• Like
Probability .01
Upcoming SlideShare
Loading in...5
×
Uploaded on

 

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
376
On Slideshare
0
From Embeds
0
Number of Embeds
1

Actions

Shares
Downloads
1
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Joseph is deciding whether he's taking medicine or engineering  course. The probability that he's choosing enginireeng is 65 %,  while the probability that he's going to pass the Board Exam in  Medicine is 89% and in Engineeirng is 69%. a.) what is the probability that Joseph will  pass the course? b.) If Joseph doesn't pass the  exam, waht is the probability that  he choose Medicine? 1
  • 2. a.) what is the probability that Joseph will  pass the course? P(MP,EP) = P(MP) + (EP)                  = .76             = 76% the probability of M or E, if the  *this phrase means that one  events are *mutually exclusive,  events taking place prevents  may be found by adding  the other event from taking  probabilities. place. 2
  • 3. b.) If Joseph doesn't pass the exam,  what is the probability that he  choose Medicine? this is an example of a  P(N/M) =     P(MN) bayes' formula: It is used                     P(MN) + P(EN) to find the conditional             probability of Event M               = 0.0385 occuring, given that Event               (0.0385) + (.2015) N has already occurred.                           = 0.16 or 16%               probability = number of favorable outcome                         total possible outcome 3
  • 4. and this is the tree diagram. P .89 P(MP) = .3115 M N.11 P(MN)= .0385 P .69 P(EP)=.4485 F N .31 P(EN)=.2015 4