Teoria de transformadores
Upcoming SlideShare
Loading in...5
×
 

Teoria de transformadores

on

  • 20,590 views

teoria sobre los transformadores

teoria sobre los transformadores

Statistics

Views

Total Views
20,590
Slideshare-icon Views on SlideShare
16,805
Embed Views
3,785

Actions

Likes
5
Downloads
538
Comments
0

18 Embeds 3,785

http://electricidad-ibf.blogspot.com 2390
http://electricidad-ibf.blogspot.mx 912
http://electricidad-ibf.blogspot.com.es 239
http://electricidad-ibf.blogspot.com.ar 185
http://electricidad-ibf.blogspot.com.br 19
http://www.electricidad-ibf.blogspot.com 10
http://electricidad-ibf.blogspot.pt 9
http://electricidad-ibf.blogspot.de 3
http://www.electricidad-ibf.blogspot.com.es 3
http://www.electricidad-ibf.blogspot.com.ar 2
https://www.google.com.mx 2
http://electricidad-ibf.blogspot.ro 2
http://electricidad-ibf.blogspot.hu 2
http://webcache.googleusercontent.com 2
http://electricidad-ibf.blogspot.ca 2
http://www.scribd.com 1
http://www.slideshare.net 1
http://electricidad-ibf.blogspot.in 1
More...

Accessibility

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Teoria de transformadores Teoria de transformadores Presentation Transcript

    • TEORIA DE TRANSFORMADOR
      AUTOR:
      YEINIER RODRIGUEZ
    • ¿QUE ES UN TRANSFORMADOR?
      Es un elemento que transfiere energía de un circuito a otro, es decir transporta un voltaje o corriente variable utilizando el principio de inductancia magnética.
    • FUNCION
      La función en los transformadores es cambiar el voltaje o corriente en un sistema eléctrico, es decir puede aumentar(Transformador elevador) o disminuir (Transformador reductor) el voltaje o la corriente.
    • FUNCIONAMIENTO DEL TRANSFORMADOR
      Un transformador posee dos bobinados, uno primario y uno secundario que se arrollan sobre un núcleo magnético común, formado por chapas magnéticas apiladas.
      Por el bobinado primario se conecta la tensión de entrada, y por el secundario obtendremos la tensión de salida.
      El mismo transformador puede actuar como elevador o reductor.
      El transformador es considerado como una máquina eléctrica estática, que es capaz de cambiar la tensión e intensidad en C.A. sin modificar la frecuencia ni la potencia transferida.
    • DISPOSICIÓN CONSTRUCTIVA DEL TRANSFORMADOR
      Los transformadores tienen el núcleo de hierro con forma de ventana y está constituido por numerosas chapas magnéticas de diferente espesor, apiladas unas encima de otras y aisladas entre sí mediante un barniz.
      Esta disposición reduce considerablemente las pérdidas que aparecen en el hierro por efecto de las corrientes parásitas.
    • DISPOSICIÓN CONSTRUCTIVA DEL TRANSFORMADOR
      Para formar el paquete de chapas se utilizan tornillos o remaches, procurando que queden aislados de las chapas.
      Se trata adecuadamente las superficies exteriores del núcleo para evitar la corrosión.
      Los dos bobinados aparecen arrollados sobre un carrete que abraza la columna central del núcleo.
      El conductor que se utiliza para las bobinas suele ser de cobre aislado mediante un barniz.
    • RENDIMIENTO DE UN TRANSFORMADOR
      Se puede decir que el rendimiento de un transformador es la relación entre la potencia suministrada a la carga por el secundario (P2) y la potencia absorbida de la red por el primario (P1) expresada en tantos por ciento
    • CARACTERÍSTICAS NOMINALES DE UN TRANSFORMADOR
      La potencia nominal de un transformador monofásico es el producto de su tensión nominal primaria por la corriente primaria:
      Sn = Vn x In
      Se entiende por tensiones y corrientes nominales los valores para los cuales ha sido proyectado el transformador.
      La potencia nominal de un transformador es un valor de referencia y está fijado desde un punto de vista térmico.
      Cuando nosotros exigimos a un transformador que trabaje a una potencia superior a la nominal, este se calienta excesivamente
    • PARTES
      Bobinado Primario: Transporta la corriente suministrada por la fuente de potencia.
      Bobinado Secundario: Se encarga de inducir las corrientes que alimentan a la carga.
      Núcleo Magnético: Es el encargado de canalizar el máximo flujo magnético entre las dos bobinas.
      Terminales: Son los puntos de conexión.
    • PARTES
    • TIPOS
      De Fuerza o Poder: Son transformadores que tienen como función elevar o reducir los voltajes a valores adecuados según el trabajo a realizar.
    • TIPOS
      De Audio: Son aquellos que tienen como función primordial enlazar dos partes de un circuito o aparato de sonido.
    • TIPOS
      De Radiofrecuencia: Son aquellos forman generalmente los diversos circuitos de sintonía y los transmisores de señales de radio.
    • TIPOS DE TRANSFORMADORES
    • SIMBOLOS
    • SIMBOLOS
    • EL TRANSFORMADOR IDEAL
      Un transformador ideal es una máquina sin pérdidas, con una bobina de entrada y una bobina de salida. Las relaciones entre las tensiones de entrada y de salida, y entre la intensidad de entrada y de salida, se establece mediante dos ecuaciones sencillas.
    • DIFERENCIAS ENTRE EL TRANSFORMADOR IDEAL Y UN TRANSFORMADOR DE NUCLEO DE AIRE
      Transformador ideal:
      -El transformador ideal no tiene pérdidas. Ni por efecto Joule en los devanados, ni en el núcleo por corrientes de Focauld y por Histéresis.-En vacío (es decir sin carga en el secundario) no circula nada de corriente en el primario en un transformador ideal, -El transformador ideal tiene un acoplamiento perfecto entre primario y secundario, es decir no se escapa nada del flujo magnético primario que no atraviese el secundario, cosa que no sucede en el real.-El transformador ideal no presenta capacidades parásitas entre espiras de un mismo devanado ni entre los devanados.
    • DIFERENCIAS ENTRE EL TRANSFORMADOR IDEAL Y UN TRANSFORMADOR DE NUCLEO DE AIRE
      Transformador de nucleo de aire:
      -Como sabemos el paso de la electricidad produce un calor, y en el caso que nos ocupa del transformador, este calor se considera una pérdida de potencia o de rendimiento.
      -Circula una corriente para magnetizar al núcleo.
      - Estos tienen pérdidas en las bobinas, porque estas bobinas (primaria y secundaria) tienen una resistencia, algo con lo que no se contaba a la hora de analizar el transformador ideal.
      -Los núcleos tienen corrientes parásitas y pérdidas por histéresis, que son las que aumentan el calor o temperatura del transformador 
    • INDUCTANCIA MUTUA
      Hasta ahora, cuando analizamos circuitos con más de una bobina, consideramos que las mismas no estaban acopladas (es decir, el flujo de cada bobina no llegaba hasta las demás).  Consideremos ahora las siguientes bobinas acopladas magnéticamente:
    • INDUCTANCIA MUTUA
      L1 y L2 representan la autoinductancia o inductancia propia de cada bobina, mientra que M representa la inductancia mutua, el cual es un parámetro que relaciona el voltaje inducido en un circuito con la corriente variable en el tiempo de otro circuito.
      Se define como:
      donde k se conoce como el coeficiente de acoplamiento y es una medida del grado en el que el flujo producido por una bobina enlaza a la otra (0£ k £ 1).  Si las bobinas no están acopladas, entonces k=0.
      La principal aplicación de la inductancia mutua en los circuitos eléctricos se encuentra en los transformadores.
    • INDUCTANCIA MUTUA DE DOS ESPIRAS
      Ejemplo: Considerar dos espiras, de radios a y b, dispuestas de manera que sus centros están en el mismo eje (eje z), sus planos son perpendiculares al eje z, y sus centros están a una distancia d. Si una de las espiras es muy pequeña, d>>a, por ejemplo, es posible obtener el coeficiente de autoinducción en forma muy simple.
    • INDUCTANCIA MUTUA DE DOS ESPIRAS
      El campo magnético, en el eje de la espira mayor (de radio a) es
      Como la espira menor es muy pequeña, el campo en cualquier punto de ella debe ser constante, de valor
      luego el flujo enlazado por la espira de radio b, debido a la otra espira es
    • INDUCTANCIA MUTUA DE DOS ESPIRAS
      Con esto, el coeficiente de inducción mutua es
    • MÉTODO DE CONVECCIÓN DE PUNTOS
      La convención de punto nos permite esquematizar el circuito sin tener que preocuparnos por el sentido de los arrollamientos.  Dada más de una bobina, se coloca un punto en algún terminal de cada una, de manera tal que si entran corrientes en ambas terminales con puntos (o salen), los flujos producidos por ambas corrientes se sumarán.
    • MÉTODO DE CONVECCIÓN DE PUNTOS
      Siguiendo esta convención, las bobinas acopladas presentadas previamente pueden esquematizarse de la siguiente manera:
    • MÉTODO DE CONVECCIÓN DE PUNTOS
      Regla general: si ambas corrientes entran (o salen) de los puntos, el signo del voltaje mutuo será el mismo que el del voltaje autoinducido.  En otro caso, los signos serán opuestos.
    • MÉTODO DE CONVECCIÓN DE PUNTOS
      Ejemplo:
      Si v(t)=14.14 cos(100 pi + 20°), encontrar V2(rms) , I2(rms) y la potencia media consumida en la carga:
    • MÉTODO DE CONVECCIÓN DE PUNTOS
      En la representación fasorial:
    • MÉTODO DE CONVECCIÓN DE PUNTOS
      Según los sentidos elegidos para las corrientes, I1 entra a un punto e I2 sale del otro, por lo tanto el signo del voltaje mutuo será el opuesto al del voltaje autoinducido:
    • MÉTODO DE CONVECCIÓN DE PUNTOS
      la manera más rápida de obtener los valores eficaces solicitados consiste en trabajar directamente con el voltaje eficaz de la fuente