Your SlideShare is downloading. ×
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Bio 105 Chapter 21
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Bio 105 Chapter 21

531

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
531
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
16
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide
  • Figure 21.2: Harmful chemicals are found in many homes. The U.S. Congress has exempted disposal of these materials from government regulation. For more details on hazardous chemicals in household products see www. H ealthyStuff.org and the Cancer Prevention Coalition website at www.preventcancer.com. Question: Which of these chemicals are in your home?
  • Figure 21.3: Natural capital degradation. These solid wastes pollute a river in Jakarta, Indonesia, a city of more than 11 million people. The man in the boat is looking for items to salvage or sell.
  • Figure 21.4: This graph shows the total and per capita production of municipal solid waste in the United States, 1960–2008. (Data from the U.S. Environmental Protection Agency )
  • Figure 21.5: Hundreds of millions of discarded tires have accumulated in this massive tire dump in Midway, Colorado (USA). Lehigh Technologies has developed a recycling method that uses liquid nitrogen to freeze the scrap tires, making them brittle. The rubber is then pulverized into a fine powder, which can be used in a variety of products such as paints, sealants, and coatings. A preventive approach to managing this waste would be to double the average lifetime of tires in order to reduce the number thrown away each year.
  • Figure 21.6: Integrated waste management: Wastes are reduced through reuse, recycling, and composting or managed by burying them in landfills or incinerating them. Most countries rely primarily on burial and incineration. Question: What happens to the solid waste you produce?
  • Figure 21.7: Integrated waste management: The U.S. National Academy of Sciences suggests these priorities for dealing with solid waste. To date, these waste-reduction priorities have not been followed in the United States or in most other countries. Instead, most efforts are devoted to waste management through disposal (bury it, burn it, or send it somewhere else). Question: Why do you think most countries do not follow these priorities, even though they are based on reliable science? (Data from U.S. Environmental Protection Agency and U.S. National Academy of Scienc es)
  • Figure 21.8: I ndividuals matter. You can save resources by reducing your output of solid waste and pollution. Questions: Which three of these actions do you think are the most important? Why? Which of these things do you do?
  • Figure 21.9: I ndividuals matter. There are many ways to reuse the items we purchase. Question: Which of these suggestions have you tried and how did they work for you?
  • Figure 21.10: Bacteria convert plant wastes into rich compost in this backyard kitchen composter drum. When the compost is ready, the device can be wheeled out and emptied into vegetable and flower gardens.
  • Figure 21.11: Discarded solid waste litters beaches, poses a threat to beach users, and washes into the ocean and threatens marine animals.
  • Figure 21.12: Recycling solid waste has advantages and disadvantages ( Concept 21-3 ). Questions: Which single advantage and which single disadvantage do you think are the most important? Why?
  • Figure 21.13: S olutions. A modern waste-to-energy incinerator with pollution controls burns mixed solid wastes and recovers some of the energy to produce steam to use for heating or producing electricity. Great Britain burns about 90% of its MSW in incinerators and Denmark burns about 54%, compared to 13% in the United States and 8% in Canada. To be economically feasible, incinerators must be fed huge volumes of trash every day. This encourages trash production and discourages reuse, recycling, and waste reduction. Questions: Would you invest in such a project? Why or why not?
  • Figure 21.14: Waste-to-energy incineration of solid waste has advantages and disadvantages ( Concept 21-4 ). These trade-offs also apply to the incineration of hazardous waste. Since 1985, more than 280 new incinerator projects have been delayed or canceled in the United States because of high costs, concern over air pollution, and intense citizen opposition. Questions: Which single advantage and which single disadvantage do you think are the most important? Why?
  • Figure 21.15: S olutions. A state-of-the-art sanitary landfill is designed to eliminate or minimize environmental problems that plague older landfills. Since 1997, only modern sanitary landfills have been permitted in the United States. As a result, many small, older landfills have been closed and replaced with larger local or regional landfills. Question: Some experts say that these landfills will eventually develop leaks and could emit toxic liquids. How do you think this could happen?
  • Figure 21.16: Using sanitary landfills to dispose of solid waste has advantages and disadvantages ( Concept 16-4 ). Questions: Which single advantage and which single disadvantage do you think are the most important? Why?
  • Figure 21.17: Integrated hazardous waste management: The U.S. National Academy of Sciences has suggested these priorities for dealing with hazardous waste ( Concept 21-5 ). Question: Why do you think that most countries do not follow these priorities? (Data from U.S. National Academy of Science s)
  • Figure 21.20: Injecting liquid hazardous wastes into deep underground wells has advantages and disadvantages. Questions: Which single advantage and which single disadvantage do you think are the most important? Why?
  • Figure 21.21: This surface impoundment for storing liquid hazardous wastes is located in Niagara Falls, New York (USA). Such sites can pollute the air and nearby ground water and surface water.
  • Figure 21.22: Storing liquid hazardous wastes in surface impoundments has advantages and disadvantages. Questions: Which single advantage and which single disadvantage do you think are the most important? Why?
  • Figure 21.23: S olutions. This diagram shows how hazardous wastes can be isolated and stored in a secure hazardous waste landfill.
  • Figure 21.24: I ndividuals matter. You can reduce your output of hazardous wastes ( Concept 21-5 ). Questions: Which two of these measures do you think are the most important? Why?
  • Figure 21.25: These leaking barrels of toxic waste were found at a Superfund site in the United States that has since been cleaned up.
  • Transcript

    • 1. MILLER/SPOOLMAN LIVING IN THE ENVIRONMENT 17TH Chapter 21 Solid and Hazardous Waste
    • 2. We Throw Away Huge Amounts of Useful Things and Hazardous Materials (1)• Solid waste • Industrial solid waste • Mines, farms, industries • Municipal solid waste (MSW) • Trash • Hazardous waste (toxic waste) • Threatens human health of the environment • Organic compounds • Toxic heavy metals • Radioactive waste
    • 3. We Throw Away Huge Amounts of Useful Things and Hazardous Materials (2)• 80–90% of hazardous wastes produced by developed countries • U.S. is the largest producer• Why reduce solid wastes? 1. ¾ of the materials are an unnecessary waste of the earths resources 2. Huge amounts of air pollution, greenhouse gases, and water pollution
    • 4. What Harmful Chemicals Are in Your Home? Fig. 21-2, p. 559
    • 5. Natural Capital Degradation: Solid Wastes Polluting a River in Indonesia Fig. 21-3, p. 560
    • 6. Solid Waste in the United States• Leader in solid waste problem • What is thrown away?• Leader in trash production, by weight, per person• Recycling is helping
    • 7. Total and Per Capita Production of Municipal Solid Waste in the U.S. Fig. 21-4, p. 560
    • 8. Hundreds of Millions of Discarded Tires in a Dump in Colorado Fig. 21-5, p. 561
    • 9. We Can Burn or Bury Solid Waste or Produce Less of It• Waste Management • Reduce harm, but not amounts• Waste Reduction • Use less and focus on reuse, recycle, compost• Integrated waste management • Uses a variety of strategies
    • 10. Integrated Waste Management Fig. 21-6, p. 562
    • 11. Integrated Waste Management: Priorities for Dealing with Solid Waste Fig. 21-7, p. 562
    • 12. We Can Cut Solid Wastes by Reducing, Reusing, and Recycling (1)• Waste reduction is based on • Reduce • Reuse • Recycle
    • 13. We Can Cut Solid Wastes by Reducing, Reusing, and Recycling (2)• Six strategies: 1. Redesign manufacturing processes and products to use less material and energy 2. Develop products that are easy to repair, reuse, remanufacture, compost, or recycle 3. Eliminate or reduce unnecessary packaging 4. Use fee-per-bag waste collection systems 5. Establish cradle-to grave responsibility 6. Restructure urban transportation systems
    • 14. What Can You Do? Solid Waste Fig. 21-8, p. 563
    • 15. Reuse: Important Way to Reduce Solid Waste, Pollution, and Save Money• Reuse: clean and use materials over and over• Downside of reuse in developing countries • Salvaging poor exposed to toxins• Flea markets, yard sales, second-hand stores, eBay, Craigslist, freecycle.org• Rechargeable batteries
    • 16. Case Study: Use of Refillable Containers• Reuse and recycle • Refillable glass beverage bottles • Refillable soft drink bottles made of polyethylene terephthalate (PET) plastic • Bottle deposits create jobs and reduce litter and landfill amounts• Paper, plastic, or reusable cloth bags • Pros • Cons
    • 17. What Can You Do? Reuse Fig. 21-9, p. 565
    • 18. There Are Two Types of Recycling (1)• Primary, closed-loop recycling • Materials recycled into same type: aluminum cans• Secondary recycling • Materials converted to other products: tires• Types of wastes that can be recycled • Preconsumer: internal waste • Postconsumer: external waste
    • 19. We Can Mix or Separate Household Solid Wastes for Recycling (1)• Materials-recovery facilities (MRFs) • Can encourage increased trash production• Source separation • Pay-as-you-throw • Fee-per-bag• Which program is more cost effective?• Which is friendlier to the environment?
    • 20. We Can Mix or Separate Household Solid Wastes for Recycling (2)• Composting • Individual • Municipal• Benefits
    • 21. Backyard Composter Drum: BacteriaConvert Kitchen Waste into Compost Fig. 21-10, p. 566
    • 22. Case Study: Recycling Plastics• Plastics: composed of resins created from oil and natural gas• Most containers discarded: 4% recycled• Litter: beaches, oceans • Kills wildlife • Gets into food chain and seafood
    • 23. Discarded Solid Waste Litters Beaches Fig. 21-11, p. 568
    • 24. Science Focus: Bioplastics (1)• Plastics from soybeans: not a new concept• Sources • Corn • Soy • Sugarcane
    • 25. Science Focus: Bioplastics (2)• Sources cont… • Switchgrass • Chicken feathers • Some garbage • CO2 from coal-burning plant emissions• Benefits: lighter, stronger, cheaper, and biodegradable
    • 26. Trade-Offs: Recycling Fig. 21-12, p. 569
    • 27. We Can Encourage Reuse and Recycling (1)• What hinders reuse and recycling? 1. Market prices don’t include harmful costs associated with production, use, discarding 2. Recycling industries get less favorable government treatment than large industries do 3. Prices for recycled materials fluctuate
    • 28. We Can Encourage Reuse and Recycling (2)• Encourage reuse and recycling • Government • Increase subsidies and tax breaks for using such products • Decrease subsidies and tax breaks for making items from virgin resources • Fee-per-bag collection • New laws • Citizen pressure
    • 29. Burning Solid Waste Has Advantages and Disadvantages• Waste-to-energy incinerators• 600 globally • Most in Great Britain• Advantages• Disadvantages
    • 30. Solutions: A Waste-to-Energy Incinerator with Pollution Controls Fig. 21-13, p. 571
    • 31. Trade-Offs: Waste-to-Energy Incineration Fig. 21-14, p. 571
    • 32. Burying Solid Waste Has Advantages and Disadvantages• Open dumps • Widely used in less-developed countries • Rare in developed countries• Sanitary landfills
    • 33. Solutions: State-of-the-Art Sanitary Landfill Fig. 21-15, p. 572
    • 34. Trade-Offs: Sanitary Landfills Fig. 21-16, p. 572
    • 35. We Can Use Integrated Management of Hazardous Waste• Integrated management of hazardous wastes • Produce less • Convert to less hazardous substances • Rest in long-term safe storage• Increased use for postconsumer hazardous waste
    • 36. Integrated Hazardous Waste Management Fig. 21-17, p. 573
    • 37. We Can Store Some Forms of Hazardous Waste (1)• Burial on land or long-term storage • Last resort only• Deep-well disposal • 64% of hazardous liquid wastes in the U.S.
    • 38. Trade-Offs: Deep-Well Disposal Fig. 21-20, p. 576
    • 39. We Can Store Some Forms of Hazardous Waste (2)• Surface impoundments • Lined ponds or pits• Secure hazardous landfills
    • 40. Surface Impoundment in Niagara Falls, New York Fig. 21-21, p. 577
    • 41. Trade-Offs Surface Impoundments Fig. 21-22, p. 577
    • 42. Solutions: Secure Hazardous Waste Landfill Fig. 21-23, p. 577
    • 43. What Can You Do? Hazardous Waste Fig. 21-24, p. 578
    • 44. Leaking Barrels of Toxic Waste at a Superfund Site in the United States-has since been cleaned up Fig. 21-25, p. 578
    • 45. Grassroots Action Has Led to Better Solid and Hazardous Waste Management • “Not in my backyard” • Produce less waste • “Not in anyone’s backyard” • “Not on planet Earth”
    • 46. We Can Make the Transition to Low-Waste Societies• Norway, Austria, and the Netherlands • Committed to reduce resource waste by 75%• East Hampton, NY, U.S. • Reduced solid waste by 85%• Follow guidelines to prevent pollution and reduce waste

    ×