IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

on

  • 904 views

IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Statistics

Views

Total Views
904
Views on SlideShare
483
Embed Views
421

Actions

Likes
0
Downloads
47
Comments
0

33 Embeds 421

http://lawrencekok.blogspot.com 145
http://lawrencekok.blogspot.kr 58
http://lawrencekok.blogspot.co.uk 33
http://lawrencekok.blogspot.hk 27
http://lawrencekok.blogspot.in 23
http://lawrencekok.blogspot.ca 21
http://lawrencekok.blogspot.ae 20
http://lawrencekok.blogspot.sg 18
http://lawrencekok.blogspot.com.au 12
http://lawrencekok.blogspot.fi 12
http://lawrencekok.blogspot.jp 8
http://lawrencekok.blogspot.gr 5
http://lawrencekok.blogspot.ch 5
http://lawrencekok.blogspot.co.nz 5
http://lawrencekok.blogspot.fr 3
http://lawrencekok.blogspot.se 3
http://lawrencekok.blogspot.it 2
http://www.lawrencekok.blogspot.com 2
http://lawrencekok.blogspot.de 2
http://lawrencekok.blogspot.hu 2
http://www.blogger.com 2
http://lawrencekok.blogspot.mx 2
http://lawrencekok.blogspot.ru 1
http://lawrencekok.blogspot.com.es 1
http://lawrencekok.blogspot.com&_=1389667293490 HTTP 1
http://lawrencekok.blogspot.com&_=1389057800933 HTTP 1
http://lawrencekok.blogspot.com&_=1388981934711 HTTP 1
http://lawrencekok.blogspot.com&_=1388807221327 HTTP 1
http://lawrencekok.blogspot.co.il 1
http://lawrencekok.blogspot.com&_=1387858331181 HTTP 1
http://www.lawrencekok.blogspot.ca 1
http://lawrencekok.blogspot.dk 1
http://lawrencekok.blogspot.tw 1
More...

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

CC Attribution-NonCommercial-ShareAlike LicenseCC Attribution-NonCommercial-ShareAlike LicenseCC Attribution-NonCommercial-ShareAlike License

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL. Presentation Transcript

  • 1. Tutorial on Mass Spectrometry, Isotopes Identification and Option A for SL/HL. Prepared by Lawrence Kok http://lawrencekok.blogspot.com
  • 2. Relative Atomic Mass Isotopes are present Why RAM is not a whole number? 12 Relative Abundance 98.9% 13 1.07% RAM = 12.01 Weighted average mass- due to presence of isotopes Relative Isotopic Mass, (Ar) of an element: •Relative isotopic mass = Average mass of one atom of element 1/12 x mass of one carbon-12 • Relative isotopic mass, carbon = 12.01 Relative Isotopic Mass: = (Mass 12C x % Abundance) + (Mass 13C x % Abundance) = (12 x 98.9/100) + (13 x 1.07/100) = 12.01
  • 3. Relative Atomic Mass Isotopes are present Why RAM is not a whole number? 12 Relative Abundance 98.9% 13 1.07% RAM = 12.01 Weighted average mass- due to presence of isotopes Relative Isotopic Mass, (Ar) of an element: •Relative isotopic mass = Average mass of one atom of element 1/12 x mass of one carbon-12 • Relative isotopic mass, carbon = 12.01 Relative Isotopic Mass: = (Mass 12C x % Abundance) + (Mass 13C x % Abundance) = (12 x 98.9/100) + (13 x 1.07/100) = 12.01 Video on Isotopes Video on weighted average Video on Isotopes http://www.tutorvista.com/content/science/science-i/atoms-molecules/atom.php RAM calculation Weighted average calculation
  • 4. Relative Isotopic Mass Mg - 3 Isotopes Relative Abundance % Abundance Convert relative abundance to % abundance Mg – (100/127.2) x 100% - 78.6% Mg – (12.8/127.2) x 100% - 10.0% 26 Mg – (14.4/127.2) x 100% - 11.3% 24 25 Relative Isotopic Mass: = (Mass 24Mg x % Abundance) + (Mass 25Mg x % Abundance) + (Mass 26Mg x % Abundance) = (24 x 78.6/100) + (25 x 10.0/100) + (26 x 11.3/100) = 24.30
  • 5. Relative Isotopic Mass Mg - 3 Isotopes Relative Abundance % Abundance Convert relative abundance to % abundance Mg – (100/127.2) x 100% - 78.6% Mg – (12.8/127.2) x 100% - 10.0% 26 Mg – (14.4/127.2) x 100% - 11.3% 24 25 Relative Isotopic Mass: = (Mass 24Mg x % Abundance) + (Mass 25Mg x % Abundance) + (Mass 26Mg x % Abundance) = (24 x 78.6/100) + (25 x 10.0/100) + (26 x 11.3/100) = 24.30 Pb - 4 Isotopes Relative Abundance % Abundance Convert relative abundance to % abundance Pb – (0.2/10) x 100% - 2% Pb – (2.4/10) x 100% - 24% 207 Pb – (2.2/10) x 100% - 22% 208 Pb – (5.2/10) x 100% - 52% 204 206 Relative Isotopic Mass = (Mass 204Pb x % Abundance) + (Mass 206Pb x % Abundance) + (Mass 207Pb x % Abundance) + (Mass 208Pb x % Abundance) = (204 x 2/100) + (206 x 24/100) + (207 x 22/100) + (208 x 52/100) = 207.20
  • 6. Isotopes Unstable Isotopes Emit radiation form unstable isotope Unstable Isotopes – emits radiation  RADIOISOTOPES Stable Isotopes
  • 7. Isotopes Unstable Isotopes Stable Isotopes Emit radiation form unstable isotope Unstable Isotopes – emits radiation  RADIOISOTOPES Half-life Radioisotopes •Half-life – time taken for conc/amt isotope to fall to half of its original value. •Half life decay – always constant Radioactive isotopes Uranium 238 4.5 x 109 Carbon-14 5.7 x 103 Radium-226 1.6 x 103 Strontium-90 28 years Iodine-131 8.1 days Bismuth-214 19.7 minutes Polonium-214 www.sciencelearn.org.nz Half-life 1.5 x 10-4 Long half-life More stable, decay slowly Shorter half-life More unstable, decay fast
  • 8. Isotopes Unstable Isotopes Stable Isotopes Simulation isotope 1H, 2H, 3H Simulation isotope 12C, 13C, 14C Emit radiation form unstable isotope Simulation half life C-14/uranuim Unstable Isotopes – emits radiation  RADIOISOTOPES Half-life Radioisotopes •Half-life – time taken for conc/amt isotope to fall to half of its original value. •Half life decay – always constant Radioactive isotopes Uranium 238 4.5 x 109 Carbon-14 5.7 x 103 Radium-226 1.6 x 103 Strontium-90 28 years Iodine-131 8.1 days Bismuth-214 19.7 minutes Polonium-214 www.sciencelearn.org.nz Half-life 1.5 x 10-4 Long half-life More stable, decay slowly Video on Half life Shorter half-life More unstable, decay fast
  • 9. Radiocarbon/carbon dating Carbon -14 Abundance – trace amt (Unstable , radioactive) • Half life C-14 = 5730 years • Beta (β/electron ) decay How is form? • C-14 produce in stratosphere when….. neutron hit a nitrogen atom to form C-14 •C-14 to N-14 by converting neutron  proton (proton stay in nucleus), electron emit as β radiation • number) emit as β ray. (proton in nucleus – increase proton emit as β ray. •Ratio C14/C12- constant if alive – TAKE in C14 (C12 constant) •Ratio C14/C12- drop if dead - NOT taking C14. (C12 constant)
  • 10. How Radiocarbon dating works? Radiocarbon/carbon dating Carbon -14 Abundance – trace amt (Unstable , radioactive) • Half life C-14 = 5730 years • Beta (β/electron ) decay Simulation C-14 (Half life) At 100% (Starting) Simulation C-14 (Half life) At 50% (Starting) How is form? • C-14 produce in stratosphere when….. neutron hit a nitrogen atom to form C-14 •C-14 to N-14 by converting neutron  proton (proton stay in nucleus), electron emit as β radiation • number) emit as β ray. (proton in nucleus – increase proton emit as β ray. Click to view simulation •Ratio C14/C12- constant if alive – TAKE in C14 (C12 constant) •Ratio C14/C12- drop if dead - NOT taking C14. (C12 constant)
  • 11. How Radiocarbon dating works? Radiocarbon/carbon dating Carbon -14 Abundance – trace amt (Unstable , radioactive) • Half life C-14 = 5730 years • Beta (β/electron ) decay Simulation C-14 (Half life) At 100% (Starting) Simulation C-14 (Half life) At 50% (Starting) How is form? • C-14 produce in stratosphere when….. neutron hit a nitrogen atom to form C-14 •C-14 to N-14 by converting neutron  proton (proton stay in nucleus), electron emit as β radiation • number) emit as β ray. (proton in nucleus – increase proton emit as β ray. Click to view simulation •Ratio C14/C12- constant if alive – TAKE in C14 (C12 constant) •Ratio C14/C12- drop if dead - NOT taking C14. (C12 constant) Video on Radiocarbon dating Video on C-14 Carbon Dating Video on C-14 Carbon Dating/Fossil Video on C-14 Half life Carbon Dating
  • 12. Carbon – 3 Isotopes Carbon -12 Abundance – 99% (Stable) Carbon -13 Abundance – 1% (Stable) Radiocarbon/carbon dating Carbon -14 Abundance – trace amt (Unstable , radioactive) • Half life C-14 = 5730 years • Beta (β/electron ) decay
  • 13. Carbon – 3 Isotopes Carbon -12 Abundance – 99% (Stable) Carbon -13 Radiocarbon/carbon dating Carbon -14 Abundance – 1% (Stable) Abundance – trace amt (Unstable , radioactive) • Half life C-14 = 5730 years • Beta (β/electron ) decay How is form? • C-14 produce in stratosphere when….. neutron hit a nitrogen atom to form C-14 •C-14 to N-14 by converting neutron  proton (proton stay in nucleus), electron emit as β radiation • emit as β ray. (proton in nucleus – increase proton number) emit as β ray. •Ratio C14/C12- constant if alive – TAKE in C14 (C12 constant) •Ratio C14/C12- drop if dead - NOT taking C14. (C12 constant) Uses •Age dead organic material/fossil contain Carbon element •Max age limit is 60,000 years old. Conclusion Ratio C14/C12 is constant is organism alive Ratio C14/C12 drop  organism die
  • 14. Carbon – 3 Isotopes Carbon -12 Carbon -13 Abundance – 99% (Stable) Radiocarbon/carbon dating Carbon -14 Abundance – 1% (Stable) Abundance – trace amt (Unstable , radioactive) How it is form? • Half life C-14 = 5730 years • Beta (β/electron ) decay How is form? • C-14 produce in stratosphere when….. neutron hit a nitrogen atom to form C-14 •C-14 to N-14 by converting neutron  proton (proton stay in nucleus), electron emit as β radiation • emit as β ray. (proton in nucleus – increase proton number) emit as β ray. •Ratio C14/C12- constant if alive – TAKE in C14 (C12 constant) •Ratio C14/C12- drop if dead - NOT taking C14. (C12 constant) Uses •Age dead organic material/fossil contain Carbon element •Max age limit is 60,000 years old. Conclusion Ratio C14/C12 is constant is organism alive Ratio C14/C12 drop  organism die
  • 15. Mass Spectrometer Uses mass spectrometer Relative atomic mass of an element Relative Molecular mass of a molecule CO2
  • 16. Mass Spectrometer Uses mass spectrometer Relative atomic mass of an element Relative Molecular mass of a molecule CO2 Presence of isotopes and its abundance
  • 17. Mass Spectrometer Uses mass spectrometer Relative atomic mass of an element Relative Molecular mass of a molecule Presence of isotopes and its abundance CO2 Organic structure determination Distinguish between structural isomers CH3CH2CH2OH Structure of organic compound OH | CH3CHCH3 CH3 | CH3C-CH3 | CH3 structural formula
  • 18. Mass Spectrometer Parts of Mass Spectrometer 1 Vaporization 2 Ionization Sample injection 3 Accelerator 4 Deflector 5 Detector
  • 19. Mass Spectrometer Parts of Mass Spectrometer 1 2 Vaporization 3 Ionization Accelerator 4 5 Deflector Detector Sample injection 5 Detector 1 • Convert abundance of M+ ions to electrical current. • M+ ions neutralize by electrons (more  e needed -  higher current –  higher intensity of peak) • Intensity of peak show -relative abundance of ions Vaporization Chamber • Sample heat to vapour state 2 Ionization Chamber • Molecule bombard with electrons form positive ions Accelerator Chamber • M+ ions accelerated by Electric field 4 Deflector • M+ ions deflected by magnetic field
  • 20. Mass Spectrometer Parts of Mass Spectrometer 1 2 Vaporization 3 Ionization Accelerator 4 5 Deflector Detector Sample injection 5 Detector 1 • Convert abundance of M+ ions to electrical current. • M+ ions neutralize by electrons (more  e needed -  higher current –  higher intensity of peak) • Intensity of peak show -relative abundance of ions Vaporization Chamber • Sample heat to vapour state 2 Ionization Chamber • Molecule bombard with electrons form positive ions 3 Accelerator Chamber • M+ ions accelerated by Electric field 4 Deflector • M+ ions deflected by magnetic field Sample X bombarded by electron • Form positive M+ ion • Accelerated (Electric Field) • Deflected (Magnetic Field) and Detected X + e- → X+ + 2e- Click here notes from chemguide Detail notes from chem msu
  • 21. Mass Spectrometer Parts of Mass Spectrometer 1 Vaporization 2 Ionization 3 Accelerator Click here for simulation 4 Deflector 5 Detector
  • 22. Mass Spectrometer Parts of Mass Spectrometer 1 1 Vaporization 2 3 Ionization Vaporization Injection/ vaporization of sample liquid state  gaseous Click here for simulation 2 Ionization •Form radical cations, M+ 3 Acceleration • M+ ions accelerated by Electric field Accelerator 4 Deflection • M+ ion deflected by magnetic field 4 5 Deflector 5 Detector Detector • Convert abundance of M+ ions to electrical current. • M+ ion neutralize by electrons (more  e needed -  higher current –  higher intensity of peak) • Intensity of peak show -relative abundance of ions
  • 23. Mass Spectrometer Parts of Mass Spectrometer 1 1 Vaporization 2 3 Ionization Vaporization Injection/ vaporization of sample liquid state  gaseous Accelerator Click here for simulation 4 5 Deflector 5 Detector Detector • Convert abundance of M+ ions to electrical current. • M+ ion neutralize by electrons (more  e needed -  higher current –  higher intensity of peak) • Intensity of peak show -relative abundance of ions 2 Ionization •Form radical cations, M+ Deflection depend: •mass/charge (m/z) ratio: (m/z) ratio HIGH↑ - Deflection LOW↓ 37 CI+ 35 CI+ CI2+ 35 3 Acceleration • M+ ions accelerated by Electric field 4 Deflection • M+ ion deflected by magnetic field Deflection depend: • mass/charge (m/z) ratio: (m/z) ratio LOW↓- Deflection HIGH ↑
  • 24. Mass Spectra Online Database Excellent Online Spectra Database. Click here to view 1 Search methane molecule, CH4 2 Fragmentation pattern CH4 3 Mass Spectrum CH4 Mass/charge m/z Relative abundance Molecular ion peak, M+ Isotopic peak M+ + 1
  • 25. Mass Spectra Online Database Excellent Online Spectra Database. Click here to view 1 Search methane molecule, CH4 2 Fragmentation pattern CH4 3 Mass Spectrum CH4 Mass/charge m/z Relative abundance Molecular ion peak, M+ Isotopic peak M+ + 1 Video on mass spectrometer Video Ionization/fragmentation Video how MS works Video how MS works Video Mass spectrometer
  • 26. Using Mass spectrometry to determine Relative Isotopic Mass Mg - 3 Isotopes Mg - 11.3% - m/z highest – deflect LEAST Mg - 10.0% 24 Mg – 78.6% - m/z lowest – deflect MOST 26 25 Relative Isotopic Mass: = (24Mg x % Ab) + (25Mg x % Ab) + (26Mg x % Ab) = (24 x 78.6/100) + (25 x 10.0/100) + (26 x 11.3/100) = 24.30 Deflect MOST Deflect LEAST
  • 27. Using Mass spectrometry to determine Relative Isotopic Mass Mg - 3 Isotopes Mg - 11.3% - m/z highest – deflect LEAST Mg - 10.0% 24 Mg – 78.6% - m/z lowest – deflect MOST 26 25 Relative Isotopic Mass: = (24Mg x % Ab) + (25Mg x % Ab) + (26Mg x % Ab) = (24 x 78.6/100) + (25 x 10.0/100) + (26 x 11.3/100) = 24.30 Deflect MOST Deflect LEAST Pb - 4 Isotopes Pb – 52% - m/z highest – deflect LEAST Pb - 22% 206 Pb - 24% 204 Pb – 2% - m/z lowest – deflect MOST 208 207 Relative Isotopic Mass = (204Pb x % Ab) + (206Pb x % Ab) + (207Pb x % Ab) + (208Pb x % Ab) = (204 x 2/100) + (206 x 24/100) + (207 x 22/100) + (208 x 52/100) = 207.20 Deflect MOST Deflect LEAST
  • 28. Using Mass spectrometry to determine Relative Isotopic Mass CI - 2 Isotopes 35 37 35 Relative Isotopic Mass: = (35CI x % Ab) + (37CI x % Ab) = (35 x 75.5/100) + (37 x 24.5/100) = 35.5 35 CI Deflect MOST CI 37 CI CI – 24.5% - m/z highest – deflect LEAST CI – 75.5% - m/z lowest – deflect MOST CI 37 Deflect LEAST
  • 29. Using Mass spectrometry to determine Relative Isotopic Mass CI - 2 Isotopes 35 37 35 Relative Isotopic Mass: = (35CI x % Ab) + (37CI x % Ab) = (35 x 75.5/100) + (37 x 24.5/100) = 35.5 35 CI CI 37 CI CI – 24.5% - m/z highest – deflect LEAST CI – 75.5% - m/z lowest – deflect MOST CI 37 Deflect MOST Deflect LEAST Br - 2 Isotopes 79 Br 81 Br Br – 49.3% - m/z highest – deflect LEAST Br – 50.6% - m/z lowest – deflect MOST 81 79 Relative Isotopic Mass: = (79Br x % Ab) + (81Br x % Ab) = (79 x 50.6/100) + (81 x 49.3/100) = 79.9 79 Br 81 Br Deflect MOST Deflect LEAST
  • 30. Using Mass spectrometry to determine Relative Isotopic Mass H - 3 Isotopes H 1 2 H H 3 H – trace amt H – 0.015% - m/z highest – deflect LEAST 1 H – 99.9% - m/z lowest – deflect MOST 3 2 Relative Isotopic Mass: = (1H x % Ab) + (2H x % Ab) = (1 x 99.9/100) + (2 x 0.015/100) = 1.007 1 H 2 H Deflect MOST Deflect LEAST
  • 31. Using Mass spectrometry to determine Relative Isotopic Mass H - 3 Isotopes H 1 2 H H 3 H – trace amt H – 0.015% - m/z highest – deflect LEAST 1 H – 99.9% - m/z lowest – deflect MOST 3 2 Relative Isotopic Mass: = (1H x % Ab) + (2H x % Ab) = (1 x 99.9/100) + (2 x 0.015/100) = 1.007 1 H 2 H Deflect MOST Deflect LEAST C - 3 Isotopes 12 C C 13 14 C C- trace amt C – 1.1% - m/z highest – deflect LEAST 12 C – 98.9% - m/z lowest – deflect MOST 14 13 Relative Isotopic Mass: = (12C x % Ab) + (813Cx % Ab) = (12 x 98.9/100) + (13 x 1.1/100) = 12.01 12 C Deflect MOST 13 C Deflect LEAST
  • 32. Ionization and Fragmentation Process- CH3CH2CH2CH3 Ionization Process - CH3CH2CH2CH3 • Bombarded by electron form cation • Molecular ion, M+ = 58 • (CH3CH2CH2CH3)+ = 58 Ionization M+, m/z = 58 CH3CH2CH2CH3 + e → CH3CH2CH2CH3+ + 2e H H | | CH3CH2CH2 C:H + e → CH3CH2CH2 C+.H + 2e m/z = 58 | | H H
  • 33. Ionization and Fragmentation Process- CH3CH2CH2CH3 Fragmentation Process CH3CH2CH2CH3 • Molecular ion, M+ undergo fragmentation • Cation and Radical form • Cation - Detected • Radical –Not detected (No charged) Ionization Process - CH3CH2CH2CH3 • Bombarded by electron form cation • Molecular ion, M+ = 58 • (CH3CH2CH2CH3)+ = 58 Ionization M+, m/z = 58 Ionization and Fragmentation of M+ • Form - m/z = 58, 43 and 15 Ionization and Fragmentation of M+ • Form- m/z = 58 and 29 CH3CH2CH2CH3 + e → CH3CH2CH2CH3+ + 2e H H | | CH3CH2CH2 C:H + e → CH3CH2CH2 C+.H + 2e m/z = 58 | | H H Ionization forming M+ CH3CH2CH2 : CH3 + e → CH3CH2CH2+.CH3 + 2e m/z = 58 • Fragmentation of M producing 43 CH3CH2CH2+·CH3 → CH3CH2CH2+ + ·CH3 + m/z = 43 • Fragmentation of M producing 15 CH3CH2CH2+·CH3 → CH3CH2CH2· + +CH3 + m/z = 15 Ionization forming M+ CH3CH2:CH2CH3 + e → CH3CH2+·CH2CH3 + 2e m/z = 58 • Fragmentation of M producing 29 CH3CH2+·CH2CH3 → CH3CH2+ + .CH2CH3 + m/z = 29
  • 34. Ionization and Fragmentation Process- CH3CH2CH2CH3 Fragmentation Process CH3CH2CH2CH3 • Molecular ion, M+ undergo fragmentation • Cation and Radical form • Cation - Detected • Radical –Not detected (No charged) Ionization Process - CH3CH2CH2CH3 • Bombarded by electron form cation • Molecular ion, M+ = 58 • (CH3CH2CH2CH3)+ = 58 Ionization M+, m/z = 58 Ionization and Fragmentation of M+ • Form - m/z = 58, 43 and 15 Ionization and Fragmentation of M+ • Form- m/z = 58 and 29 CH3CH2CH2CH3 + e → CH3CH2CH2CH3+ + 2e H H | | CH3CH2CH2 C:H + e → CH3CH2CH2 C+.H + 2e m/z = 58 | | H H Ionization forming M+ CH3CH2CH2 : CH3 + e → CH3CH2CH2+.CH3 + 2e m/z = 58 • Fragmentation of M producing 43 CH3CH2CH2+·CH3 → CH3CH2CH2+ + ·CH3 + m/z = 43 • Fragmentation of M producing 15 CH3CH2CH2+·CH3 → CH3CH2CH2· + +CH3 + m/z = 15 Ionization and Fragmentation Positively charged Unpair electron Will MOVE (ACCELARATED) NOT move Ionization forming M+ CH3CH2:CH2CH3 + e → CH3CH2+·CH2CH3 + 2e m/z = 58 • Fragmentation of M producing 29 CH3CH2+·CH2CH3 → CH3CH2+ + .CH2CH3 + m/z = 29
  • 35. Mass spectrometry - Ionization/ Fragmentation pattern for CH 3CH2CH2CH3 CH3CH2CH2CH3 ionization Fra g me nta tion CH3CH2CH2CH3+ CH3CH2CH2+ CH3+ CH3CH2+ CH3CH2CH2CH3+- 58 - m/z highest –deflect LEAST CH3CH2CH2+ – 43 CH3CH2+ – 29 CH3+ –15 - m/z lowest– deflect MOST CH3+ Deflect MOST CH3CH2CH2CH3+ Deflect LEAST
  • 36. Mass spectrometry - Ionization/ Fragmentation pattern for CH 3CH2CH2CH3 CH3CH2CH2CH3 ionization Fra g me nta tion CH3CH2CH2CH3+ CH3CH2CH2+ CH3+ CH3CH2+ CH3CH2CH2CH3+- 58 - m/z highest –deflect LEAST CH3CH2CH2+ – 43 CH3CH2+ – 29 CH3+ –15 - m/z lowest– deflect MOST CH3+ Ionization and Fragmentation Process CH3CH2CH2CH3 Ionization Ionization of CH3CH2CH2CH3 CH3CH2CH2CH3 + e → CH3CH2CH2CH3+ + 2e → 58 or CH3CH2:CH2CH3 + e → CH3CH2+·CH2CH3 + 2e → 58 CH3CH2CH2CH3+ Deflect MOST Fragmentation Mass spectrum CH3CH2CH2CH3 Fragmentation of M+ CH3CH2CH2+·CH3 → CH3CH2CH2+ - 43 CH3CH2+·CH2CH3 → CH3CH2+ CH3CH2CH2+·CH3 → +CH3 Deflect LEAST – 29 - 15 CH3CH2CH2CH3+- 58 - m/z highest –deflect LEAST CH3CH2CH2+ – 43 CH3CH2+ – 29 CH3+ –15 - m/z lowest– deflect MOST
  • 37. Mass spectrometry - Ionization/ Fragmentation pattern for CH3CH2CH2OH CH3CH2CH2OH Fra g ionization me nta tion CH3CH2CH2OH+ CH2CH2OH+ CH3CH2+ CH2OH+ CH3 + CH3CH2CH2OH+- 60 - m/z highest –deflect LEAST CH2CH2OH+ – 45 CH2OH+ - 31 CH3CH2+ – 29 CH3+ –15 - m/z lowest– deflect MOST 15 CH3+ Deflect MOST 60 CH3CH2CH2OH+ Deflect LEAST
  • 38. Mass spectrometry - Ionization/ Fragmentation pattern for CH3CH2CH2OH CH3CH2CH2OH Fra g ionization me nta tion CH3CH2CH2OH+ CH2CH2OH+ CH3CH2+ CH2OH+ CH3 + CH3CH2CH2OH+- 60 - m/z highest –deflect LEAST CH2CH2OH+ – 45 CH2OH+ - 31 CH3CH2+ – 29 CH3+ –15 - m/z lowest– deflect MOST 15 CH3+ Deflect MOST Ionization and Fragmentation Process CH3CH2CH2OH Ionization Ionization of CH3CH2CH2OH CH3CH2CH2OH + e → CH3CH2CH2OH+ + 2e → 60 or CH3CH2CH2OH + e → CH3CH2+. CH2OH + 2e → 60 Fragmentation 60 CH3CH2CH2OH+ Deflect LEAST Mass spectrum CH3CH2CH2CH3 Fragmentation of M+ CH3 .CH2CH2OH→ +CH2CH2OH - 45 + CH3CH2+·CH2OH→ +CH2OH – 31 CH3CH2+·CH2OH→ CH3CH2+ – 29 CH3+.CH2CH2OH→ +CH3 CH3CH2CH2OH+- 60 - m/z highest – deflect LEAST CH2CH2OH+ – 45 CH2OH+ - 31 CH3CH2+ – 29 CH3+ –15 - m/z lowest– deflect MOST - 15 15 60
  • 39. Mass spectrometry - Ionization/ Fragmentation pattern CH3CH(CH3)CH2CH3 Ionization CH3CH(CH3)CH2CH3+ Fra g me nta tion CH3CH(CH3)CH2CH3+ CH3CH(CH3)CH2+ CH3CH2+ CH3CH(CH3)+ CH3+ CH3CH(CH3)CH2CH3+- 72 - m/z highest –deflect LEAST CH3CH(CH3)CH2+ – 57 CH3CH(CH3)+ - 43 CH3CH2+ – 29 CH3+ –15 - m/z lowest– deflect MOST 15 CH3+ Deflect MOST CH3CH(CH3)CH2CH3+ Deflect LEAST
  • 40. Mass spectrometry - Ionization/ Fragmentation pattern CH3CH(CH3)CH2CH3 Ionization CH3CH(CH3)CH2CH3+ Fra g me nta tion CH3CH(CH3)CH2CH3+ CH3CH(CH3)CH2+ CH3CH2+ CH3CH(CH3)+ CH3+ CH3CH(CH3)CH2CH3+- 72 - m/z highest –deflect LEAST CH3CH(CH3)CH2+ – 57 CH3CH(CH3)+ - 43 CH3CH2+ – 29 CH3+ –15 - m/z lowest– deflect MOST 15 CH3+ Deflect MOST Ionization and Fragmentation Process CH3CH(CH3)CH2CH3 Ionization Fragmentation Ionization of CH3CH(CH3)CH2CH3 CH3CH(CH3)CH2CH3 + e → CH3CH(CH3)CH2CH3 + 2e → 72 or CH3CH(CH3)CH2CH3 + e → CH3CH(CH3)CH2+.CH3+ 2e → 72 or CH3CH(CH3)CH2CH3 + e → CH3CH(CH3)+.CH2CH3 + 2e → 72 + Fragmentation of M+ CH3CH(CH3)CH2+ - 57 CH3CH(CH3)+ – 43 CH3CH2+ – 29 CH3+ - 15 CH3CH(CH3)CH2CH3+ Deflect LEAST Mass spectrum CH3CH(CH3)CH2CH3 CH3CH(CH3)CH2CH3+- 72 - m/z highest –deflect LEAST CH3CH(CH3)CH2+ – 57 CH3CH(CH3)+ - 43 CH3CH2+ – 29 CH3+ –15 - m/z lowest– deflect MOST
  • 41. Mass spectrometry - Ionization/ Fragmentation pattern C(CH3)4 (C(CH3)4)+ Ionization (C(CH3)4) Fragm entatio n (C(CH3)3)+ (C(CH3)2)+ (C(CH3))+ CH3+ (C(CH3)4)+ (C(CH3)3)+ (C(CH3)2)+ (C(CH3))+ CH3+ CH3+ Deflect MOST - 72 - m/z highest –deflect LEAST – 57 - 42 – 27 –15 - m/z lowest– deflect MOST (C(CH3)4)+ Deflect LEAST
  • 42. Mass spectrometry - Ionization/ Fragmentation pattern C(CH3)4 (C(CH3)4)+ Ionization (C(CH3)4) Fragm entatio n (C(CH3)3)+ (C(CH3)2)+ (C(CH3))+ CH3+ (C(CH3)4)+ (C(CH3)3)+ (C(CH3)2)+ (C(CH3))+ CH3+ CH3+ Ionization and Fragmentation Process C(CH3)4 Ionization Ionization of C(CH3)4 C(CH3)4 + e → (C(CH3)4)+ + 2e → 72 (C(CH3)4)+ Deflect MOST Fragmentation Fragmentation of M+ (C(CH3)3)+ – 57 (C(CH3)2)+ - 42 (C(CH3))+ – 27 CH3+ –15 - 72 - m/z highest –deflect LEAST – 57 - 42 – 27 –15 - m/z lowest– deflect MOST Deflect LEAST Mass spectrum C(CH3)4 (C(CH3)4)+ (C(CH3)3)+ (C(CH3)2)+ (C(CH3))+ CH3+ - 72 - m/z highest –deflect LEAST – 57 - 42 – 27 –15 - m/z lowest– deflect MOST
  • 43. Mass spectrometry - Ionization/ Fragmentation pattern for molecule CI 2 CI2molecule 35 Ionization Fra gm for enta m a tio tom n s 35 CI-35CI+ CI+ 35 37 CI-37CI+ 37 CI-37CI+ CI+ CI-37CI - 74 - m/z highest – deflect LEAST CI-37CI –72 35 CI-35CI –70 37 CI –37 35 CI –35 - m/z lowest– deflect MOST 37 35 35 CI+ Deflect MOST 37 CI-37CI+ Deflect LEAST
  • 44. Mass spectrometry - Ionization/ Fragmentation pattern for molecule CI 2 CI2molecule 35 Ionization Fra gm for enta m a tio tom n s 35 CI-35CI+ CI+ 35 37 CI-37CI+ 37 CI-37CI+ CI+ CI-37CI - 74 - m/z highest – deflect LEAST CI-37CI –72 35 CI-35CI –70 37 CI –37 35 CI –35 - m/z lowest– deflect MOST 37 35 35 CI+ 37 Deflect MOST CI-37CI+ Deflect LEAST Ionization and Fragmentation Process CI2 molecule Ionization Fragmentation Ionization of CI2 to CI2+ CI:CI + e- → [35CI+.35CI] + 2e – 70 CI:CI + e- → [35CI+.37CI] + 2e – 72 CI:CI + e- → [37CI+.37CI] + 2e – 74 Fragmentation of CI2+ into CI+ CI+.CI → [35CI+ + 35CI·] + 2e –35 Ratio (35CI35CI: 35CI37CI: 37CI37CI) - 9:6:1 Ratio (35CI : 37CI) - 3:1 m/z = 35 CI+.CI → [37CI+ + m/z = 37 CI·] + 2e –37 37 Mass spectrum CI2 / CI atoms CI-37CI - 74 - m/z highest – deflect LEAST CI-37CI –72 35 CI-35CI –70 37 CI –37 35 CI –35 - m/z lowest– deflect MOST 37 35
  • 45. Mass spectrometry - Ionization/ Fragmentation pattern for molecule Br 2 Br2molecule 79 Ionization Fra gm for enta m a tio tom n s 79 Br-79Br+ Br+ 79 Br-81Br+ Br-81Br+ 81 Br+ 81 Br-81Br - 162 - m/z highest – deflect LEAST Br-81Br –160 79 Br-79Br –158 81 Br –81 79 Br –79 - m/z lowest– deflect MOST 81 79 Br+ 79 Deflect MOST Br-81Br+ 81 Deflect LEAST
  • 46. Mass spectrometry - Ionization/ Fragmentation pattern for molecule Br 2 Br2molecule 79 Ionization Fra gm for enta m a tio tom n s 79 Br-79Br+ Br+ 79 Br-81Br+ Br-81Br+ 81 Br+ 81 Br-81Br - 162 - m/z highest – deflect LEAST Br-81Br –160 79 Br-79Br –158 81 Br –81 79 Br –79 - m/z lowest– deflect MOST 81 79 Br+ Br-81Br+ 79 Deflect MOST Ionization and Fragmentation Process Br2 molecule Ionization Ionization of Br2 to Br2+ Br:Br + e- → [81Br+.81Br] + 2e – 162 Br:Br + e- → [79Br+.81Br] + 2e – 160 Br:Br + e- → [79Br+.79Br] + 2e– 158 Deflect LEAST Fragmentation Fragmentation of Br2+ to Br+ Br+.Br → [81Br+ + 81Br·] – 81 m/z = 81 Br+.Br → [79Br+ + 79Br·] – 79 m/z = 79 Ratio (79Br79Br: 79Br81Br: 81Br81Br) – 1:2:1 81 Ratio (79Br : 81Br) - 1:1 Mass spectrum Br2 / Br atoms Br-81Br Br-81Br 79 Br-79Br 81 Br 79 Br 81 79 - 162 - m/z highest – deflect LEAST –160 –158 – 81 – 79 - m/z lowest– deflect MOST
  • 47. Acknowledgements Thanks to source of pictures and video used in this presentation http://serc.carleton.edu/research_education/geochemsheets/techniques/gassourcemassspec.html http://www.mhhe.com/physsci/chemistry/carey/student/olc/ch13ms.html http://science.howstuffworks.com/mass-spectrometry3.htm Thanks to Creative Commons for excellent contribution on licenses http://creativecommons.org/licenses/ Prepared by Lawrence Kok Check out more video tutorials from my site and hope you enjoy this tutorial http://lawrencekok.blogspot.com