Derivadas de funciones logaritmicas
Upcoming SlideShare
Loading in...5
×
 

Derivadas de funciones logaritmicas

on

  • 593 views

En esta guía veremos Ejercicios resueltos que implican funciones Logarítmicas.

En esta guía veremos Ejercicios resueltos que implican funciones Logarítmicas.

Statistics

Views

Total Views
593
Views on SlideShare
577
Embed Views
16

Actions

Likes
0
Downloads
9
Comments
0

1 Embed 16

http://innovacionyfuturo.wordpress.com 16

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Derivadas de funciones logaritmicas Derivadas de funciones logaritmicas Document Transcript

    • Cálculo Diferencial Derivada de funciones Logarítmicas G.III En esta guía veremos Ejercicios resueltos que implican funciones Logarítmicas. Innovación y Futuro Jair Ospino Ardila
    • Resolver 𝑓 𝑥 = ln 𝑓 𝑥 = ln 1+𝑥 1+ 𝑥 1− 𝑥 1−𝑥 Para resolver este ejercicio debemos utilizar una de las propiedades de los logaritmos. 𝑗 Dónde: ln 𝑚 = ln 𝑗 – ln 𝑚 Si reemplazamos seria: 𝑓 𝑥 = ln 1 + 𝑥 − ln 1 − 𝑥 Derivamos Como derivada de ln 𝑢 = 𝑢′ 𝑢 𝑓′ 𝑥 = 1 (−1) − 1+ 𝑥 1− 𝑥 𝑓′ 𝑥 = 1 1 + 1+ 𝑥 1− 𝑥 𝑓′ 𝑥 = 𝑓 𝑥 = ln 1 + 𝑥 − ln 1 − 𝑥 1− 𝑥+1+ 𝑥 (1 + 𝑥)(1 − 𝑥) Simplificamos y efectuamos multiplicación en el denominador 1+1 𝑓′ 𝑥 = 1 − 𝑥 + 𝑥 − 𝑥2 𝑓′ 𝑥 = Solución𝑓 ′ 𝑥 2 1 − 𝑥2 Todas unidas http://innovacionyfuturo.wordpress.com jairospino@ingenieros.com
    • Resolver 𝑓 𝑥 = ln 1+𝑥 2 𝑓 𝑥 = ln 1−𝑥 2 1 + 𝑥2 1 − 𝑥2 Para resolver este ejercicio debemos utilizar una de las propiedades de los logaritmos. 𝑗 Dónde: ln 𝑚 = ln 𝑗 – ln 𝑚 Si reemplazamos seria: 𝑓 𝑥 = ln 1 + 𝑥 2 − ln 1 − 𝑥 2 Derivamos 𝑓 𝑥 = ln 1 + 𝑥 2 − ln 1 − 𝑥 2 𝑢′ Como derivada de ln 𝑢 = 𝑢 𝑓′ 𝑥 = 2𝑥 (−2𝑥) − 2 1+ 𝑥 1 − 𝑥2 𝑓′ 𝑥 = 2𝑥 2𝑥 + 1 + 𝑥2 1 − 𝑥2 𝑓′ 𝑥 = 2𝑥 1 − 𝑥 2 + 2𝑥(1 + 𝑥 2 ) (1 + 𝑥 2 )(1 − 𝑥 2 ) efectuamos multiplicaciones 𝑓 ′ 2𝑥 − 2𝑥 3 + 2𝑥 + 2𝑥 3 𝑥 = (1 − 𝑥 2 + 𝑥 2 − 𝑥 4 ) Solución 𝑓 ′ 𝑥 simplificamos 𝑓′ 𝑥 = 4𝑥 1 − 𝑥4 Todas unidas http://innovacionyfuturo.wordpress.com jairospino@ingenieros.com
    • Resolver 𝑓 𝑥 = 𝑥 ln 𝑥 𝑓 𝑥 = 𝑥 ln 𝑥 Para resolver este ejercicio debemos utilizar la derivada de un producto junto con la derivada de un logaritmo. Ver ( JM4 ) y ( JM6 ) de la Guía I. 𝑓 𝑥 = 𝑚∗ 𝑢 𝑓 ′ 𝑥 = 𝑚′ ∗ 𝑢 + 𝑚 ∗ 𝑢′ Derivando tendríamos 1 𝑓′(𝑥) = 1 ln 𝑥 + 𝑥 𝑥 Solución 𝑓 ′ 𝑥 𝑓′(𝑥) = ln 𝑥 + 1 Todas unidas http://innovacionyfuturo.wordpress.com jairospino@ingenieros.com
    • Resolver 𝑓 𝑥 = ln 𝑒 𝑥 +1 𝑒 𝑥 −1 𝑒𝑥 +1 𝑓 𝑥 = ln 𝑥 𝑒 −1 Para resolver este ejercicio debemos utilizar una de las propiedades de los logaritmos. Dónde: ln 𝑗 𝑚 = ln 𝑗 – ln 𝑚 Si reemplazamos seria: 𝑓 𝑥 = ln 𝑒 𝑥 + 1 − ln 𝑒 𝑥 − 1 Derivamos Como derivada de ln 𝑢 = 𝑢′ 𝑢 𝑓 𝑥 = ln 𝑒 𝑥 + 1 − ln 𝑒 𝑥 − 1 𝑒𝑥 𝑒𝑥 𝑓 𝑥 = 𝑥 − 𝑥 𝑒 +1 𝑒 −1 ′ 𝑒 𝑥 𝑒 𝑥 − 1 − 𝑒 𝑥 (𝑒 𝑥 + 1) 𝑓 𝑥 = 𝑥 (𝑒 + 1)(𝑒 𝑥 − 1) ′ 𝑓′ 𝑥 = 𝑒2𝑥 − 𝑒 𝑥 − 𝑒2𝑥 − 𝑒 𝑥 𝑒2𝑥 − 𝑒 𝑥 + 𝑒 𝑥 − 1 𝑓′ 𝑥 = −𝑒 𝑥 − 𝑒 𝑥 𝑒2𝑥 − 1 −2𝑒 𝑥 𝑓 𝑥 = 2𝑥 𝑒 −1 ′ Solución 𝑓 ′ 𝑥 Todas unidas http://innovacionyfuturo.wordpress.com jairospino@ingenieros.com
    • Resolver 𝑓 𝑥 = ln(𝑥 + 1 + 𝑥 2 ) 𝑓 𝑥 = ln 𝑥 + 1 + 𝑥 2 Para resolver este ejercicio debemos utilizar una de las propiedades de los logaritmos. Derivamos Como derivada de ln 𝑢 = 1 𝑓′ 𝑥 = 1 + 2 1 + 𝑥2 𝑢′ 𝑢 1 1−2 ∗ (2𝑥) 𝑥 + 1 + 𝑥2 Solución 𝑓′ 𝑥 = 1+ 𝑥 1+ 1 2 −2 𝑥 𝑥 + 1 + 𝑥2 1+ 𝑓′ 𝑥 = 𝑓′ 𝑥 𝑥 1+𝑥2 𝑥 + 1 + 𝑥2 1+𝑥2 +𝑥 𝑓′ 𝑥 = 1+𝑥2 𝑥 + 1 + 𝑥2 Transponemos términos 𝑓′ 𝑥 = 1 + 𝑥2 + 𝑥 1 + 𝑥2 Todas unidas 𝑥 + 1 + 𝑥2 Reducimos términos semejantes 𝑓′ 𝑥 = 1 1 + 𝑥2 http://innovacionyfuturo.wordpress.com jairospino@ingenieros.com
    • Resolver 𝑓 𝑥 = 𝑙𝑛3 𝑥 𝑓 𝑥 = 𝑙𝑛3 𝑥 Para resolver este ejercicio debemos tener en cuenta que también podemos reescribir esta función. 𝑓 𝑥 = ln 𝑥 3 Derivando tendríamos 𝑓 ′ 𝑥 = 3 ln 𝑥 3−1 𝑓 ′ 𝑥 = 3 ln 𝑥 2 ∗ ∗ 1 𝑥 1 𝑥 Si volvemos a reescribirla de tal forma que nos quede como la estructura principal. 𝑓 ′ Todas unidas 3𝑙𝑛2 𝑥 𝑥 = 𝑥 Solución 𝑓 ′ 𝑥 http://innovacionyfuturo.wordpress.com jairospino@ingenieros.com
    • Resolver 1+𝑥 𝑓 𝑥 = ln 𝑓 𝑥 = ln 1−𝑥 1+ 𝑥 1− 𝑥 Para apreciarlo mejor lo podemos reescribir. 𝑓 𝑥 = ln 1+ 𝑥 1− 𝑥 Para resolver este ejercicio debemos utilizar una de las propiedades de los logaritmos. 𝑗 Dónde: ln = ln 𝑗 – ln 𝑚 𝑚 Si reemplazamos seria: Solución 𝑓′ 𝑥 𝑓 𝑥 = ln 1 + 𝑥 − ln 1 − 𝑥 Derivamos 𝑢′ Como derivada de ln 𝑢 = 1 2 𝑓′(𝑥) = 1+ 𝑥 1 −1 2 1+ 𝑥 1 𝑓′ 𝑥 = 2 1+ 𝑥 1 ∗ 1 −2 1 2 1 − 1+ 𝑥 + 1− 𝑥 2 1 −1 2 ∗ −1 1− 𝑥 1− 𝑥 1 2 − 1− 𝑥 Todas Unidas 1 1 𝑓′ 𝑥 = 𝑢 2 1+𝑥 1+ 𝑥 2 + 1−𝑥 1− 𝑥 Transponemos términos 𝑓′ 𝑥 = 1 2 𝑓′ 𝑥 = 1+ 𝑥 1+ 𝑥 + 1 2 1− 𝑥 1− 𝑥 1 1 + 2(1 + 𝑥) 2(1 − 𝑥) http://innovacionyfuturo.wordpress.com jairospino@ingenieros.com
    • 𝑓′ 𝑥 = 1 1 1 + 2 1+ 𝑥 1− 𝑥 𝑓′ 𝑥 = 1 1− 𝑥+1+ 𝑥 2 1+ 𝑥 1− 𝑥 𝑓′ 𝑥 = 1 1+1 2 1 − 𝑥 + 𝑥 − 𝑥2 𝑓′ 𝑥 = 1 2 2 (1 − 𝑥 2 ) 𝑓′ 𝑥 = 1 1 − 𝑥2 http://innovacionyfuturo.wordpress.com jairospino@ingenieros.com