pop - 2/2 2013-09-24 Java ByteCode 69 Cadre 1 Classe Variables Locales 0 1 2 3 4 5 6 7 8 Pile iconst_1 popPC
    • dup – 1/2 2013-09-24 Java ByteCode 70 Cadre 1 Classe Variables Locales 0 1 2 3 4 5 6 7 8 Pile iconst_2 iconst_1 dup PC 2 1
    • dup - 2/2 2013-09-24 Java ByteCode 71 Cadre 1 Classe Variables Locales 0 1 2 3 4 5 6 7 8 Pile iconst_2 iconst_1 dupPC 2 1 1
    • dup2_x2 - (form 3) 1/2 2013-09-24 Java ByteCode 72 Cadre 1 Classe Variables Locales 0 1 2 3 4 5 6 7 8 Pile dconst_1 iconst_1 iconst_2 dup2_x2 PC 1 2 1.0
    • dup2_x2 - (forme 3) 2/2 2013-09-24 Java ByteCode 73 Cadre 1 Classe Variables Locales 0 1 2 3 4 5 6 7 8 Pile dconst_1 iconst_1 iconst_2 dup2_x2PC 1 2 1.0 2 1
    • Unicode & Java 2013-09-24 Java ByteCode 74
    • Unicode 101 ⦿ Unicode 6.2 contains a repertoire of more than 110,000 characters covering 100 scripts ⦿ Each character is associated with a number called Code Point ⦿ Unicode defines a codespace of 1,114,112 code points in the range U+0000 to U+10FFFF ⦿ Unicode is a character set, not an encoding ⦿ Unicode defines two encodings the Unicode Transformation Format (UTF) and the Universal Character Set (UCS) 2013-09-24 Java ByteCode 75
    • UTF 101 – UTF-8 ⦿ In UTF-8 a character can be encoded in 1, 2, 3 or 4 bytes 2013-09-24 Java ByteCode 76 Range Byte 1 Byte 2 Byte 3 Byte 4 U+0000 - U+007F 0xxxxxxx U+0080 - U+07FF 110xxxxx 10xxxxxx U+0800 - U+FFFF 1110xxxx 10xxxxxx 10xxxxxx U+10000 - U+1FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
    • UTF 101 – UTF-16 ⦿ In UTF-16 a character can be encoded in 2 or 4 bytes ⦿ Code Points from the BMP ⦿ U+0410 (А - CYRILLIC CAPITAL LETTER A) => 0x04 0x10 ⦿ Code Points from a supplementary plane ⦿ U+64321 => 0xD9 0x50 0xDF 0x21 2013-09-24 Java ByteCode 77
    • UTF 101 – UTF-32 ⦿ In UTF-32 a character is encoded in 4 bytes. Its code point doesn’t need any transformation ⦿ U+64321 => 0x00 0x06 0x43 0x21 2013-09-24 Java ByteCode 78
    • 2013-09-24 Java ByteCode 79 Why should I care about Unicode ?
    • Java Source File encoding ⦿ Java source files can be encoded in various encodings (usually UTF-8)… ⦿ But you MUST always indicate to the compiler what it is… ⦿ Using the option -encoding 2013-09-24 Java ByteCode 80 http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html
    • Class File encoding ⦿ In a class file all strings (packages, classes, fields, methods and literals) are encoded in Modified UTF-8 ⦿Modified UTF-8 is almost like UTF-8 but: ⦿ The NULL character is encoded using 2 bytes ⦿ Only formats with 1, 2 or 3 bytes are used (which is enough for the BMP) ⦿ For supplementary planes each surrogate is encoded as a character 2013-09-24 Java ByteCode 81
    • JVM encoding ⦿ The JVM encodes Strings in UTF-16… ⦿ Therefore extreme care should be taken when handling an external stream of data (a file or from the network) 2013-09-24 Java ByteCode 82
    • Class File Format 2013-09-24 Java ByteCode 83
    • Class File Structure (1/2) 2013-09-24 Java ByteCode 84 ClassFile { int magic; short minorVersion; short majorVersion; short constantPoolCount; ConstantPoolEntry[] constantPool; short accessFlags; short thisClass; short superClass; short interfacesCount; short[] interfaces; short fieldsCount; Field[] fields; short methodsCount; Method[] methods; short attributesCount; Attribute[] attributes; } byte, short and int should be considered as unsigned types
    • Class File Structure (2/2) 2013-09-24 Java ByteCode 85 public class org.bytecode.Demo minor version: 0 major version: 51 flags: ACC_PUBLIC, ACC_SUPER Constant pool: #1 = Methodref #6.#14 // java/lang/Object."<init>":()V #2 = Methodref #5.#15 // org/bytecode/Demo.add:(II)I #3 = Fieldref #16.#17 // java/lang/System.out:Ljava/io/PrintStream; #4 = Methodref #18.#19 // java/io/PrintStream.println:(I)V #5 = Class #20 // org/bytecode/Demo #6 = Class #21 // java/lang/Object #7 = Utf8 <init> #8 = Utf8 ()V ... private static int add(int, int); flags: ACC_PRIVATE, ACC_STATIC Code: stack=2, locals=2, args_size=2 0: iload_0 1: iload_1 2: iadd 3: ireturn ...
    • Content of a class file (1/2) ⦿ A class file is a binary file where each elements have a well defined size (except strings as we shall see). ⦿ To write and read class files, the JDK provides two classes: ⦿ java.io.DataOutputStream ⦿ java.io.DataInputStream 2013-09-24 Java ByteCode 86
    • Content of a class file (2/2) ⦿ From an AST it’s quiet simple to generate a class file: DataOutputStream dos = new DataOutputStream(…); dos.writeInt(this.magic); dos.writeShort(this.minorVersion); dos.writeShort(this.majorVersion); dos.writeShort(this.constantPoolCount); //… 2013-09-24 Java ByteCode 87
    • magic (1/2) 2013-09-24 Java ByteCode 88 ClassFile { int magic; short minorVersion; short majorVersion; short constantPoolCount; ConstantPoolEntry[] constantPool; // .. } ⦿ It’s value is always 0xCAFEBABE
    • minorVersion and majorVersion (1/2) 2013-09-24 Java ByteCode 89 ClassFile { int magic; short minorVersion; short majorVersion; short constantPoolCount; ConstantPoolEntry[] constantPool; // .. }
    • minorVersion and majorVersion (2/2) 2013-09-24 Java ByteCode 90 ⦿ Indicate the version of the class file format ⦿ Oracle's JVM implementation in: ⦿ JDK release 1.0.2 supports class file format versions 45.0 through 45.3 inclusive. ⦿ JDK releases 1.1.* support class file format versions in the range 45.0 through 45.65535 inclusive. ⦿ For k ≥ 2, JDK release 1.k supports class file format versions in the range 45.0 through 44+k.0 inclusive.
    • Constant Pool (1/3) 2013-09-24 Java ByteCode 91 ClassFile { int magic; short minorVersion; short majorVersion; short constantPoolCount; ConstantPoolEntry[] constantPool; // .. }
    • Constant Pool (2/3) ⦿ The constant pool is a central part of a class file. ⦿ It has no equivalent in Java. ⦿ It’s like a symbol table, doing a mapping between the code and constants of several kinds. ⦿ The index of the array constantPool starts from 1. 2013-09-24 Java ByteCode 92
    • Constant Pool (3/3) ⦿ A ConstantPoolEntry has this format: ConstantPoolEntry { byte tag; byte[] info; } ⦿ « tag » defines the type of constant ⦿ The content of the byte array (info) is different from tag to tag 2013-09-24 Java ByteCode 93
    • Constant type ⦿ As for the JDK 1.4 there are 11 kind of constants: 2013-09-24 Java ByteCode 94 Constant Type Value ConstantUtf8 1 ConstantInteger 3 ConstantFloat 4 ConstantLong 5 ConstantDouble 6 ConstantClass 7 ConstantString 8 ConstantFieldref 9 ConstantMethodref 10 ConstantInterfaceMethodref 11 ConstantNameAndType 12
    • ConstantUTF8 ⦿ The most common constant ⦿ Used for all kind of strings (package name, class name, method name, etc.) public class ConstantUTF8 { byte tag = 0x01; short length; byte[] string; } 2013-09-24 Java ByteCode 95
    • ConstantInt and ConstantFloat ⦿ Used to store int and float values! public class ConstantInt { byte tag = 0x03; int value; } public class ConstantFloat { byte tag = 0x04; // The float is converted to an int int value; } 2013-09-24 Java ByteCode 96
    • ConstantLong and ConstantDouble ⦿ Used to store long and double values! public class ConstantLong { byte tag = 0x03; long value; } public class ConstantDouble { byte tag = 0x04; // The double is converted to a long long value; } 2013-09-24 Java ByteCode 97
    • ConstantString ⦿ Used for String constants. ⦿ Unlike ConstantUTF8, ConstantString contains the index of a ConstantUTF8 in the constant pool. public class ConstantString { byte tag = 0x08; short utf8Index; } 2013-09-24 Java ByteCode 98
    • ConstantClass ⦿ A ConstantClass works like a ConstantString. Except that the ConstantUTF8 is holding a fully qualified class name. Like « java/lang/Object » or because an array is an object « [[I » public class ConstantClass { byte tag = 0x07; short utf8Index; } 2013-09-24 Java ByteCode 99
    • ConstantNameAndType ⦿ Contains the indexes of two ConstantsUTF8 holding the name and type/descriptor of a field or a method public class ConstantNameAndType { byte tag = 0x0C; short nameUtf8Index; short descriptorUtf8Index; } 2013-09-24 Java ByteCode 100
    • The Last Three (1/2) ⦿ ConstantFieldref ⦿ ConstantMethodref ⦿ and ConstantInterfaceMethodref contains: ⦿ the index of a ConstantClass ⦿ the index of a ConstantNameAndType 2013-09-24 Java ByteCode 101
    • The Last Three (2/2) public class ConstantFieldref { byte tag = 0x09; short classIndex; short nameAndType8Index; } public class ConstantMethodref { byte tag = 0x0A; short classIndex; short nameAndType8Index; } public class ConstantInterfaceMethodref { byte tag = 0x0B; short nameUtf8Index; short descriptorUtf8Index; } 2013-09-24 Java ByteCode 102
    • accessFlags (1/3) 2013-09-24 Java ByteCode 103 ClassFile { // … short constantPoolCount; ConstantPoolEntry[] constantPool; short accessFlags; short thisClass; short superClass; // … }
    • accessFlags (2/3) ⦿ Indicate the modifiers of a class using masks. Each bit is a modifier set if equals to 1 and not set if equals to 0 2013-09-24 Java ByteCode 104 Flag name Value Java keyword ACC_PUBLIC 0x0001 public ACC_FINAL 0x0010 final ACC_SUPER 0x0020 - ACC_INTERFACE 0x0200 interface ACC_ABSTRACT 0x0400 abstract
    • accessFlags (3/3) ⦿ For example: 0000 a0b0 00cd 000e Where: a = 0x0400 = 0000 1000 0000 0000 (ACC_ABSTRACT) b = 0x0200 = 0000 0010 0000 0000 (ACC_INTERFACE) c = 0x0020 = 0000 0000 0010 0000 (ACC_SUPER) d = 0x0010 = 0000 0000 0001 0000 (ACC_FINAL) e = 0x0001 = 0000 0000 0000 0001 (ACC_PUBLIC) 2013-09-24 Java ByteCode 105
    • thisClass & superClass (1/2) 2013-09-24 Java ByteCode 106 ClassFile { // … short constantPoolCount; ConstantPoolEntry[] constantPool; short accessFlags; short thisClass; short superClass; // … }
    • thisClass & superClass (2/2) ⦿ Contains the index of a ConstantClass. ⦿ « this » and « super » have the same meaning as in Java. ⦿ thisClass is the fully qualified name of the current class ⦿ superClass is the fully qualified name of the superClass. (java/lang/Object) by default. 2013-09-24 Java ByteCode 107
    • Not this time… 2013-09-24 Java ByteCode 108 ClassFile { // … short interfacesCount; short[] interfaces; short fieldsCount; Field[] fields; // … short attributesCount; Attribute[] attributes; }
    • methods 2013-09-24 Java ByteCode 109 ClassFile { // … short methodsCount; Method[] methods; // … }
    • methods ⦿ Each Java method can be represented like this in a class File class Method { short accessFlags; short nameIndex; short descriptorIndex; short attributesCount; Attribute[] attributes; } 2013-09-24 Java ByteCode 110
    • Method – accessFlags (1/2) ⦿ Each Java method can be represented like this in a class File class Method { short accessFlags; short nameIndex; short descriptorIndex; short attributesCount; Attribute[] attributes; } 2013-09-24 Java ByteCode 111
    • Method – accessFlags (2/2) ⦿ Working like accessFlags for a ClassFile, they indicate the modifiers of a method 2013-09-24 Java ByteCode 112 Flag Name Value Java Keyword ACC_PUBLIC 0x0001 public ACC_PRIVATE 0x0002 private ACC_PROTECTED 0x0004 protected ACC_STATIC 0x0008 static ACC_FINAL 0x0010 final ACC_SYNCHRONIZED 0x0020 synchronized ACC_NATIVE 0x0100 native ACC_ABSTRACT 0x0400 abstract ACC_STRICT 0x0800 strictfp
    • nameIndex & descriptorIndex (1/2) ⦿ Each Java method can be represented like this in a class File class Method { short accessFlags; short nameIndex; short descriptorIndex; short attributesCount; Attribute[] attributes; } 2013-09-24 Java ByteCode 113
    • nameIndex & descriptorIndex (1/2) ⦿ Contain an index of ConstantUTF8 holding respectively the name and the descriptor of the method 2013-09-24 Java ByteCode 114
    • attributes ⦿ Each Java method can be represented like this in a class File class Method { short accessFlags; short nameIndex; short descriptorIndex; short attributesCount; Attribute[] attributes; } 2013-09-24 Java ByteCode 115
    • Attribute (1/3) ⦿ The Attribute structure can be found inside other ones: ⦿ ClassFile ⦿ Field ⦿ Method ⦿ Code 2013-09-24 Java ByteCode 116
    • Attribute (2/3) ⦿ There are several different kind of attributes (9 for the JDK 1.4): ⦿ SourceFile ⦿ ConstantValue ⦿ Code ⦿ Exceptions ⦿ InnerClasses ⦿ Synthetic ⦿ LineNumberTable ⦿ LocalVariableTable ⦿ Deprecated We will see only the Code Attribute today. 2013-09-24 Java ByteCode 117
    • Attribute (3/3) - Structure Attribute { short nameIndex; int attributeLength; byte[] info; } 2013-09-24 Java ByteCode 118
    • Code Attribute Code { short attributeNameIndex; int attributeLength; short maxStack; short maxLocals; int codeLength; byte[] code; short exceptionsCount; Exception[] exceptions; short attributesCount; Attribute[] attributes; } 2013-09-24 Java ByteCode 119
    • attributeIndex (1/2) Code { short attributeNameIndex; int attributeLength; short maxStack; short maxLocals; int codeLength; byte[] code; short exceptionsCount; Exception[] exceptions; short attributesCount; Attribute[] attributes; } 2013-09-24 Java ByteCode 120
    • attributeIndex (2/2) ⦿ Contains the index of a ConstantUTF8 containing the value « Code » (The type name of the attribute) 2013-09-24 Java ByteCode 121
    • attributeLength (1/2) Code { short attributeNameIndex; int attributeLength; short maxStack; short maxLocals; int codeLength; byte[] code; short exceptionsCount; Exception[] exceptions; short attributesCount; Attribute[] attributes; } 2013-09-24 Java ByteCode 122
    • attributeLength (2/2) ⦿ Is the length of the attribute (without the six first bytes) in byte. ⦿ It can be calculated like this : 2 + 2 + 4 // maxStack + maxLocals + codeLength + code.length + 2 // exceptionsCount + 8 * exceptions.length // an Exception takes 8 bytes + 2 // attributesCount + attributes.length 2013-09-24 Java ByteCode 123
    • maxStack & maxLocals (1/2) Code { short attributeNameIndex; int attributeLength; short maxStack; short maxLocals; int codeLength; byte[] code; short exceptionsCount; Exception[] exceptions; short attributesCount; Attribute[] attributes; } 2013-09-24 Java ByteCode 124
    • maxStack & maxLocals (2/2) ⦿ Respectively the maximum size of the operand stack and the local variables ⦿ These sizes can be find out with the instructions used in the method. 2013-09-24 Java ByteCode 125
    • code (1/2) Code { short attributeNameIndex; int attributeLength; short maxStack; short maxLocals; int codeLength; byte[] code; short exceptionsCount; Exception[] exceptions; short attributesCount; Attribute[] attributes; } 2013-09-24 Java ByteCode 126
    • code (1/2) ⦿ Contains all the instructions of a method ⦿ Each instruction take 1 byte ⦿ + the size of their arguments ⦿ Only ¼ of the instruction set have arguments 2013-09-24 Java ByteCode 127
    • It’s only the beginning 2013-09-24 Java ByteCode 128
    • Want to know more ? ⦿ Specifications ⦿http://docs.oracle.com/javase/specs/ ⦿ invokedynamic ⦿https://blogs.oracle.com/jrose/ ⦿http://blog.headius.com/ ⦿ JVM Hardcore – The JVM explained ⦿ http://blog.soat.fr/2013/09/01-jvm-hardcore- part-0-sneak-peek 2013-09-24 Java ByteCode 129
    • 2013-09-24 Java ByteCode 130