Upcoming SlideShare
×
Like this presentation? Why not share!

Like this? Share it with your network

Share

# Probsbility 2...Final

• 475 views

• Comment goes here.
Are you sure you want to
Be the first to comment
Be the first to like this

Total Views
475
On Slideshare
475
From Embeds
0
Number of Embeds
0

Shares
0
0
Likes
0

No embeds

### Report content

No notes for slide

### Transcript

• 1. Joseph is deciding whether he's taking medicine or engineering  course. The probability that he's choosing enginireeng is 65 %,  while the probability that he's going to pass the Board Exam in  Medicine is 89% and in Engineeirng is 69%. a.) what is the probability that Joseph will  pass the course? b.) If Joseph doesn't pass the  exam, waht is the probability that  he choose Medicine? 1
• 2. a.) what is the probability that Joseph will  pass the course? P(MP,EP) = P(MP) + (EP)                  = .76             = 76% the probability of M or E, if the  *this phrase means that one  events are *mutually exclusive,  events taking place prevents  may be found by adding  the other event from taking  probabilities. place. 2
• 3. b.) If Joseph doesn't pass the exam,  what is the probability that he  choose Medicine? P(N/M) =     P(MN) this is an example of a                     P(MN) + P(EN) bayes' formula: It is used                          = 0.0385 to find the conditional               (0.0385) + (.2015) probability of Event M               occuring, given that Event               = 0.16 or 16% N has already occurred.               probability = number of favorable outcome                         total possible outcome 3
• 4. and this is the tree diagram. P .89 P(MP) = .3115 M N.11 P(MN)= .0385 P .69 P(EP)=.4485 F N .31 P(EN)=.2015 4