IB Chemistry on Transition metals, complex ions, ligands and splitting of 3d orbitals
Upcoming SlideShare
Loading in...5
×
 

IB Chemistry on Transition metals, complex ions, ligands and splitting of 3d orbitals

on

  • 5,351 views

IB Chemistry on Transition metals, complex ions, ligands and splitting of 3d orbitals.

IB Chemistry on Transition metals, complex ions, ligands and splitting of 3d orbitals.

Statistics

Views

Total Views
5,351
Views on SlideShare
4,570
Embed Views
781

Actions

Likes
3
Downloads
63
Comments
0

28 Embeds 781

http://lawrencekok.blogspot.com 271
http://lawrencekok.blogspot.kr 247
http://lawrencekok.blogspot.co.uk 51
http://lawrencekok.blogspot.hk 46
http://lawrencekok.blogspot.sg 33
http://lawrencekok.blogspot.ca 26
http://lawrencekok.blogspot.in 19
http://lawrencekok.blogspot.com.au 14
http://lawrencekok.blogspot.it 13
http://lawrencekok.blogspot.be 8
http://lawrencekok.blogspot.ch 7
http://lawrencekok.blogspot.gr 5
http://lawrencekok.blogspot.de 5
http://lawrencekok.blogspot.nl 5
http://lawrencekok.blogspot.co.nz 3
http://lawrencekok.blogspot.jp 3
http://lawrencekok.blogspot.com.es 3
http://lawrencekok.blogspot.hu 3
http://lawrencekok.blogspot.pt 3
http://lawrencekok.blogspot.dk 3
http://lawrencekok.blogspot.com.br 2
http://lawrencekok.blogspot.ro 2
http://lawrencekok.blogspot.ie 2
http://lawrencekok.blogspot.se 2
http://lawrencekok.blogspot.fi 2
http://lawrencekok.blogspot.ru 1
http://lawrencekok.blogspot.cz 1
http://lawrencekok.blogspot.ae 1
More...

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

CC Attribution-NonCommercial-ShareAlike LicenseCC Attribution-NonCommercial-ShareAlike LicenseCC Attribution-NonCommercial-ShareAlike License

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

IB Chemistry on Transition metals, complex ions, ligands and splitting of 3d orbitals IB Chemistry on Transition metals, complex ions, ligands and splitting of 3d orbitals Presentation Transcript

  • Tutorial on Properties of Transition Metals,Complex ions and splitting of 3d orbitals byligands. Prepared by Lawrence Kok http://lawrencekok.blogspot.com
  • Transition Metals (d block elements)K4s1Ca4s2
  • Transition Metals (d block elements)K4s1Ca4s2 Across period Cr - 4s13d5 Cu - 4s13d10 • half filled more stable • fully filled more stable
  • Transition Metals (d block elements)K4s1Ca4s2 Across period Cr - 4s13d5 Cu - 4s13d10 • half filled more stable • fully filled more stable Transition metal have partially filled 3d orbitals •3d and 4s electrons can be lost easily • electrons filled from 4s level first then 3d level
  • Transition Metals (d block elements) K 4s1 Ca 4s2 Across period Cr - 4s13d5 Cu - 4s13d10 • half filled more stable • fully filled more stable Transition metal have partially filled 3d orbitals •3d and 4s electrons can be lost easily • electrons filled from 4s level first then 3d level • electrons lost from 4s level first then 3d level 4s 3dFilling electrons- 4s level lower, filled first Losing electrons- 4s higher, lose first
  • Transition Metals (d block elements) K 4s1 Ca 4s2 Across period Cr - 4s13d5 Cu - 4s13d10 • half filled more stable • fully filled more stable Transition metal have partially filled 3d orbitals •3d and 4s electrons can be lost easily • electrons filled from 4s level first then 3d level • electrons lost from 4s level first then 3d level 4s • 3d and 4s energy level close together (similar in energy) 3dFilling electrons- 4s level lower, filled first Losing electrons- 4s higher, lose first
  • Transition Metals (d block elements)Transition Metals• d block elements with half/partially filled d orbitals/sublevels in one or more of its oxidation states• Lose Ions Electrons formation Incomplete filled d orbitals
  • Transition Metals (d block elements) Transition Metals • d block elements with half/partially filled d orbitals/sublevels in one or more of its oxidation states • Lose Ions Electrons formation Sc3+ Zn2+ 4s03d0 Incomplete filled d orbitals 4s03d10Sc not transition elements. Zn not transition elements.•Sc → Sc3+ - (empty d orbital) •Zn → Zn2+ - (fully filled d orbital) 4s23d1 4s03d0 4s23d10 4s03d10
  • Transition Metals (d block elements) Transition Metals • d block elements with half/partially filled d orbitals/sublevels in one or more of its oxidation states • Lose Ions Electrons formation Sc3+ Zn2+ 4s03d0 Incomplete filled d orbitals 4s03d10Sc not transition elements. Zn not transition elements.•Sc → Sc3+ - (empty d orbital) •Zn → Zn2+ - (fully filled d orbital) 4s23d1 4s03d0 4s23d10 4s03d10
  • Transition Metals (d block elements) Formation coloured complexes Formation complex ions Properties of Transition metals • Formation of complex ions • Formation coloured complexes • Variable oxidation states • Catalytic activityhttp://www.dlt.ncssm.edu/tiger/chem8.htm http://www.chemguide.co.uk/inorganic/transition/features.html Catalytic activity Variable Oxidation states http://elementalolympics.wordpress.com/2011/02/28/variable-oxidation-states-and-catalysts/ http://www.sciencelearn.org.nz/Contexts/Nanoscience/ Sci-Media/Images/Catalytic-converter-catalyst
  • Transition Metals (d block elements) – Variable Oxidation States Oxidation state +2 more common on right (Co → Zn) • Harder to lose electron as Nuclear charge of Co - Zn is getting higher (NC ↑) Oxidation state +3 more common on left (Sc → Fe) • Easier to lose electron as Nuclear charge of Sc – Fe is lower (NC ↓) Oxidation state for Mn is highest +7 Higher oxidation state exist when elements bond to oxygen – oxides/oxyanions+7 (MnO4)-+6 Cr2O7 (MnO4)2- oxides oxyanion+5 V2O5+4 TiCI4 (VO2)2+ MnCI4+3 ScCI3 TiCI3 VCI3 CrCI3 MnCI3 FeCI3 chlorides+2 CrCI2 MnCI2 FeCI2 CoCI2 NiCI2 CuCI2 ZnCI2 +7 +6 +6 +5 +4 +4 +3 +3 +3 +3 +3 +3 +2 +2 +2 +2 +2 +2 +2
  • Transition Metals (d block elements) – Variable Oxidation States Oxidation state +2 more common on right (Co → Zn) • Harder to lose electron as Nuclear charge of Co - Zn is getting higher (NC ↑) Oxidation state +3 more common on left (Sc → Fe) • Easier to lose electron as Nuclear charge of Sc – Fe is lower (NC ↓) Oxidation state for Mn is highest +7 Higher oxidation state exist when elements bond to oxygen – oxides/oxyanions+7 (MnO4)-+6 Cr2O7 (MnO4)2- oxides oxyanion+5 V2O5+4 TiCI4 (VO2)2+ MnCI4+3 ScCI3 TiCI3 VCI3 CrCI3 MnCI3 FeCI3 chlorides+2 CrCI2 MnCI2 FeCI2 CoCI2 NiCI2 CuCI2 ZnCI2 +7 +6 +6 +5 +4 +4 +3 +3 +3 +3 +3 +3 +2 +2 +2 +2 +2 +2 +2 +3 oxidation state more common +2 oxidation state more common
  • Transition Metals (d block elements) – Formation Complex Ions Transition Metal ion + Ligands = Complex Ions Transition Metal ion Ligands• High charged density metal ion, partially filled 3d orbital • Neutral/anion species that donate• Attract ligand (neutral, anion with lone pair electron) lone pair/non bonding electron pair to metal ion• Form dative/co-ordinate bond – lone pair from ligands • Lewis base, lone pair donor – dative bond with metal ion • Coordination number – number of ligands around central ion [Cu(H2O)4]CI2 [Cu(H2O)4]2+ + 2CI- +2
  • Transition Metals (d block elements) – Formation Complex Ions Transition Metal ion + Ligands = Complex Ions Transition Metal ion Ligands• High charged density metal ion, partially filled 3d orbital • Neutral/anion species that donate• Attract ligand (neutral, anion with lone pair electron) lone pair/non bonding electron pair to metal ion• Form dative/co-ordinate bond – lone pair from ligands • Lewis base, lone pair donor – dative bond with metal ion • Coordination number – number of ligands around central ion [Cu(H2O)4]CI2 [Cu(H2O)4]2+ + 2CI- 2+ CI2 + 2CI- water Complex ion – [Cu(H2O)4]CI2 also written as CuCI2 Complex ion Anion • 4 water ligands attached • 4 dative bonds • Coordination number = 4 +2
  • Transition Metals (d block elements) – Formation Complex Ions Transition Metal ion + Ligands = Complex Ions Transition Metal ion Ligands• High charged density metal ion, partially filled 3d orbital • Neutral/anion species that donate• Attract ligand (neutral, anion with lone pair electron) lone pair/non bonding electron pair to metal ion• Form dative/co-ordinate bond – lone pair from ligands • Lewis base, lone pair donor – dative bond with metal ion • Coordination number – number of ligands around central ion [Cu(H2O)4]CI2 [Cu(H2O)4]2+ + 2CI- 2+ CI2 + 2CI- water Complex ion – [Cu(H2O)4]CI2 also written as CuCI2 Complex ion Anion • 4 water ligands attached • 4 dative bonds • Coordination number = 4 Drawing complex ion • Overall charged on complex ion • Metal ion in the center (+ve charged) +2 • Ligands attached • Dative bonds from ligands
  • Complex ions with different metal ions, ligands, oxidation state and overall chargedCoordination Shape Complex ion Ligand Metal ion Overall charge on number (metal + ligand) (charged) (Oxidation #) complex ion 2 linear [Cu(CI2)]- CI = -1 +1 -1 [Ag(NH3)2]+ NH3 = 0 +1 +1 [Ag(CN)2]- CN = -1 +1 -1 4 Square [Cu(CI)4]2- CI =-1 +2 -2 planar [Cu(NH3)4]2+ NH3=0 +2 +2 [Co(CI)4]2- CI=-1 +2 -2 [Ni(CI)4]2- CI=-1 +2 -2 4 Tetrahedral [Zn(NH3)4]2+ NH3 =0 +2 +2 [Mn(CI)4]2- CI=-1 +2 -2 6 Octahedral [ Cu(H2O)6] 2+ H2O =0 +2 +2 [Fe(OH)3(H2O)3] OH =-1 +3 o H2O = 0 [Fe(CN)6]3- CN =-1 +3 -3 [Cr(NH3)4CI2]+ NH3 = 0 +3 +1 CI =-1Types of ligands:• Monodentate – 1 lone pair electron donor – H2O, F-, CI-, NH3, OH-, CN-• Bidentate – 2 lone pair electron donor –1,2 diaminoethane H2NCH2CH2NH2, ethanedioate (C2O4)2-
  • Naming Complex ionsStep in naming complex ion - [Co(NH3)4CI2]+CI- Tetraamine dichloro cobalt (III) (cation part) Chloride (anion part)1. Cation part first → anion part later2. Within a complex metal – ligands named first followed by metal ion3. Name - Tetraamine dichloro cobalt (III) chloride
  • Naming Complex ionsStep in naming complex ion - [Co(NH3)4CI2]+CI- Tetraamine dichloro cobalt (III) (cation part) Chloride (anion part)1. Cation part first → anion part later2. Within a complex metal – ligands named first followed by metal ion3. Name - Tetraamine dichloro cobalt (III) chlorideStep in naming complex ion - [Cu(H2O)4]2+CI2 Tetraaqua copper (II) Chloride (cation part) (anion part)1. Cation part first → anion part later2. Within a complex metal – ligands named first followed by metal ion3. Name - Tetraaqua copper(II) chloride
  • Naming Complex ionsStep in naming complex ion - [Co(NH3)4CI2]+CI- Tetraamine dichloro cobalt (III) (cation part) Chloride (anion part)1. Cation part first → anion part later2. Within a complex metal – ligands named first followed by metal ion3. Name - Tetraamine dichloro cobalt (III) chlorideStep in naming complex ion - [Cu(H2O)4]2+CI2 Tetraaqua copper (II) Chloride (cation part) (anion part)1. Cation part first → anion part later2. Within a complex metal – ligands named first followed by metal ion3. Name - Tetraaqua copper(II) chlorideStep in naming complex ion - [Co(H2O)6]2+SO4 Sulphate Hexaaqua cobalt(II) (anion part) (cation part)1. Cation part first → anion part later2. Within a complex metal – ligands named first followed by metal ion3. Name – Hexaaqua cobalt (II) sulphateStep in naming complex ions with TWO different ligands1. Name ligand (alphabetical order)2. [Cu(NH3)4(H2O)2]2+ - tetraammine diaqua copper(II) ion. (1st ligand- ammine, 2nd ligand aqua)3. [Al(H2O)2(OH)4]- - diaqua tetrahydroxo aluminate ion. (1st ligand – aqua, 2nd ligand hydroxo)
  • Ligand displacement Stronger ligand displace weaker ligandTetrachloro copper (II) ion Tetraaqua copper (II) ion CI- displace H2O [Cu(H2O)4]2+ + 4CI → [Cu(CI)4]2-
  • Ligand displacement Stronger ligand displace weaker ligandTetrachloro copper (II) ion Tetraaqua copper (II) ion Tetraamine copper (II) ion 2+ CI- displace H2O NH3 displace H2O [Cu(H2O)4]2+ + 4CI → [Cu(CI)4]2- [Cu(H2O)4]2+ + 4NH3 → [Cu(NH3)4]2+
  • Ligand displacement Stronger ligand displace weaker ligandTetrachloro copper (II) ion Tetraaqua copper (II) ion Tetraamine copper (II) ion 2+ CI- displace H2O NH3 displace H2O [Cu(H2O)4]2+ + 4CI → [Cu(CI)4]2- [Cu(H2O)4]2+ + 4NH3 → [Cu(NH3)4]2+ Hexaaqua cobalt (II) ion Tetrachloro cobalt(II) ion CI- displace H2O [Co(H2O)6]2+ + 4CI → [Cu(CI)4]2- Tetrachloro copper (II) ion Hexaaqua iron (III) ion
  • Transition Metals (d block elements) – Coloured Complexes • Why transition metals ion complexes have different colour?Taken from: http://www.chm.bris.ac.uk/webprojects2003/rogers/998/chemlab.htm
  • Transition Metals (d block elements) – Coloured Complexes • Why transition metals ion complexes have different colour? Why Titanium (III) ion is violet ?Taken from: http://www.chm.bris.ac.uk/webprojects2003/rogers/998/chemlab.htm
  • Transition Metals (d block elements) – Coloured Complexes Colour formation due to splitting of 3d orbitals of metal ion by ligandsAbsence of ligands• 3d orbitals same energy level Five 3d orbitals• five 3d orbitals are equal in energy
  • Transition Metals (d block elements) – Coloured Complexes Colour formation due to splitting of 3d orbitals of metal ion by ligandsAbsence of ligands• 3d orbitals same energy level Five 3d orbitals• five 3d orbitals are equal in energyPresence of ligands• 3d orbitals split• five 3d orbitals unequal in energy Five 3d orbitals Splitting 3d orbitals
  • Transition Metals (d block elements) – Coloured Complexes Colour formation due to splitting of 3d orbitals of metal ion by ligands Absence of ligands • 3d orbitals same energy level Five 3d orbitals • five 3d orbitals are equal in energy Presence of ligands • 3d orbitals split • five 3d orbitals unequal in energy Five 3d orbitals Splitting 3d orbitalsWhy Titanium (III) ion solution is violet ? violet No ligands • No splitting of 3d orbitals • 3d orbitals equal energyhttp://www.chemistryland.com/CHM151W/07-Atomic%20Structure/ElectronConfig/ElectronConfiguration.html
  • Transition Metals (d block elements) – Coloured Complexes Colour formation due to splitting of 3d orbitals of metal ion by ligands Absence of ligands • 3d orbitals same energy level Five 3d orbitals • five 3d orbitals are equal in energy Presence of ligands • 3d orbitals split • five 3d orbitals unequal in energy Five 3d orbitals Splitting 3d orbitalsWhy Titanium (III) ion solution is violet ? violet No ligands With ligands • No splitting of 3d orbitals • Splitting of 3d orbitals • 3d orbitals equal energy • 3d orbitals unequal energy Splitting 3d orbitals • 3d orbitals split into different energy level • Electronic transition possible • Photon of light absorbed to excite electronshttp://www.chemistryland.com/CHM151W/07-Atomic%20Structure/ElectronConfig/ElectronConfiguration.html
  • Transition Metals (d block elements) – Coloured ComplexesWhy Titanium (III) ion solution is violet ? Ti3+ transmit blue/violet region BUT absorb green/yellow/red
  • Transition Metals (d block elements) – Coloured ComplexesWhy Titanium (III) ion solution is violet ? Ti3+ transmit blue/violet region BUT absorb green/yellow/red Light in vis region Ti3+ transmit Electron excited blue/violet region Ground state Ti3+ (3d1) Ti3+ absorb green/yellow/red photons to excite electrons to higher level
  • Transition Metals (d block elements) – Coloured ComplexesWhy Copper (II) ion solution is blue ? Cu2+ transmit blue/violet BUT absorb /orange/red region
  • Transition Metals (d block elements) – Coloured ComplexesWhy Copper (II) ion solution is blue ? Cu2+ transmit blue/violet BUT absorb /orange/red region Light in vis region Cu2+ transmit Electron excited blue/violet region Ground state Cu2+ (3d9) Cu2+ absorb orange/red photons to excite electrons to higher levelCu2+ appears blue• Complementary colour (Red/Orange) are absorbed to excite electron• Blue colour is transmitted
  • Transition Metals (d block elements) – Coloured ComplexesTransition metal have different colours due to• splitting of 3d orbitals by ligands• partially filled 3d orbitals for electron transitionWhy some are colourless ?Cu2+ anhydrous – colourlessCu1+ hydrous – colourlessZn2+ hydrous – colourlessSc3+ hydrous – colourless
  • Transition Metals (d block elements) – Coloured ComplexesTransition metal have different colours due to• splitting of 3d orbitals by ligands• partially filled 3d orbitals for electron transitionWhy some are colourless ?Cu2+ anhydrous – colourlessCu1+ hydrous – colourlessZn2+ hydrous – colourlessSc3+ hydrous – colourless CuSO4 (anhydrous) without ligands - Colourless NO Colour No ligands No splitting of 3d orbitals No electron transition No colour
  • Transition Metals (d block elements) – Coloured ComplexesTransition metal have different colours due to• splitting of 3d orbitals by ligands• partially filled 3d orbitals for electron transitionWhy some are colourless ?Cu2+ anhydrous – colourlessCu1+ hydrous – colourlessZn2+ hydrous – colourlessSc3+ hydrous – colourless CuSO4 (anhydrous) without ligands - Colourless NO Colour No ligands No splitting of 3d orbitals No electron transition No colour CuSO4 (hydrous) with H2O ligands – Blue Colour Colour Ground state Cu2+ (3d9) Electron transition from lower to higher level by Ligands split the 3d orbitals absorbing ∆E [Cu(H2O)6]2+ SO4 – splitting 3d orbitals by ligand – Blue colour
  • Transition Metals (d block elements) – Coloured Complexes Sc 3+ ion with ligands - Colourless[Sc(H2O)6]3+ CI3• Empty 3d orbitals NO Colour• No colour No electrons in 3d orbital No electron transition Ground state Sc3+ (3d0) Ligands split the 3d orbitals
  • Transition Metals (d block elements) – Coloured Complexes Sc 3+ ion with ligands - Colourless[Sc(H2O)6]3+ CI3• Empty 3d orbitals NO Colour• No colour No electrons in 3d orbital No electron transition Ground state Sc3+ (3d0) Ligands split the 3d orbitals [Zn(H2O)6]2+ SO4 Zn2+ ion with ligands - Colourless • Filled 3d orbitals • No colour NO Colour Fully filled in 3d orbital No electron transition Ground state Zn2+ (3d10) Ligands split the 3d orbitals
  • Transition Metals (d block elements) – Coloured Complexes[Cu(H2O)6]1+ CI Cu1+ ion with H2O ligands - Colourless• Filled 3d orbitals• No colour NO Colour Fully filled in 3d orbital No electron transition Ground state Cu2+ (3d10) Ligands split the 3d orbitals
  • Transition Metals (d block elements) – Coloured Complexes[Cu(H2O)6]1+ CI Cu1+ ion with H2O ligands - Colourless• Filled 3d orbitals• No colour NO Colour Fully filled in 3d orbital No electron transition Ground state Cu2+ (3d10) Ligands split the 3d orbitals Cu2+ ion without H2O ligands – Colourless NO Colour No ligands No splitting of 3d orbitals No electron transition No colour
  • Transition Metals (d block elements) – Coloured Complexes[Cu(H2O)6]1+ CI Cu1+ ion with H2O ligands - Colourless• Filled 3d orbitals• No colour NO Colour Fully filled in 3d orbital No electron transition Ground state Cu2+ (3d10) Ligands split the 3d orbitals Cu2+ ion without H2O ligands – Colourless NO Colour No ligands No splitting of 3d orbitals No electron transition No colour Cu2+ ion with H2O ligands – Blue Colour Colour Ground state Cu2+ (3d9) Electron transition from lower to higher level by absorbing ∆E Ligands split the 3d orbitals [Cu(H2O)6]2+ SO4 – splitting 3d orbitals by ligand – Blue colour
  • Transition Metals (d block elements) – Catalytic Activity Catalytic Properties of Transition metal • Variable oxidation state - lose and gain electron easily • Acts as Homogeneous or Heterogenous catalyst – lower activation energy • Homogeneous catalyst – catalyst and reactants are in the same phase • Heterogeneous catalyst – catalyst and reactants are in different phase • Heterogenous catalyst- Metal surface provide active site (lower Ea ) • Surface catalyst bring molecule together (close contact) -bond breaking/making easier Transition metal work as a catalyst with diff oxidation states 2 H2O2 + Fe2+ → 2H2O + O2 + Fe3+ H2O2 + Fe2+ → H2O + O2 + Fe3+ Fe3+ + I - → Fe2+ + I2 Fe2+ ↔ Fe3+ recycle 3+ Reaction is slow if only I- is added H2O2 + I- → I2 + H2O + O2 Reaction speeds up if Fe2+/Fe3+ added Fe2+ changes to Fe3+ and is change back to Fe2+ againhttp://comp.chem.umn.edu/itccd/Catalytics.html http://gcserevision101.wordpress.com/chemistry-c3/
  • Uses of transition metal as catalyst in industrial processes • Haber Process – Production of ammonia for fertilisers and agriculture 3H2 + N2 → 2NH3 • Contact Process – Sulphuric acid for fertilisers, detergent, paints and batteries 2SO2 + O2 → 2SO3 • Hydrogenation Process- Margerine and trans fats C2H4 H2 → C2H6 • Hydrogen peroxide decomposition – Oxygen production 2H2O2→ 2H2O + O2 • Catalytic converter – Convertion of CO and NO to CO2 and N2 2CO + 2NO → 2CO2 + N2 Biological enzymes Hemoglobin – transport oxygen Vitamin B12 – RBC productionhttp://www.bbc.co.uk/schools/gcsebitesize/science/add_aqa_pre_2011/chemreac/energychangesrev3.shtmlhttp://www.automotivecatalysts.umicore.com/en/autoCatsWebProduct/autoCatsWebGasolineCatalyts/
  • Uses of transition metal as catalyst in industrial processes • Haber Process – Production of ammonia for fertilisers and agriculture 3H2 + N2 → 2NH3 Iron , Fe • Contact Process – Sulphuric acid for fertilisers, detergent, paints and batteries 2SO2 + O2 → 2SO3 Vanadium (V) oxide, V2O5 • Hydrogenation Process- Margerine and trans fats C2H4 H2 → C2H6 Nickel, Ni • Hydrogen peroxide decomposition – Oxygen production 2H2O2→ 2H2O + O2 Manganese (IV) oxide, MnO2 • Catalytic converter – Convertion of CO and NO to CO2 and N2 2CO + 2NO → 2CO2 + N2 Platinum/Palladium, Pt/Pd Biological enzymes Hemoglobin – transport oxygen Iron , Fe Vitamin B12 – RBC production Cobalt, Cohttp://www.bbc.co.uk/schools/gcsebitesize/science/add_aqa_pre_2011/chemreac/energychangesrev3.shtmlhttp://www.automotivecatalysts.umicore.com/en/autoCatsWebProduct/autoCatsWebGasolineCatalyts/
  • Video on transition metalClick here to view nickel ion complexes Click here to view vanadium ion complexes Click here to view iron in hemoglobin Click here to view oxidation states
  • AcknowledgementsThanks to source of pictures and video used in this presentationThanks to Creative Commons for excellent contribution on licenseshttp://creativecommons.org/licenses/Prepared by Lawrence KokCheck out more video tutorials from my site and hope you enjoy this tutorialhttp://lawrencekok.blogspot.com