Joseph is deciding whether he's taking medicine or engineering 
course. The probability that he's choosing enginireeng is ...
a.) what is the probability that Joseph will 
pass the course?
    P(MP,EP) = P(MP) + (EP)
                     = .76
    ...
b.) If Joseph doesn't pass the exam, 
         what is the probability that he 
         choose Medicine?
                ...
and this is the tree diagram.


    P .89       P(MP) = .3115
M
    N.11        P(MN)= .0385
    P .69       P(EP)=.4485
F...
Upcoming SlideShare
Loading in...5
×

Probability .01

402

Published on

Published in: Education, Economy & Finance
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
402
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
2
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Probability .01

  1. 1. Joseph is deciding whether he's taking medicine or engineering  course. The probability that he's choosing enginireeng is 65 %,  while the probability that he's going to pass the Board Exam in  Medicine is 89% and in Engineeirng is 69%. a.) what is the probability that Joseph will  pass the course? b.) If Joseph doesn't pass the  exam, waht is the probability that  he choose Medicine? 1
  2. 2. a.) what is the probability that Joseph will  pass the course? P(MP,EP) = P(MP) + (EP)                  = .76             = 76% the probability of M or E, if the  *this phrase means that one  events are *mutually exclusive,  events taking place prevents  may be found by adding  the other event from taking  probabilities. place. 2
  3. 3. b.) If Joseph doesn't pass the exam,  what is the probability that he  choose Medicine? this is an example of a  P(N/M) =     P(MN) bayes' formula: It is used                     P(MN) + P(EN) to find the conditional             probability of Event M               = 0.0385 occuring, given that Event               (0.0385) + (.2015) N has already occurred.                           = 0.16 or 16%               probability = number of favorable outcome                         total possible outcome 3
  4. 4. and this is the tree diagram. P .89 P(MP) = .3115 M N.11 P(MN)= .0385 P .69 P(EP)=.4485 F N .31 P(EN)=.2015 4
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×