Bio 105 Chapter 2

571 views
425 views

Published on

Published in: Education, Technology
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
571
On SlideShare
0
From Embeds
0
Number of Embeds
67
Actions
Shares
0
Downloads
19
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide
  • Figure 2.1: This controlled field experiment measured the effects of deforestation on the loss of water and soil nutrients from a forest. V–notched dams were built at the bottoms of two forested valleys so that all water and nutrients flowing from each valley could be collected and measured for volume and mineral content. These measurements were recorded for the forested valley (left), which acted as the control site, and for the other valley, which acted as the experimental site (right). Then all the trees in the experimental valley were cut and, for 3 years, the flows of water and soil nutrients from both valleys were measured and compared.
  • Figure 2.2: This diagram illustrates what scientists do. Scientists use this overall process for testing ideas about how the natural world works. However, they do not necessarily follow the order of steps shown here. For example, sometimes a scientist might start by coming up with a hypothesis to answer the initial question and then run experiments to test the hypothesis.
  • Figure 2.3: We can use the scientific process to understand and deal with an everyday problem.
  • Figure 2.A: These and many other massive stone figures once lined the coasts of Easter Island and are the remains of the technology created on the island by an ancient civilization of Polynesians. Some of these statues are taller than an average five-story building and can weigh as much as 89 metric tons (98 tons).
  • Figure 2.4: Gold (left) and mercury (right) are chemical elements; each has a unique set of properties and it cannot be broken down into simpler substances.
  • Figure 2.5: This is a greatly simplified model of a carbon-12 atom. It consists of a nucleus containing six protons, each with a positive electrical charge, and six neutrons with no electrical charge. Six negatively charged electrons are found outside its nucleus. We cannot determine the exact locations of the electrons. Instead, we can estimate the probability that they will be found at various locations outside the nucleus—sometimes called an electron probability cloud . This is somewhat like saying that there are six airplanes flying around inside a cloud. We do not know their exact location, but the cloud represents an area in which we can probably find them.
  • TABLE 2-2
  • Figure 5 The pH scale, representing the concentration of hydrogen ions (H+) in one liter of solution is shown on the right-hand side. On the left side, are the approximate pH values for solutions of some common substances. A solution with a pH less than 7 is acidic, one with a pH of 7 is neutral, and one with a pH greater than 7 is basic. A change of 1 on the pH scale means a tenfold increase or decrease in H+ concentration. (Modified from Cecie Starr, Biology: Today and Tomorrow. Pacific Grove, CA: Brooks/Cole, © 2005)
  • Figure 2.6: This graph shows the loss of nitrate ions (NO 3 – ) from a deforested watershed in the Hubbard Brook Experimental Forest (Figure 2-1, right). The average concentration of nitrate ions in runoff from the experimental deforested watershed was about 60 times greater than in a nearby unlogged watershed used as a control (Figure 2-1, left). (Data from F. H. Bormann and Gene Likens)
  • Figure 7 Straight-chain and ring structural formulas of glucose, a simple sugar that can be used to build long chains of complex carbohydrates such as starch and cellulose.
  • Figure 8 This model illustrates both the general structural formula of amino acids and a specific structural formula of one of the 20 different amino acid molecules that can be linked together in chains to form proteins that fold up into more complex shapes.
  • Figure 9 This diagram shows the generalized structures of the nucleotide molecules linked in various numbers and sequences to form large nucleic acid molecules such as various types of DNA (deoxyribonucleic acid) and RNA (ribonucleic acid). In DNA, the five-carbon sugar in each nucleotide is deoxyribose; in RNA it is ribose. The four basic nucleotides used to make various forms of DNA molecules differ in the types of nucleotide bases they contain—guanine (G), cytosine (C), adenine (A), and thymine (T). (Uracil, labeled U, occurs instead of thymine in RNA.)
  • Figure 10 Portion of the double helix of a DNA molecule. The double helix is composed of two spiral (helical) strands of nucleotides. Each nucleotide contains a unit of phosphate (P), deoxyribose (S), and one of four nucleotide bases: guanine (G), cytosine (C), adenine (A), and thymine (T). The two strands are held together by hydrogen bonds formed between various pairs of the nucleotide bases. Guanine (G) bonds with cytosine (C), and adenine (A) with thymine (T).
  • Figure 11 The structural formula of fatty acid that is one form of lipid (left) is shown here. Fatty acids are converted into more complex fat molecules (center) that are stored in adipose cells (right).
  • Figure 2.7: This diagram shows the relationships among cells, nuclei, chromosomes, DNA, and genes.
  • Figure 2.8: These examples illustrate the differences in matter quality. High-quality matter (left column) is fairly easy to extract and is highly concentrated; low-quality matter (right column) is not highly concentrated and is more difficult to extract than high-quality matter.
  • Figure 2.9: There are three types of nuclear changes: natural radioactive decay (top), nuclear fission (middle), and nuclear fusion (bottom).
  • Figure 2.10: Kinetic energy, created by the gaseous molecules in a mass of moving air, turns the blades of this wind turbine. The turbine then converts this kinetic energy to electrical energy, which is another form of kinetic energy.
  • Figure 2.11: The electromagnetic spectrum consists of a range of electromagnetic waves, which differ in wavelength (the distance between successive peaks or troughs) and energy content.
  • Figure 2.12: The water stored in this reservoir behind a dam in the U.S. state of Tennessee has potential energy, which becomes kinetic energy when the water flows through channels built into the dam where it spins a turbine and produces electricity—another form of kinetic energy .
  • Figure 2.14: Fossil fuels: Oil, coal, and natural gas (left, center, and right, respectively) supply most of the commercial energy that we use to supplement energy from the sun. Burning fossil fuels provides us with many benefits such as heat, electricity, air conditioning, manufacturing, and mobility. But when we burn these fuels, we automatically add carbon dioxide and various other pollutants to the atmosphere.
  • Figure 2.15: A huge amount of the sun’s energy is stored as heat in the world’s oceans. But the temperature of this widely dispersed energy is so low that we cannot use it to heat matter to a high temperature. Thus, the ocean’s stored heat is low-quality energy. Question: Why is direct solar energy a higher-quality form of energy than the ocean’s heat is?
  • Figure 2.16: Two widely used technologies waste enormous amounts of energy. In an incandescent lightbulb (right), about 95% of the electrical energy flowing into it becomes heat; just 5% becomes light. By comparison, in a compact fluorescent bulb (left) with the same brightness, about 20% of the energy input becomes light. In the internal combustion engine (right photo) found in most motor vehicles, about 87% of the chemical energy provided in its gasoline fuel flows into the environment as low-quality heat. (Data from U.S. Department of Energy and Amory Lovins; see his Guest Essay at CengageNOW. )
  • Figure 2.17: This diagram illustrates a greatly simplified model of a system. Most systems depend on inputs of matter and energy resources, and outputs of wastes, pollutants, and heat to the environment. A system can become unsustainable if the throughputs of matter and energy resources exceed the abilities of the system’s environment to provide the required resource inputs and to absorb or dilute the resulting wastes, pollutants, and heat.
  • Figure 2.18: This diagram represents a positive feedback loop . Decreasing vegetation in a valley causes increasing erosion and nutrient losses that in turn cause more vegetation to die, resulting in more erosion and nutrient losses. Question: Can you think of another positive feedback loop in nature?
  • Figure 2.19: This diagram illustrates a negative feedback loop . When a house being heated by a furnace gets to a certain temperature, its thermostat is set to turn off the furnace, and the house begins to cool instead of continuing to get warmer. When the house temperature drops below the set point, this information is fed back to turn the furnace on until the desired temperature is reached again.
  • Bio 105 Chapter 2

    1. 1. MILLER/SPOOLMANLIVING IN THE ENVIRONMENT 17TH CHAPTER 2 Science, Matter, Energy, and Systems
    2. 2. Core Case Study: A Story About a Forest• Hubbard Brook Experimental Forest in New Hampshire• Compared the loss of water and nutrients from an uncut forest (control site) with one that had been stripped (experimental site)• Stripped site: • 30-40% more runoff • More dissolved nutrients • More soil erosion
    3. 3. The Effects of Deforestation on the Loss of Water and Soil Nutrients Fig. 2-1, p. 31
    4. 4. Science Is a Search for Order in Nature (1)• Identify a problem• Find out what is known about the problem• Ask a question to be investigated• Gather data through experiments• Propose a scientific hypothesis
    5. 5. Science Is a Search for Order in Nature (2)• Make testable predictions• Keep testing and making observations• Accept or reject the hypothesis• Scientific theory: well-tested and widely accepted hypothesis
    6. 6. The Scientific Process Fig. 2-2, p. 33
    7. 7. Testing a Hypothesis Fig. 2-3, p. 33
    8. 8. Characteristics of Science…and Scientists• Curiosity• Skepticism• Reproducibility• Peer review• Openness to new ideas• Critical thinking• Creativity
    9. 9. Science Focus: Easter Island: Revisions to a Popular Environmental Story• Some revisions to a popular environmental story• Polynesians arrived about 800 years ago• Population may have reached 3000• Used trees in an unsustainable manner, but rats may have multiplied and eaten the seeds of the trees
    10. 10. Stone Statues on Easter Island Fig. 2-A, p. 35
    11. 11. Scientific Theories and Laws Are the Most Important Results of Science• Scientific theory • Widely tested • Supported by extensive evidence • Accepted by most scientists in a particular area• Scientific law, law of nature
    12. 12. The Results of Science Can Be Tentative, Reliable, or Unreliable• Tentative science, frontier science• Reliable science• Unreliable science
    13. 13. Science Has Some Limitations1. Particular hypotheses, theories, or laws have a high probability of being true while not being absolute2. Bias can be minimized by scientists3. Environmental phenomena involve interacting variables and complex interactions4. Statistical methods may be used to estimate very large or very small numbers5. Scientific process is limited to the natural world
    14. 14. Science Focus: Statistics and Probability• Statistics • Collect, organize, and interpret numerical data• Probability • The chance that something will happen or be valid • Need large enough sample size
    15. 15. Matter Consists of Elements and Compounds• Matter • Has mass and takes up space• Elements • Unique properties • Cannot be broken down chemically into other substances• Compounds • Two or more different elements bonded together in fixed proportions
    16. 16. Gold and Mercury Are Chemical Elements Fig. 2-4a, p. 38
    17. 17. Chemical Elements Used in The Book Table 2-1, p. 38
    18. 18. Atoms, Ions, and Molecules Are the Building Blocks of Matter (1)• Atomic theory • All elements are made of atoms• Subatomic particles • Protons with positive charge and neutrons with no charge in nucleus • Negatively charged electrons orbit the nucleus• Atomic number • Number of protons in nucleus• Mass number • Number of protons plus neutrons in nucleus
    19. 19. Model of a Carbon-12 Atom Fig. 2-5, p. 39
    20. 20. Atoms, Ions, and Molecules Are the Building Blocks of Matter (2)• Isotopes • Same element, different number of neutrons• Ions • Gain or lose electrons • Form ionic compounds• pH • Measure of acidity • H+ and OH-
    21. 21. Chemical Ions Used in This Book Table 2-2, p. 40
    22. 22. pH Scale Supplement 5, Figure 4
    23. 23. Loss of NO3− from a Deforested Watershed Fig. 2-6, p. 40
    24. 24. Atoms, Ions, and Molecules Are the Building Blocks of Matter (3)• Molecule • Two or more atoms of the same or different elements held together by chemical bonds• Compounds • Two or more atoms of different elements come together• Chemical formula • H20, CO2
    25. 25. Compounds Used in This Book Table 2-3, p. 40
    26. 26. Organic Compounds Are the Chemicals of Life• Organic compounds • Hydrocarbons and chlorinated hydrocarbons • Simple carbohydrates • Macromolecules: complex organic molecules • Complex carbohydrates • Proteins • Nucleic acids • Lipids• Inorganic compounds • Compounds that do not contain carbon
    27. 27. Glucose Structure Supplement 4, Fig. 4
    28. 28. Amino Acids and Proteins Supplement 4, Fig. 8
    29. 29. Nucleotide Structure in DNA and RNA Supplement 4, Fig. 9
    30. 30. DNA Double Helix Structure and Bonding Supplement 4, Fig. 10
    31. 31. Fatty Acid Structure and Trigyceride Supplement 4, Fig. 11
    32. 32. Matter Comes to Life through Genes, Chromosomes, and Cells• Cells: fundamental units of life; all organisms are composed of one or more cells• Genes • Sequences of nucleotides within DNA • Instructions for proteins • Create inheritable traits• Chromosomes: composed of many genes
    33. 33. Cells, Nuclei, Chromosomes, DNA, and Genes Fig. 2-7, p. 42
    34. 34. Some Forms of Matter Are More Useful than Others• High-quality matter • Highly concentrated • Near earth’s surface • High potential as a resource• Low-quality matter • Not highly concentrated • Deep underground or widely dispersed • Low potential as a resource
    35. 35. Examples of Differences in Matter Quality Fig. 2-8, p. 42
    36. 36. Matter Undergoes Physical, Chemical, and Nuclear Changes• Physical change • No change in chemical composition• Chemical change, chemical reaction • Change in chemical composition • Reactants and products• Nuclear change • Natural radioactive decay • Radioisotopes: unstable • Nuclear fission • Nuclear fusion
    37. 37. Types of Nuclear Changes Fig. 2-9, p. 43
    38. 38. We Cannot Create or Destroy Matter• Law of conservation of matter • Whenever matter undergoes a physical or chemical change, no atoms are created or destroyed
    39. 39. Energy Comes in Many Forms (1)• Kinetic energy • Flowing water • Wind • Heat • Transferred by radiation, conduction, or convection • Electromagnetic radiation • Energy moves in waves, X rays, UV rays• Potential energy • Stored energy • Can be changed into kinetic energy
    40. 40. Wind’s Kinetic Energy Moves This Turbine Fig. 2-10, p. 44
    41. 41. The Electromagnetic Spectrum Fig. 2-11, p. 45
    42. 42. Potential Energy Fig. 2-12, p. 45
    43. 43. Energy Comes in Many Forms (2)• Sun provides 99% of earth’s energy • Warms earth to comfortable temperature • Plant photosynthesis • Winds • Hydropower • Biomass • Fossil fuels: oil, coal, natural gas
    44. 44. Fossil fuels Fig. 2-14a, p. 46
    45. 45. Some Types of Energy Are More Useful Than Others• High-quality energy • High capacity to do work • Concentrated • High-temperature heat • Strong winds • Fossil fuels• Low-quality energy • Low capacity to do work • Dispersed
    46. 46. Ocean Heat Is Low-Quality Energy Fig. 2-15, p. 47
    47. 47. Energy Changes Are Governed by Two Scientific Laws• First Law of Thermodynamics • Law of conservation of energy • Energy is neither created nor destroyed in physical and chemical changes• Second Law of Thermodynamics • Energy always goes from a more useful to a less useful form when it changes from one form to another• Light bulbs and combustion engines are very inefficient: produce wasted heat
    48. 48. Energy-Wasting Technologies Fig. 2-16a, p. 48
    49. 49. Systems Have Inputs, Flows, and Outputs• System • Set of components that interact in a regular way • Human body, earth, the economy• Inputs from the environment• Flows, throughputs of matter and energy• Outputs to the environment
    50. 50. Inputs, Throughput, and Outputs of an Economic System Fig. 2-17, p. 48
    51. 51. Systems Respond to Change through Feedback Loops• Positive feedback loop • Causes system to change further in the same direction • Can cause major environmental problems• Negative, or corrective, feedback loop • Causes system to change in opposite direction
    52. 52. Positive Feedback Loop Fig. 2-18, p. 49
    53. 53. Negative Feedback Loop Fig. 2-19, p. 50
    54. 54. Time Delays Can Allow a System to Reach a Tipping Point• Time delays vary • Between the input of a feedback stimulus and the response to it• Tipping point, threshold level • Causes a shift in the behavior of a system • Melting of polar ice • Population growth
    55. 55. System Effects Can Be Amplified through Synergy• Synergistic interaction, synergy • Two or more processes combine in such a way that combined effect is greater than the two separate effects • Helpful • Studying with a partner • Harmful • E.g., Smoking and inhaling asbestos particles
    56. 56. Three Big Ideas1. There is no away.2. You cannot get something for nothing.3. You cannot break even.

    ×