Urban Tissue – visualising urban energy demand and supply potential Drs. Wouter Leduc MSc Urban Environment Group, Wagenin...
Outline <ul><li>Theory </li></ul><ul><li>Research approach </li></ul><ul><li>Research: Urban Tissue, demand & supply </li>...
Theory: eXergy <ul><li>Energy can never be lost (thermodynamics)    total quantity remains </li></ul><ul><li>eXergy = qua...
Theory: Energy cascading 1. power plant 2. industry 3. greenhouses 4. offices 5. residential areas heat exchange waste exc...
Theory: Trias Energetica Ecofys, 2006
Research approach <ul><li>Study unused energy sources (exergy), in- + output energy flows, energy demand in urban system <...
Research approach: Urban energy potential
Research: urban tissue <ul><li>First impression of energy demand and supply potential of certain area    standard hectare...
<ul><li>Consumption standard ha: </li></ul><ul><ul><li>Electricity = ~45,000 kWh </li></ul></ul><ul><ul><li>Heat household...
Potential
Results: unused urban energy sources <ul><li>Roads: ~1,500 m 2  at urban tissue </li></ul><ul><ul><ul><li>Peltier-elements...
Results: unused urban energy sources Waste and biomass 1 kg = 5.3 MJ 1 kg = 10.2 MJ 1 kg = 3.4 MJ 1 kg = 0.6 kWh Conversio...
Case study: Urban Parkstad  URBAN ENERGY
Case study: Urban Parkstad <ul><li>Parkstad = urban with green areas </li></ul><ul><li>Total surface = 10,965 ha </li></ul...
Case study: Urban Parkstad Waste, biomass <ul><li>Road potential: </li></ul><ul><li>Electricity = ~22,500 kWh vs. ~37,500 ...
Conclusions <ul><li>Urban tissue    helpful to visualise energy demand and supply potential, linked to spatial distributi...
Further research <ul><li>Coupling urban energy demand and supply </li></ul><ul><li>Study more cases </li></ul><ul><li>Plan...
Questions? www.exergieplanning.nl © Wageningen UR URBAN ENERGY
Upcoming SlideShare
Loading in …5
×

PLEA conference 2008, Dublin

504 views

Published on

presentation of accepted paper 'Urban Tissue, representation of Urban Energy Potential'

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
504
On SlideShare
0
From Embeds
0
Number of Embeds
8
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Exergy-wise: low vs high quality energy; energy-demand also in terms of low vs high
  • PLEA conference 2008, Dublin

    1. 1. Urban Tissue – visualising urban energy demand and supply potential Drs. Wouter Leduc MSc Urban Environment Group, Wageningen University, The Netherlands SREX Project – Synergy between spatial planning and exergy URBAN ENERGY
    2. 2. Outline <ul><li>Theory </li></ul><ul><li>Research approach </li></ul><ul><li>Research: Urban Tissue, demand & supply </li></ul><ul><li>Results </li></ul><ul><li>Case study: Urban Parkstad (NL) </li></ul><ul><li>Conclusions & further research </li></ul>
    3. 3. Theory: eXergy <ul><li>Energy can never be lost (thermodynamics)  total quantity remains </li></ul><ul><li>eXergy = quality of energy  same amount of energy, with different qualities, used more often </li></ul><ul><li>Applied eXergy definition: </li></ul><ul><ul><li>Using unused energy sources & search for useful applications (Gommans & Dobbelsteen, 2007) </li></ul></ul><ul><ul><li>Urban system = enormous reservoir of unused energy sources </li></ul></ul><ul><ul><ul><li>Energy in form of wind, heat, solar radiation, geothermal potential </li></ul></ul></ul><ul><ul><ul><li>Waste, waste heat </li></ul></ul></ul><ul><ul><ul><li>Roads and buildings </li></ul></ul></ul><ul><ul><ul><li>More effective, or unused, labour; unused capacities in space and transport </li></ul></ul></ul>
    4. 4. Theory: Energy cascading 1. power plant 2. industry 3. greenhouses 4. offices 5. residential areas heat exchange waste exchange electricity exchange Dobbelsteen et al., 2006
    5. 5. Theory: Trias Energetica Ecofys, 2006
    6. 6. Research approach <ul><li>Study unused energy sources (exergy), in- + output energy flows, energy demand in urban system </li></ul>Flows in Flows out Flows through Recycling
    7. 7. Research approach: Urban energy potential
    8. 8. Research: urban tissue <ul><li>First impression of energy demand and supply potential of certain area  standard hectare = an average tissue  easy to grasp visualisation </li></ul><ul><ul><li>Total Dutch surface: 4,150,000 ha; urban area: 507,020 ha </li></ul></ul><ul><ul><li>Dutch urban area = 12 % of country, urban density = 13.5 inh/Uha </li></ul></ul>Dutch average urban tissue - 1 ha
    9. 9. <ul><li>Consumption standard ha: </li></ul><ul><ul><li>Electricity = ~45,000 kWh </li></ul></ul><ul><ul><li>Heat households = ~1,000 GJ </li></ul></ul>
    10. 10. Potential
    11. 11. Results: unused urban energy sources <ul><li>Roads: ~1,500 m 2 at urban tissue </li></ul><ul><ul><ul><li>Peltier-elements: yield = 25 kWh e /m 2 .y </li></ul></ul></ul><ul><ul><ul><li>Heat and cold: 0.67 GJ/m 2 .y + 0.21 GJ/m 2 .y </li></ul></ul></ul><ul><ul><ul><li>elec: ~37,500 kWh, </li></ul></ul></ul><ul><ul><ul><li>heat: ~1,000 GJ and cold: ~320 GJ </li></ul></ul></ul>URBAN ENERGY
    12. 12. Results: unused urban energy sources Waste and biomass 1 kg = 5.3 MJ 1 kg = 10.2 MJ 1 kg = 3.4 MJ 1 kg = 0.6 kWh Conversion 7,440 MJ 730 Wood residues 3,640 MJ 1,070 Green household waste 2,800 MJ 2,330 kWh Total yield/Uha 530 3,890 kg/Uha Park maintenance Household waste
    13. 13. Case study: Urban Parkstad URBAN ENERGY
    14. 14. Case study: Urban Parkstad <ul><li>Parkstad = urban with green areas </li></ul><ul><li>Total surface = 10,965 ha </li></ul><ul><li>Urban surface = 6,895 ha (63 %) </li></ul><ul><li>Urban density = 19.1 inh/Uha </li></ul>URBAN ENERGY 1,500 900 Roads 520 900 Park, other green area 1,400 1,100 Business area 130 230 Retail, hotel, catering 300 350 Social/cult. area 4,400 4,900 Residential area m²/ha m²/ha Dutch Parkstad Urban functions
    15. 15. Case study: Urban Parkstad Waste, biomass <ul><li>Road potential: </li></ul><ul><li>Electricity = ~22,500 kWh vs. ~37,500 kWh </li></ul><ul><li>heat = ~600 GJ, cold = ~190 GJ vs. ~1,000 GJ & ~320 GJ </li></ul>10,330 7,440 Wood residues MJ 5,520 3,640 Green household waste MJ 4,050 3,350 Parkstad yield 2,800 2,330 Dutch yield Park maintenance MJ Household Waste kWh
    16. 16. Conclusions <ul><li>Urban tissue  helpful to visualise energy demand and supply potential, linked to spatial distribution </li></ul><ul><li>Yield of unused urban energy sources (= energy supply potential) can fulfil parts of total demand </li></ul><ul><li>Quick scan of urban area  quick insight in urban functions, energy sinks and sources </li></ul>URBAN ENERGY
    17. 17. Further research <ul><li>Coupling urban energy demand and supply </li></ul><ul><li>Study more cases </li></ul><ul><li>Planning aspects </li></ul><ul><li>GIS applications </li></ul>
    18. 18. Questions? www.exergieplanning.nl © Wageningen UR URBAN ENERGY

    ×