From copert2 to copert4

426 views

Published on

Presentation by EMISIA staff on the TFEIP Meeting in Stockholm.

Published in: Business, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
426
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
3
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

From copert2 to copert4

  1. 1. An assessment of uncertainty in COPERT4 & managing differences arising from model development: from COPERTII to COPERT4 Leonidas Ntziachristos ETC/ACM Updated version of: Road transport emission inventory uncertainties – GHGs and APs, EEA, Copenhagen, 18 November 2010 http://www.eionet.europa.eu/events/transport%20uncertainties/
  2. 2. Agenda of the Nov. 18, 2010 meeting L. Ntziachristos Comparison of centralised models with data reported by countries St. Leinart G. Geilenkirchen Examples of how new scientific knowledge (eg methods, models and EFs) have changed earlier road transport emission estimates Ireland, Netherland L. Ntziachristos Copert II to Copert 4 C. Pastorello Vehicle CO2 monitoring work – policy developments P. Dilara Research and measurement programmes for the improvement of transport emission and fuel consumption modelling in Europe W. Knoerr S. Radzimirski T. Murrels National examples of quantifying and reporting uncertainty Germany, Poland, UK L. Ntziachristos Report from IPCC expert meeting on use of models and measurements in GHG inventories J. Goodwin International requirements, good practice and examples of reporting uncertainty in emission inventories UNFCCC/UNECE
  3. 3. Projected emission factors <ul><li>Emission reductions for future vehicle technologies generally follow the rule: </li></ul><ul><li>Limitation: </li></ul><ul><ul><li>Real-world behaviour does not (always) follow emission standards </li></ul></ul>
  4. 4. Example: Euro V trucks NOx <ul><li>Emission Level </li></ul><ul><li>EF over ES ratios </li></ul>
  5. 5. Impacts <ul><li>Uncertainty of projection increases due to inability to predict real-world behaviour beforehand </li></ul><ul><li>Difficulties to meet targets may originate from such uncertainty in setting targets </li></ul><ul><li>Best example: NECD </li></ul>
  6. 6. Towards NECD: Current Assessment Source: Nitrogen oxide (NOx) distance-to-target for EEA member countries, EEA, Oct. 2010.
  7. 7. Responsible: Model or Regulation? <ul><li>Model projects what regulations wished to achieve </li></ul><ul><li>Reality proves that regulations failed to achieve </li></ul><ul><ul><li>Manufacturers followed “letter” not “spirit” of law! </li></ul></ul><ul><li>Improvements required to regulations </li></ul><ul><ul><li>Different driving profile? </li></ul></ul><ul><ul><li>Non-to-exceed approach? </li></ul></ul>
  8. 8. Quantifying uncertainties <ul><li>Use new knowledge </li></ul><ul><ul><li>Models </li></ul></ul><ul><ul><li>Activity data </li></ul></ul><ul><li>Compare with </li></ul><ul><ul><li>Old models </li></ul></ul><ul><ul><li>Old activity data </li></ul></ul><ul><li>Objective: Explain uncertainty due to model and activity data differences </li></ul>
  9. 9. Approach to quantify uncertainty: input data <ul><li>RAINS activity and emission factor data used to set the NECD targets </li></ul><ul><ul><li>Cost-effective Control of Acidification and Ground-Level Ozone. Part A: Methodology and Databases. Sixth Interim Report to the European Commission, IIASA 1998. </li></ul></ul><ul><ul><li>Actual excel files received by J. Cofala, Oct. 2010. </li></ul></ul><ul><li>FLEETS/EC4MACS data </li></ul><ul><ul><li>Updated datasets used by GAINS in the framework of LIFE EC4MACS </li></ul></ul><ul><ul><li>Based on original data by individual MSs </li></ul></ul><ul><li>Four countries used as examples: DE, FR, IE, NL </li></ul>
  10. 10. Approach to quantify uncertainty: models <ul><li>COPERT II (1997) </li></ul><ul><ul><li>Used to provide removal efficiencies to RAINS </li></ul></ul><ul><li>COPERT 4 v8.0 (Nov. 2010) </li></ul><ul><ul><li>Most updated version, implementing HBEFA 3.1 HDV EFs </li></ul></ul>
  11. 11. Runs executed <ul><li>Run 1: Original RAINS calculation </li></ul><ul><li>Run 2: COPERT 2 + RAINS Input </li></ul><ul><li>Run 3: COPERT 2 + EC4MACS Input </li></ul><ul><li>Run 4: COPERT 4 + RAINS Input </li></ul><ul><li>Run 5: COPERT 4 + EC4MACS Input </li></ul>
  12. 12. DE: Activity
  13. 13. DE: Technology penetration
  14. 14. DE: NOx Emissions 34% activity 75% EF
  15. 15. DE 2010: Technology responsibility
  16. 16. IE: Activity
  17. 17. IE: NOx Emissions 131% activity 64% EF
  18. 18. IE 2010: Technology responsibility
  19. 19. Summary <ul><li>Differences between target and reality result from both emission factors and activity data </li></ul><ul><ul><li>65-75% higher emissions due to EFs </li></ul></ul><ul><ul><li>19-131% higher emissions due to activity data </li></ul></ul><ul><li>Emission factors </li></ul><ul><ul><li>Practically all Euro 3 / III and later diesel EFs </li></ul></ul><ul><ul><li>Conventional/E1 GPC! </li></ul></ul><ul><li>Activity data: </li></ul><ul><ul><li>Misallocation of HD, LD diesel consumption </li></ul></ul><ul><ul><li>Relative increase of DPC consumption </li></ul></ul><ul><ul><li>Too fast scrappage of old vehicles assumed </li></ul></ul>
  20. 20. More Info <ul><li>http://acm.eionet.europa.eu/reports/ETCACC_TP_2010_20_Copert2vsCopert4 </li></ul>

×