SlideShare a Scribd company logo
1 of 52
http://lawrencekok.blogspot.com
IB Chemistry on Gibbs Free Energy vs Entropy on
spontaneity.
Prepared by Prepared by
Lawrence Kok
E = sum kinetic energy/motion of molecule, and potential
energy represented by chemical bond bet atom
∆E = q + w
∆E = Change internal
energy
q = heat
transfer
w = work done
by/on system
Thermodynamics
Study of work, heat and energy on a system
∆E universe = ∆E sys + ∆E surrounding = 0
1st
Law Thermodynamics
Entropy - Measure of disorder
↓
∆S uni = ∆S sys + ∆S surr > 0 (irreversible rxn)
↓
All spontaneous rxn produce increase in entropy of universe
2nd
Law Thermodynamics
∆S uni = ∆S sys + ∆S surr
Isolated system - Entropy change of universe always increase
Click here thermodynamics entropy
Entropy
Measure molecular disorder/randomness
↓
More disorder - More dispersion of matter/energy
↓
More random - Rxn toward right- Entropy Increases ↑
Direction to right- Spontaneous to right →
2nd
Law
Thermodynamics
Embrace the chaos
Over time - Entropy increase ↑
Direction to left ← Never happen !
Click here thermodynamics
Energy cannot be created or destroyed
> 0
∆S = Entropy
change
Entropy
Dispersal/Distribution
Matter Energy
Matter more disperse ↑
Entropy increases ↑
solid liquid gas
spontaneous - entropy ↑
Over time - Entropy increase ↑
Phase change - sol liq gas→ →
↓
Entropy increase ↑
Every energy transfer - increase entropy universe
Entropy universe can only go up - never go down
Entropy increase - many ways energy spread out
Dispersion energy as heat - increase entropy
Stoichiometry- more gas/liq in product
↓
Entropy increase ↑
T
Q
S =∆
Heat added ↑
Phase change Stoichiometry
Embrace the chaos
N2O4(g) 2NO→ 2(g)
1 2
2H2O(l) 2H→ 2 (g) + O2 (g)
1 2
3
3
More gas in product - Entropy ↑
Heat added ↑
Entropy
Measure molecular disorder/randomness
↓
More disorder - More dispersion of matter/energy
↓
More randon - Rxn towards right- Entropy Increases ↑
Liq more disorder than solid
Gas more disorder than liq
kinetic energy distributed
over wide range
Q = heat
transfer
T = Temp/K
Distribution matter in space Distribution energy bet particles
Direction to left ← Never happen !Direction to right- Spontaneous to right →
Statistical
Entropy
Entropy
Measure molecular disorder/randomness
↓
More disorder - More dispersion of matter/energy
↓
More random - Entropy Increases ↑
1st
Law Thermodynamics - Doesn't help explain direction of rxn
∆S uni > 0 (+ve) More disorder - spontaneous→
∆S uni < 0 (-ve) More order - non spontaneous→
Change sol liq gas - Higher entropy→ →
Greater number particles in product - Higher entropy
More complex molecule - More atoms bonded - Higher entropy
Higher temp - Vibrate faster - More random - Higher entropy
Why gas mixes and not unmix? Why heat flow from hot to cold?
Entropy
Notes on Entropy
1st
Law Thermodynamics 2nd
Law Thermodynamics
Energy cannot be created or destroyed
Transfer from one form to another
∆E universe = ∆E sys + ∆E surrounding = 0
Isolated system
↓
∆S uni always increase
∆E = q + w
Method to calculate entropy
Number microstates
Thermodynamic
Entropy
Heat + Temp involved
Gas mixesSolution diffuse Heat flow hot →cold
X X
X
∆E = internal
energy
q = heat
transfer
w = work done ∆S = Entropy
universe
∆S = Entropy
system
∆S = Entropy
surrounding
∆S uni = ∆S sys + ∆S surr
Law Thermodynamics
1 2
∆S = Entropy
uni
WkS ln=∆
∆S = Entropy
change
k = boltzmann
constant
W = Microstate
Click here statistical entropy Click here thermodynamics entropy
Why solution diffuse and not undiffuse?
Unit - J mol -1
K-1
surrsysuni SSS ∆+∆=∆
∆S = Entropy
sys and surr
High chaos factor
1st
Law Thermodynamics - Doesn't help explain direction of rxn
∆S uni > 0 (+ve) More disorder - spontaneous→
∆S uni < 0 (-ve) More order - non spontaneous→
Change sol liq gas - Higher entropy→ →
Greater number particles in product - Higher entropy
More complex molecule - More atoms bonded - Higher entropy
Higher temp - Vibrate faster - More random - Higher entropy
Measure molecular disorder/randomness
↓
More disorder - More dispersion of matter/energy
↓
More random - Entropy Increases ↑
Isolated system
↓
∆S uni always increase
Entropy
Why gas mixes and not unmix? Why heat flow from hot to cold?
Notes on Entropy
1st
Law Thermodynamics 2nd
Law Thermodynamics
Energy cannot be created or destroyed
Transfer from one form to another
∆E universe = ∆E sys + ∆E surrounding = 0
∆E = q + w
Gas mixesSolution diffuse Heat flow hot →cold
X X
X
∆E = internal
energy
q = heat
transfer
w = work done ∆S = Entropy
universe
∆S = Entropy
system
∆S = Entropy
surrounding
∆S uni = ∆S sys + ∆S surr
Law Thermodynamics
3rd
Law Thermodynamics
Unit - J mol -1
K-1
Standard Molar Entropy, S0
Entropy perfectly crystal at 0K = 0
Std molar entropy, S0
(absolute value)
↓
S0
when substance heated from 0K to 298K
Std state - 1 atm / 1M sol
Temp = 298K
Std Molar Entropy/S0
S0
at 298 /JK-1
mol-1
Fe (s) + 27
H2O (s) + 48
Na (s) + 52
H2O (l) + 69
CH3OH (l) + 127
H2 (g) + 130
H2O (g) + 188
CO2 (g) + 218
Solid - Order
↓
Entropy Lowest
Liq - Less order
↓
Entropy Higher
Gas - Disorder
↓
Entropy Highest
Entropy highest
Why solution diffuse and not undiffuse?
High chaos factor
Entropy
Why gas mix and not unmix?Why solution diffuse and not undiffuse? Why heat flow from hot to cold?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
Unit - J mol -1
K-1
Standard Molar Entropy, S0
Entropy perfectly crystal at 0K = 0 (Absolute value)
↓
S0
when substance heated from 0K to 298K
Std state - 1 atm / 1M sol
Temp = 298K
Std Molar Entropy/S0
S0
at 298 /JK-1
mol-1
Fe (s) + 27
H2O (s) + 48
Na (s) + 52
H2O (l) + 69
CH3OH (l) + 127
H2 (g) + 130
H2O (g) + 188
CO2 (g) + 218
Solid - Order
↓
Entropy Lowest
Liq - Less order
↓
Entropy Higher
Gas - Disorder
↓
Entropy Highest
Entropy
highest
Entropy
Standard Molar Entropy, S0
Depend on
Temp increase - Entropy increase↑ ↑
Physical/phase state
Dissolving solid Molecular mass
Click here thermodynamics entropy Ba(OH)2
Temp
Temp/K 273 295 298
S0
for H2 + 31 + 32 + 33.2
Sol Liq Gas - Entropy increase→ → ↑
State solid liquid gas
S0
for H2O + 48 + 69 + 188
entropy increase ↑ entropy increase ↑
Depend on
Substance NaCI NH4NO3
S0
for solid + 72 + 151
S0
for aq + 115 + 260
More motion - entropy increase ↑ Higher mass - entropy increase ↑
Substance HF HCI HBr
Molar mass 20 36 81
S0 + 173 + 186 + 198
S0
= 0 at 0K
All sub > 0K, have +ve S0
Entropy perfectly crystal at 0K = 0 (Absolute value)
↓
S0
when substance heated from 0K to 298K
Entropy
Why gas mix and not unmix?Why solution diffuse and not undiffuse? Why heat flow from hot to cold?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
Unit - J mol -1
K-1
Standard Molar Entropy, S0
Std state - 1 atm / 1M sol
Temp = 298K
Std Molar Entropy/S0
S0
at 298 /JK-1
mol-1
H2O (s) + 48
Na (s) + 52
H2O (l) + 69
CH3OH (l) + 127
H2O (g) + 188
CO2 (g) + 218
Solid - Order
↓
Entropy Lowest
Liq - Less order
↓
Entropy Higher
Gas - Disorder
↓
Entropy Highest
Entropy
highest
Entropy
Standard Molar Entropy, S0
Depend on
Temp increase - Entropy increase↑ ↑
Physical/phase state
Dissolving solid Molecular mass
Temp
Temp/K 273 295 298
S0
for H2 + 31 + 32 + 33.2
Sol Liq Gas - Entropy increase→ → ↑
State solid liquid gas
S0
for H2O + 48 + 69 + 188
entropy increase ↑ entropy increase ↑
Depend on
More motion - entropy increase ↑
Click here entropy
notes
Click here entropy,
enthalpy free energy data
Click here entropy
CRC data booklet
Higher mass - entropy increase ↑
S0
= 0 at 0K
All sub > 0K, have +ve S0
Substance NaCI NH4NO3
S0
for solid + 72 + 151
S0
for aq + 115 + 260
Substance HF HCI HBr
Molar mass 20 36 81
S0 + 173 + 186 + 198
∆Hf
θ
(reactant) ∆Hf
θ
(product)
Using Std ∆Hf
θ
formation to find ∆H rxn
∆H when 1 mol form from its element under std condition
Na(s) + ½ CI2(g) → NaCI(s) ∆Hf
θ
= - 411 kJ mol -1
Std Enthalpy Changes ∆Hθ
Std condition
Pressure
100kPa
Temp
298K
Conc 1M All substance
at std states
Std ∆Hf
θ
formation
Mg(s) + ½ O2(g) → MgO(s) ∆Hf
θ
=- 602 kJ mol -1
Reactants Products
O2(g) → O2 (g) ∆Hf
θ
= 0 kJ mol -1
∆Hrxn
θ
= ∑∆Hf
θ
(products) - ∑∆Hf
θ
(reactants)
∆Hf
θ
(products)∆Hf
θ
(reactants)
∆Hrxn
θ
Elements
Std state solid gas
2C(s) + 3H2(g)+ ½O2(g) → C2H5OH(I) ∆Hf
θ
=- 275 kJ mol -1
1 mole formed
H2(g) + ½O2(g) → H2O(I) ∆Hf
θ
=- 286 kJ mol -1
Std state solid gas 1 mol liquid
For element Std ∆Hf
θ
formation = 0
Mg(s)→ Mg(s) ∆Hf
θ
= 0 kJ mol -1
No product form
Using Std ∆Hf
θ
formation to find ∆H rxn
PDF version
Click here chem database
(std formation enthalpy)
Online version
Click here chem database
(std formation enthalpy)
C2H4 + H2 C2H6
Find ΔHθ
rxn using std ∆H formation
Reactants Products
2C + 3H2
Elements
C2H4 + H2 C→ 2H6
∆Hrxn
θ
∆Hrxn
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
∆Hrxn
θ
= Hf
θ
C2H6 - ∆Hf
θ
C2H4+ H2
= - 84.6 – ( + 52.3 + 0 ) = - 136.9 kJ mol -1
Enthalpy Formation, ∆Hf
Std ∆Gf
θ
formation
∆Grxn
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Grxn
θ
= Gf
θ
C2H6 - ∆Gf
θ
C2H4+ H2
= - 33 – ( + 68 + 0 ) = - 101 kJ mol -1
∆Gf
θ
(reactant) ∆Gf
θ
(product)
Using Std ∆Gf θ formation to find ∆G rxn o
∆Gf when 1 mol form from its element under std condition
Na(s) + ½ CI2(g) → NaCI(s) ∆Gf
θ
= - 384 kJ mol -1
Std Free Energy Change ∆Gθ
Std condition
Pressure
100kPa
Temp
298K
Conc 1M All substance
at std states
Gibbs Free Energy change formation, ∆Gf
Mg(s) + ½ O2(g) → MgO(s) ∆Gf
θ
=- 560 kJ mol -1
Reactants Products
O2(g) → O2 (g) ∆Gf
θ
= 0 kJ mol -1
∆Grxn
θ
= ∑∆Gf
θ
(prod) - ∑∆Gf
θ
(react)
∆Gf
θ
(product)∆Gf
θ
(reactant)
∆Grxn
θ
Elements
Std state solid gas
2C(s) + 3H2(g)+ ½O2(g) → C2H5OH(I) ∆Gf
θ
=- 175 kJ mol -1
1 mole formed
H2(g) + ½O2(g) → H2O(I) ∆Gf
θ
=- 237 kJ mol -1
Std state solid gas 1 mol liquid
For element Std ∆Gf
θ
formation = 0
Mg(s)→ Mg(s) ∆Gf
θ
= 0 kJ mol -1
No product form
Using Std ∆Gf
θ
formation to find ∆G rxn
PDF version
Click here chem database
(std ∆G formation)
Online version
Click here chem database
(std ∆G formation)
C2H4 + H2 C2H6
Find ΔGθ
rxn using std ∆G0
formation
Reactants Products
2C + 3H2
Elements
C2H4 + H2 C→ 2H6
∆Grxn
θ
∆S sys + ve , ∆S surr - ve
↓
∆S uni > 0 (+ve)
(Rxn Spontaneous)
∆S sys - ve , ∆S surr + ve
↓
∆S uni < 0 (-ve)
(Rxn Non spontaneous)
spontaneous
+ve
-ve
=
S /JK-1
∆Ssys = + ve
∆Ssurr = + ve
∆Suni = + ve
+
∆Ssys = - ve
+
∆Ssurr = + ve
∆Suni = + ve
= spontaneous
S /JK-1
S /JK-1
∆Ssys = + ve
+
∆Ssurr = - ve
=
∆Suni = + ve
spontaneous
C6H12O6(s) + 6O2 (g) 6CO→ 2(g) + 6H2O(l)
Using ∆Hsys , ∆Suni , ∆Ssys , ∆S surr to predict spontaneity
2NO(g) + O2(g) 2NO→ 2(g) CaCO3 (s) CaO→ (s) + CO2(g)
∆H = -ve (Heat released)
Difficult !!
∆S sys + ve , ∆S surr - ve
↓
∆S uni < 0 (-ve)
(Rxn Non spontaneous)
∆Ssys = + ve
∆Ssurr = - ve
+
=
∆Suni = - ve
Non
spontaneous
∆H = -ve (Heat released) ∆H = +ve (Heat absorb)
CaCO3 (s) CaO→ (s) + CO2(g)
∆H = +ve (Heat absorb)
∆Ssys = + ve
+
∆Ssurr = - ve
∆Suni = - ve
Non
spontaneous
=
H2(g) 2 H→ (g)
∆H = +ve (Heat absorb)
H2O (l) H→ 2O(s)
∆H = -ve (Heat released)
∆Ssys = - ve
+
∆Suni = - ve
∆Ssurr = + ve
=
∆S sys + ve , ∆S surr - ve
↓
∆S uni < 0 (-ve)
(Rxn Non spontaneous)
∆S sys + ve , ∆S surr + ve
↓
∆S uni > 0 (+ve)
(Rxn Spontaneous)
∆S sys - ve , ∆S surr + ve
↓
∆S uni > 0 (+ve)
(Rxn Spontaneous)
∆Hsys ∆Ssys ∆Suni Description
- + > 0 (+) Spontaneous, All Temp
+ - < 0 (-) Non spontaneous, All Temp
+ + > 0 (+) Spontaneous, High ↑ Temp
- - > 0 (+) Spontaneous, Low ↓ Temp
Predicting Spontaneity rxn
∆G - Temp/Pressure remain constant
Assume ∆S/∆H constant with temp
Using ∆Hsys , ∆Suni , ∆Ssys , ∆S surr to predict spontaneity Using ∆Gsys to predict spontaneity
syssyssys STHG ∆−∆=∆
Difficult !!
surrsysuni SSS ∆+∆=∆
T
H
Ssurr
∆−
=∆)()( reactfprofsys HHH ∆∑−∆∑=∆
CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l)
CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(l)
∆Hf
0
- 74 0 - 393 - 286 x 2
S0
+ 186 +205 x 2 + 213 + 171 x 2
Reactant Product
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
1
)tan()(
41
596555
−
−=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys
kJHsys 891)74(965 −=−−−=∆
1
2990
298
)891000(
−
+=∆
−−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
1
2949299041 −
+=+−=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
∆S uni > 0
spontaneous
Easier
Unit ∆G - kJUnit ∆S - JK-1
Unit ∆H - kJ
CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l)
Only ∆S sys involved
∆S surr, ∆S uni not needed
∆Hsys ∆Ssys ∆Gsys Description
- +
∆G = ∆H - T∆S
∆G = - ve
Spontaneous, All Temp
+ -
∆G = ∆H - T∆S
∆G = + ve
Non spontaneous, All Temp
+ +
∆G = ∆H - T∆S
∆G = - ve
Spontaneous, High ↑ Temp
- -
∆G = ∆H - T∆S
∆G = - ve
Spontaneous, Low ↓ Temp
CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(g)
S0
+ 186 +205 x 2 +213 + 188 x 2
Reactant (+596) Product (+589)
kJG
G
STHG syssyssys
888
)007.0(298890
−=∆
−−−=∆
∆−∆=∆
∆Hsys = - 890 kJ
kJS
JKS
S
SSS
sys
sys
sys
reactprodsys
007.0
7
596589
1
)()(
−=∆
−=∆
−=∆
−=∆
−
∆G < 0
spontaneous
Entropy change ∆S
greater at low temp
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= -868 - (-51) = - 817 kJ
Predicting Spontaneity rxn
∆G - Temp/Pressure remain constant
Assume ∆S/∆H constant with temp
Using ∆Gsys to predict spontaneity
syssyssys STHG ∆−∆=∆
CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l)
Reactant (-51) Product (-868)
∆G < 0
spontaneous
Easier
Unit ∆G - kJ mol-1 CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l)
Only ∆Ssys involved
∆S surr, ∆S uni not needed
∆Hsys ∆Ssys ∆Gsys Description
- +
∆G = ∆H - T ∆S
∆G = - ve
Spontaneous at all Temp
+ -
∆G = ∆H - T ∆S
∆G = + ve
Non spontaneous, all Temp
+ +
∆G = ∆H - T ∆S
∆G = - ve
Spontaneous at high ↑ Temp
- -
∆G = ∆H - T ∆S
∆G = - ve
Spontaneous at low ↓ Temp
CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(g)
S0
+ 186 +205 x 2 +213 + 188 x 2
Reactant (+ 596) Product (+ 589)
kJG
G
STHG syssyssys
888
)007.0(298890
−=∆
−−−=∆
∆−∆=∆
∆Hsys = - 890 kJ
kJS
JKS
S
SSS
sys
sys
sys
reactprodsys
007.0
7
596589
1
)()(
−=∆
−=∆
−=∆
−=∆
−
∆G < 0
spontaneous
Using ∆Gsys to predict spontaneity
Easier
CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(l)
∆G0
- 51 0 - 394 - 237 x 2
Method 1 Method 2
)()( reactfprofsys GGG °°
∆−∆=∆
CH4(g) + 2 O2 (g) CO2(g) + 2H2O(g)
C + 2O2 + 2H2
Reactants Products
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)Elements
• Neither ∆H or ∆S can predict feasibility of spontaneous rxn
• Gibbs Free Energy (∆G) – measure spontaneity and useful energy available
• Gibbs Free Energy (∆G) - max amt useful work at constant Temp/Pressure
• Involve ∆H sys and ∆S sys
• ∆G involve only sys while ∆S uni involve sys and surr
• Easier to find ∆H and ∆S for system
Gibbs Free Energy change formation, ∆Gf
0
At std condition/states
Temp - 298K
Press - 1 atm
∆G - Temp/Pressure remain constant
Assume ∆S/∆H constant with temp
Using ∆Gsys to predict spontaneity
syssyssys STHG ∆−∆=∆
Easier
Unit ∆G - kJCH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l)
Only ∆S sys involved
∆S surr, ∆S uni not needed
∆Hsys ∆Ssys ∆Gsys Description
- +
∆G = ∆H - T∆S
∆G = - ve
Spontaneous, All Temp
+ -
∆G = ∆H - T∆S
∆G = + ve
Non spontaneous, All Temp
+ +
∆G = ∆H - T∆S
∆G = - ve
Spontaneous, High ↑ Temp
- -
∆G = ∆H - T∆S
∆G = - ve
Spontaneous, Low ↓ Temp
CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(g)
S0
+ 186 +205 x 2 +213 + 188 x 2
Reactant (+ 596) Product (+ 589)
kJG
G
G
STHG syssyssys
888
2890
)007.0(298890
−=∆
+−=∆
−−−=∆
∆−∆=∆
∆Hsys = - 890 kJ
kJS
JKS
S
SSS
sys
sys
sys
reactprodsys
007.0
7
596589
1
)()(
−=∆
−=∆
−=∆
−=∆
−
∆G < 0
spontaneous
Gibbs Free Energy Change, ∆G
∆G sys T∆S sys
Total energy change, ∆H
Measure spontaneity and useful energy available
Max amt useful work at constant Temp/Pressure
Free Energy
syssyssys STHG ∆−∆=∆
Free energy available
to do work not available
for work
syssyssys STHG ∆−∆=∆
Free Energy
Total energy change, ∆H
∆G sys T∆S sys
-890kJ
Free energy available
to do work
not available
for work
-888kJ +2 kJ
Gibbs Free Energy Change, ∆G
∆G - Temp/Pressure remain constant
Assume ∆S/∆H constant with temp
Using ∆Gsys to predict spontaneity
syssyssys STHG ∆−∆=∆
Easier
Unit ∆G - kJ mol-1
Only ∆Ssys involved
∆S surr, ∆S uni not needed
Using ∆Gsys to predict spontaneity
Easier
Method 1 Method 2
)()( reactfprofsys GGG °°
∆−∆=∆
At std condition/states
Temp - 298K
Press - 1 atm
Gibbs Free Energy change formation, ∆Gf
0
At High Temp ↑
Temp dependent
syssyssys STHG ∆−∆=∆
At low Temp ↓
veG
STG
HST sys
−=∆
∆−≈∆
∆>∆−
syssyssys STHG ∆−∆=∆
veG
HG
STH
−=∆
∆≈∆
∆−>∆
spontaneous spontaneous
surrsysuni SSS ∆+∆=∆
T
H
S
sys
surr
∆−
=∆
syssysuni STHST ∆−∆=∆−
Deriving Gibbs Free Energy Change, ∆G
T
H
SS
sys
sysuni
∆
−∆=∆
∆S sys / ∆H sys
multi by -T
syssyssys STHG ∆−∆=∆
∆Hsys ∆Ssys ∆Gsys Description
- +
∆G = ∆H - T ∆S
∆G = - ve
Spontaneous at all Temp
+ -
∆G = ∆H - T ∆S
∆G = + ve
Non spontaneous, all Temp
unisys STG ∆−=∆ syssyssys STHG ∆−∆=∆
Only ∆H sys/∆Ssys involved
∆S surr, ∆S uni not needed
°°°
∆−∆=∆ syssyssys STHG
Non standard conditionStandard condition
or
Gibbs Free Energy Change, ∆G
syssyssys STHG ∆−∆=∆unisys STG ∆−=∆
veGsys −=∆
∆Suni = +ve
Spontaneous Spontaneous
veGsys −=∆
∆H = - ve
∆S sys = +ve
∆Hsys ∆Ssys ∆Gsys Description
+ +
∆G = ∆H - T ∆S
∆G = - ve
Spontaneous at high ↑ Temp
- -
∆G = ∆H - T ∆S
∆G = - ve
Spontaneous at low ↓ Temp
kJG
G
STHG
130
)16.0(298178
+=∆
+−+=∆
∆−∆=∆
Predict entropy change - quatitatively
Reactant Product
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react) ∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
kJHsys 178)1206(1028 +=−−−=∆
∆G uni > 0 - Decomposition at 298K - Non Spontaneous
Reactant Product
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
CaCO3 (s) CaO→ (s) + CO2(g)
CaCO3 (s) CaO→ (s) + CO2(g)
∆Hf
0
- 1206 - 635 - 393
S0
+ 93 + 40 + 213
kJS
S
S
SSS
sys
sys
sys
treacproductsys
16.0
160
93253
)tan()(
+=∆
+=∆
−=∆
−=∆
Decomposition at 298K Decomposition at 1500K
CaCO3 (s) CaO→ (s) + CO2(g)
CaCO3 (s) CaO→ (s) + CO2(g)
∆Hf
0
- 1206 - 635 - 393
S0
+ 93 + 40 + 213
kJHsys 178)1206(1028 +=−−−=∆
Rxn Temp dependent
Spontaneous at High temp↑
1500K
298K
Decomposition limestone
CaCO3 spontaneous?
Gibbs Free Energy Change, ∆G
kJS
S
S
SSS
sys
sys
sys
treacproductsys
16.0
160
93253
)tan()(
+=∆
+=∆
−=∆
−=∆
kJG
G
STHG
62
)16.0(1500178
−=∆
+−+=∆
∆−∆=∆
∆G uni < 0 - Decomposition at 1500K - Spontaneous
∆H = +ve
∆S = +ve
Temp dependent
∆Hsys ∆Ssys ∆Gsys Description
+ +
∆G = ∆H - T ∆S
∆G = - ve
Spontaneous at high ↑ Temp
- -
∆G = ∆H - T ∆S
∆G = - ve
Spontaneous at low ↓ Temp
At Low Temp At High Temp
Predict entropy change - quatitatively
Reactant Product
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react) ∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
∆G uni > 0 - Decomposition at 298K - Non Spontaneous
Reactant Product
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
Rxn Temp dependent
Spontaneous at Low temp↓
298K (25C)
Gibbs Free Energy Change, ∆G
∆G uni < 0 - Decomposition at 1500K - Spontaneous
∆H = - ve
∆S = - ve
Temp dependent
∆Hsys ∆Ssys ∆Gsys Description
+ +
∆G = ∆H - T ∆S
∆G = - ve
Spontaneous at high ↑ Temp
- -
∆G = ∆H - T ∆S
∆G = - ve
Spontaneous at low ↓ Temp
H2O (l) H→ 2O(s)
H2O (l) H→ 2O(s)
∆Hf
0
- 286 - 292
S0
+ 70 + 48
Freezing at 298K (25C)
Is Freezing
spontaneous?
kJHsys 6)286(292 −=−−−=∆
kJS
S
S
SSS
sys
sys
sys
treacproductsys
02.0
22
7048
)tan()(
−=∆
−=∆
−=∆
−=∆
kJG
G
STHG
55.0
)022.0(2986
+=∆
−−−=∆
∆−∆=∆
Freezing at 263K (-10C)
H2O (l) H→ 2O(s)
H2O (l) H→ 2O(s)
∆Hf
0
- 286 - 292
S0
+ 70 + 48
kJHsys 6)286(292 −=−−−=∆
kJS
S
S
SSS
sys
sys
sys
treacproductsys
02.0
22
7048
)tan()(
−=∆
−=∆
−=∆
−=∆
263K (-10C) kJG
G
STHG
21.0
)022.0(2636
−=∆
−−−=∆
∆−∆=∆
At High Temp At Low Temp
C3H8(g) + 5 O2 (g) 3CO2(g) + 4H2O(l)
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
1
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
C3H8(g) + 5O2 (g) 3CO→ 2(g) + 4H2O(l) ∆H = -2220 kJ at 298K
C3H8(g) + 5 O2 (g) 3 CO→ 2(g) + 4 H2O(l)
S0
+270 +205 x 5 +213 x 3 +70 x 4
1295 919
Reactant Product
kJG
G
STHG
2108
)376.0(2982220
−=∆
−−−=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
376.0
376
1295919
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
∆H = -2220 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Is Combustion at
298K spontaneous?
Using Free Energy to predict spontaneity
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= -2130 - (-23) = - 2153 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G < 0 - Combustion at 298K - Spontaneous
C3H8(g) + 5 O2 (g) 3 CO→ 2(g) + 4 H2O(l)
∆G0
- 23 0 - 394 x 3 - 237 x 4
Elements
3C + 5O2 + 4H2
Reactant (-23) Product (-2130)
∆G < 0 - Combustion at 298K - Spontaneous
CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(g) ∆H = - 890 kJ at 298K
CH4(g) + 2 O2 (g) CO2(g) + 2H2O(g)
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
2
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 596 + 589
Reactant Product
kJG
G
STHG
888
)007.0(298890
−=∆
−−−=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
007.0
7
596589
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
∆H = - 890 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Is Combustion at
298K spontaneous?
Using Free Energy to predict spontaneity
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= -868 - (-51) = - 817 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G < 0 - Combustion at 298K - Spontaneous
CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(l)
∆G0
- 51 0 - 394 - 237 x 2
Elements
C + 2O2 + 2H2
Reactant (-51) Product (-868)
∆G < 0 - Combustion at 298K - Spontaneous
CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(g)
S0
+ 186 +205 x 2 +213 + 188 x 2
H2O (g) H→ 2O(l) ∆H = - 44.1 kJ at 298K
H2O(g) H2O(l)
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 188 + 70
Reactant Product
kJG
G
STHG
1.9
)118.0(2981.44
−=∆
−−−=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
118.0
118
18870
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
∆H = - 44.1 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= -237 - (-228) = - 9 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G < 0 - Combustion at 298K - Spontaneous
H2O(g) H→ 2O(l)
∆G0
-228 - 237
Elements
H2 + O2
Reactant (-228) Product (-237)
∆G < 0 - Combustion at 298K - Spontaneous
Condensation steam at
298K (25C) spontaneous?
H2O (g) H→ 2O(l)
S0
+ 188 + 70
3
Using Free Energy to predict spontaneity
H2(g) 2 H→ (g) ∆H = + 436 kJ at 298K
H2(g) 2H(g)
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 130 + 230
Reactant Product
kJG
G
STHG
406
)1.0(298436
+=∆
+−+=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
1.0
100
130230
1
)tan()(
+=∆
+=∆
−=∆
−=∆
−
∆H = + 436 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= + 406 - (0) = +406 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G > 0 - Atomization at 298K - Non Spontaneous
H2(g) 2H→ (g)
∆G0
0 + 203 x 2
Elements
H2
Reactant (0) Product ( + 406)
4Is Atomization of H2 at
298K spontaneous?
H2 (g) 2 H→ (g)
S0
+ 130 + 115 x 2
∆G > 0 - Atomization at 298K - Non Spontaneous
Using Free Energy to predict spontaneity
H2O (l) H→ 2O(s) ∆H = - 6 kJ at 298K
H2O(l) H2O(s)
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
2
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 70 + 48
Reactant Product
kJG
G
STHG
55.0
)022.0(2986
+=∆
−−−=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
022.0
22
7048
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
∆H = - 6 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= -236.6 - (-237) = + 0.4kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G > 0 -Freezing at 298K - Non Spontaneous
H2O(l) H→ 2O(s)
∆G0
-237 - 236.6
Elements
H2 + O2
Reactant (-237) Product (-236.6)
5
H2O (l) H→ 2O(s)
S0
+ 70 + 48
∆G > 0 -Freezing at 298K - Non Spontaneous
Is Freezing water to ice at
298K (25C) spontaneous?
Using Free Energy to predict spontaneity
H2O (l) H→ 2O(s) ∆H = - 6 kJ at 263K
H2O(l) H2O(s)
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
2
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 70 + 48
Reactant Product
kJG
G
STHG
21.0
)022.0(2636
−=∆
−−−=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
022.0
22
7048
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
∆H = - 6 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= -237.2 - (-237) = - 0.2 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G < 0 -Freezing at 263K - Spontaneous
H2O(l) H→ 2O(s)
∆G0
-237 - 237.2
Elements
H2 + O2
Reactant (-237) Product (-237.2)
6
H2O (l) H→ 2O(s)
S0
+ 70 + 48
∆G < 0 -Freezing at 263K - Spontaneous
Is Freezing water to ice at
263K (-10C) spontaneous?
Assume std condition
at 263K
Using Free Energy to predict spontaneity
CaCO3 (s) CaO→ (s) + CO2(g) ∆H = + 178 kJ at 298K
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 93 + 253
Reactant Product
kJG
G
STHG
130
)16.0(298178
+=∆
+−+=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
16.0
160
93253
1
)tan()(
+=∆
+=∆
−=∆
−=∆
−
∆H = + 178 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= - 999 - (- 1129) = + 130 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G > 0 - Decomposition at 298K - Non Spontaneous
CaCO3(s) CaO + CO→ 2(g)
∆G0
-1129 - 604 - 395
Elements
Ca + C + O2
Reactant ( -1129) Product (- 999)
7
Decomposition CaCO3 at
298K (25C) spontaneous?
CaCO3 (s) CaO→ (s) + CO2(g)
S0
+ 93 + 40 + 213
∆G > 0 - Decomposition at 298K - Non Spontaneous
CaCO3 (s) CaO (s) + CO2(g)
Using Free Energy to predict spontaneity
CaCO3 (s) CaO→ (s) + CO2(g) ∆H = + 178 kJ at 1500K
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 93 + 253
Reactant Product
kJG
G
STHG
62
)16.0(1500178
−=∆
+−+=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
16.0
160
93253
1
)tan()(
+=∆
+=∆
−=∆
−=∆
−
∆H = + 178 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= - 999 - (- 939) = - 60 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G < 0 - Decomposition at 1500K - Spontaneous
CaCO3(s) CaO + CO→ 2(g)
∆G0
-939 - 604 - 395
Elements
Ca + C + O2
Reactant (- 939) Product (- 999)
8
CaCO3 (s) CaO→ (s) + CO2(g)
S0
+ 93 + 40 + 213
CaCO3 (s) CaO (s) + CO2(g)
Decomposition CaCO3 at
1500K (1227C) spontaneous?
∆G < 0 - Decomposition at 1500K - Spontaneous
Assume std condition
at 1500K
Using Free Energy to predict spontaneity
2NO(g) + O2(g) 2NO→ 2(g) ∆H = - 114 kJ at 298K
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 522 + 480
Reactant Product
kJG
G
STHG
101
)042.0(298114
−=∆
−−−=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
042.0
42
522480
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
∆H = - 114 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= + 104 - (174) = - 70 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G < 0 - Decomposition at 298K - Spontaneous
2 NO + O2 2NO→ 2(g)
∆G0
+ 87 x 2 0 + 52 x 2
Elements
N2 + O2
Reactant (+ 174) Product (+ 104)
9
2 NO(g) + O2 (g) 2NO2(g)
∆G < 0 - Decomposition at 298K - Spontaneous
Is Oxidation of NO at
298K (25C) spontaneous?
2 NO(g) + O2 (g) 2NO→ 2(g)
S0
+ 210 x 2 + 102 + 240 x 2
Using Free Energy to predict spontaneity
N2(g) + 3H2(g) 2NH→ 3(g) ∆H = - 92 kJ at 298K
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 585 + 384
Reactant Product
kJG
G
STHG
32
)2.0(29892
−=∆
−−−=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
2.0
201
585384
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
∆H = - 92 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= - 34 - (0) = - 34 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G < 0 - NH3 production at 298K - Spontaneous
N2 + 3H2 2NH→ 3(g)
∆G0
0 0 - 17 x 2
Elements
N2 + H2
Reactant (0) Product (- 34)
10
N2(g) + 3H2 (g) 2NH3(g)
Is Haber, NH3 production
298K (25C) spontaneous?
NH3
N2(g) + 3H2 (g) 2NH→ 3(g)
S0
+ 192 + 131 x 3 + 192 x 2
∆G < 0 - NH3 production at 298K - Spontaneous
Using Free Energy to predict spontaneity
Fe2O3(s) + 2AI(s) 2Fe→ (s) + AI2O3(s) ∆H = - 851 kJ at 298K
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 143 + 105
Reactant Product
kJG
G
STHG
840
)038.0(298851
−=∆
−−−=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
038.0
38
143105
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
∆H = - 851 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= -1576 - (-741) = - 835 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G < 0 - AI production at 298K - Spontaneous
Fe2O3 + 2AI 2Fe + AI→ 2O3
∆G0
- 741 0 0 - 1576
Elements
Fe + AI+ O2
Reactant (-741) Product (- 1576)
11Is Thermite, AI production
298K (25C) spontaneous?
Fe2O3(s) + 2AI(s) 2Fe→ (s) + AI2O3(s)
S0
+ 87 + 28 x 2 + 27 x 2 + 51
∆G < 0 - AI production at 298K - Spontaneous
Fe2O3(s) + 2AI(s) 2Fe(s) + AI2O3(s)
Using Free Energy to predict spontaneity
4KCIO3(s) 3KCIO→ 4(s) + KCI(s) ∆H = - 144 kJ at 298K
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 572 + 535
Reactant Product
kJG
G
STHG
133
)037.0(298144
−=∆
−−−=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
037.0
37
572535
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
∆H = - 144 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= -1317 - (-1160) = - 157 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G < 0 - Decomposition at 298K - Spontaneous
4KCIO3 3 KCIO→ 4 + KCI
∆G0
- 290 x 4 - 303 x 3 - 408
Elements
K + CI2 + O2
Reactant (-1160) Product (- 1317)
13
∆G < 0 - Decomposition at 298K - Spontaneous
Is decomposition KCIO3
298K (25C) spontaneous?
4KCIO3(s) 3KCIO→ 4(s) + KCI(s)
S0
+ 143 x 4 + 151 x 3 + 82
4KCIO3(s) 3KCIO4(s) + KCI(s)
Using Free Energy to predict spontaneity
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Will rxn be spontaneous ?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
syssyssys STHG ∆−∆=∆
)tan()( treacprosys SSS ∑−∑=∆
+ 821 + 1698
Reactant Product
kJG
G
STHG
3071
)877.0(2982810
−=∆
+−−=∆
∆−∆=∆
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
877.0
877
8211698
1
)tan()(
+=∆
+=∆
−=∆
−=∆
−
∆H = - 2810 kJ
Assume ∆S, ∆H at constant over Temp
∆G sys < 0 (-ve) Spontaneous→
∆G sys > 0 (+ve) Non spontaneous→
Gibbs Free Energy, ∆G
syssyssys STHG ∆−∆=∆
Unit ∆S - JK-1
Unit ∆H - kJ
Unit ∆G - kJ
Reactants Products
∆Gsys
θ
= ∑∆Gf
θ
(pro) - ∑∆Gf
θ
(react)
∆Gsys
θ
= -3792 - (-910) = - 2882 kJ
∆Gsys
θ
∆Gf
θ
(reactant) ∆Gf
θ
(product)
)()( reactfprofsys GGG °°
∆−∆=∆
∆G < 0 Combustion sugar at 298K - Spontaneous
Elements
C + H2 + O2
Reactant (-910) Product (- 3792)
14
Is combustion sugar
298K (25C) spontaneous? C6H12O6(s) + 6O2 (g) 6CO→ 2(g) + 6H2O(l) ∆H = - 2810 kJ at 298K
C6H12O6 (s) + 6O2(g) 6CO→ 2(g) + 6H2O(l)
S0
+ 209 +102 x 6 + 213 x 6 + 70 x 6
∆G < 0 Combustion sugar at 298K - Spontaneous
C6H12O6 + 6O2 6CO2 + 6H2O(l)
C6H12O6 (s) + 6O2(g) 6CO→ 2(g) + 6H2O(l)
∆G0
- 910 0 - 395 x 6 - 237 x 6
Using Free Energy to predict spontaneity
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Predict ∆G change - quatitatively
Gas mixesSolution diffuse Heat flow hot →cold
X X X
Reactant Product
CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l)
CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(l)
∆Hf
0
- 74 0 - 393 - 286 x 2
S0
+ 186 +205 x 2 +213 + 171 x 2
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
041.0
41
596555
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
kJHsys 890)74(964 −=−−−=∆
Is Combustion at
298K spontaneous?
Unit for ∆S - JK-1
Unit for ∆H - kJ C3H8(g) + 5O2 (g) 3CO→ 2(g) + 4H2O(l)
C3H8(g) + 5 O2 (g) 3 CO→ 2(g) + 4 H2O(l)
∆Hf
0
- 104 0 - 393 x 3 - 286 x 4
S0
+270 +205 x 5 + 213 x 3 + 171 x 4
Reactant Product
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
028.0
28
12951323
1
)tan()(
+=∆
+=∆
−=∆
−=∆
−
kJHsys 2219)104(2323 −=−−−=∆
1 2
kJG
G
STHG
877
)041.0(298890
−=∆
−−−=∆
∆−∆=∆
∆G < 0 Combustion sugar at 298K - Spontaneous
kJG
G
STHG
881
)028.0(2982219
−=∆
+−−=∆
∆−∆=∆
∆G < 0 Combustion sugar at 298K - Spontaneous
Entropy and Gibbs Free Energy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
Reactant Product
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
118.0
118
18870
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
kJHsys 44)242(286 −=−−−=∆
Is Condensation/Freezing at
298K spontaneous?
Reactant Product
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
022.0
22
7048
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
kJHsys 6)286(292 −=−−−=∆
3 4H2O (g) H→ 2O(l) H2O (l) H→ 2O(s)
H2O (g) H→ 2O(l)
∆Hf
0
- 242 - 286
S0
+ 188 + 70
H2O (l) H→ 2O(s)
∆Hf
0
- 286 - 292
S0
+ 70 + 48
kJG
G
STHG
1.9
)118.0(2981.44
−=∆
−−−=∆
∆−∆=∆
∆G < 0 Condensation at 298K - Spontaneous
kJG
G
STHG
55.0
)022.0(2986
+=∆
−−−=∆
∆−∆=∆
∆G > 0 Freezing at 298K – Non Spontaneous
Entropy and Gibbs Free Energy
Predict ∆G change - quatitatively
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
Reactant Product
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
kJHsys 92)0(92 −=−−=∆
Are these rxn at
298K spontaneous?
Reactant Product
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
kJHsys 168)1564(1732 −=−−−=∆
5 6N2(g) + 3H2(g) 2NH→ 3(g)
N2(g) + 3H2 (g) 2NH→ 3(g)
∆Hf
0
0 0 - 46 x 2
S0
+ 192 + 131 x 3 + 192 x 2
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
201.0
201
585384
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
4KCIO3(s) 3KCIO→ 4(s) + KCI(s)
4KCIO3(s) 3KCIO→ 4(s) + KCI(s)
∆Hf
0
- 391 x 4 - 432 x 3 - 436
S0
+ 143 x 4 + 151 x 3 + 82
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
037.0
37
572535
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
kJG
G
STHG
32
)2.0(29892
−=∆
−−−=∆
∆−∆=∆
∆G < 0 NH3 production at 298K - Spontaneous
kJG
G
STHG
157
)037.0(298168
−=∆
−−−=∆
∆−∆=∆
∆G < 0 KCIO3 production at 298K - Spontaneous
Entropy and Gibbs Free Energy
Predict ∆G change - quatitatively
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
Reactant Product
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react) ∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
kJHsys 178)1206(1028 +=−−−=∆
Reactant Product
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
7 8CaCO3 (s) CaO→ (s) + CO2(g)
CaCO3 (s) CaO→ (s) + CO2(g)
∆Hf
0
- 1206 - 635 - 393
S0
+ 93 + 40 + 213
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
16.0
160
93253
1
)tan()(
+=∆
+=∆
−=∆
−=∆
−
Decomposition at 298K Decomposition at 1500K
CaCO3 (s) CaO→ (s) + CO2(g)
CaCO3 (s) CaO→ (s) + CO2(g)
∆Hf
0
- 1206 - 635 - 393
S0
+ 93 + 40 + 213
kJHsys 178)1206(1028 +=−−−=∆
Rxn Temp dependent
Spontaneous at High temp↑
1500K
298K (25C)
Decomposition limestone
CaCO3 spontaneous?
kJG
G
STHG
130
)16.0(298178
+=∆
+−+=∆
∆−∆=∆
∆G > 0 Decomposition at 298K – Non Spontaneous
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
16.0
160
93253
1
)tan()(
+=∆
+=∆
−=∆
−=∆
−
kJG
G
STHG
62
)16.0(1500178
−=∆
+−+=∆
∆−∆=∆
∆G < 0 Decomposition at 1500 K - Spontaneous
At Low Temp At High Temp
Entropy and Gibbs Free Energy
Predict ∆G change - quatitatively
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Gas mixesSolution diffuse Heat flow hot →cold
X X X
Reactant Product
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react) ∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
022.0
22
7048
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
kJHsys 6)286(292 −=−−−=∆
Is Freezing
spontaneous?
Reactant Product
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
kJS
JKS
S
SSS
sys
sys
sys
treacproductsys
022.0
22
7048
1
)tan()(
−=∆
−=∆
−=∆
−=∆
−
kJHsys 6)286(292 −=−−−=∆
9 10H2O (l) H→ 2O(s) H2O (l) H→ 2O(s)
H2O (l) H→ 2O(s)
∆Hf
0
- 286 - 292
S0
+ 70 + 48
H2O (l) H→ 2O(s)
∆Hf
0
- 286 - 292
S0
+ 70 + 48
Freezing at 298K (25C) Freezing at 263K (-10C)
Rxn Temp dependent
Spontaneous at Low temp↓
263K (-10C)298K (25C)
kJG
G
STHG
55.0
)022.0(2986
+=∆
−−−=∆
∆−∆=∆
∆G > 0 Freezing at 298K – Non Spontaneous
kJG
G
STHG
21.0
)022.0(2636
−=∆
−−−=∆
∆−∆=∆
∆G < 0 Freezing at 263K – Spontaneous
At High Temp At Low Temp
Entropy and Gibbs Free Energy
Predict ∆G change - quatitatively
Entropy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Entropy
Thermodynamic Entropy
Gas mixesSolution diffuse Heat flow hot →cold
X X X
1
Quatitatively
T
H
T
Q
Ssurr
∆−
==∆
Quatitatively
Entropy sys decrease - More order - Less number gas↓
↓
Entropy surr increase - Heat release increase motion surr particles↑ ↑
↓
Heat release by sys to surr increase entropy surr↑
↓
∆S surr > ∆S sys (More +ve)
↓
∆S uni = ∆S sys + ∆S surr
↓
∆S uni > 0 - Combustion at 298K - Spontaneous
surrsysuni SSS ∆+∆=∆
)tan()( treacprosys SSS ∑−∑=∆
C3H8(g) + 5O2 (g) 3CO→ 2(g) + 4H2O(l) ∆H = -2220 kJ at 298K
C3H8(g) + 5 O2 (g) 3 CO→ 2(g) + 4 H2O(l)
S0
+270 +205 x 5 +213 x 3 +70 x 4
1295 919
Reactant Product
1
7450
298
)2220000(
−
+=∆
−−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
1
)tan()(
376
1295919
−
−=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys
1
70747450376 −
+=+−=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
∆H = -2220 kJ
= -2220000J
surrsysuni SSS ∆+∆=∆
S /JK-1
Assume Q = H at constant pressure
+ve
-ve
spontaneous
∆Ssys = - 376
∆Ssurr = +7450
=+
∆Suni = + 7074
∆S uni > 0 (+ve) Spontaneous→
∆S uni < 0 (-ve) Non spontaneous→
Is Combustion at
298K spontaneous?
Entropy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Entropy
Thermodynamic Entropy
Gas mixesSolution diffuse Heat flow hot →cold
X X X
1
Quatitatively
T
H
T
Q
Ssurr
∆−
==∆
Quatitatively
Entropy sys decrease - More order - Less number gas↓
↓
Entropy surr increase - Heat released increase motion surr particles↑ ↑
↓
Heat release by sys to surr increase entropy surr↑
↓
∆S surr > ∆S sys (More +ve)
↓
∆S uni = ∆S sys + ∆S surr
↓
∆S uni > 0 - Combustion at 298K - Spontaneous
surrsysuni SSS ∆+∆=∆
)tan()( treacprosys SSS ∑−∑=∆
CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(g) ∆H = - 890 kJ at 298K
CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(g)
S0
+ 186 +205 x 2 +213 + 188 x 2
+ 596 + 589
Reactant Product
1
2986
298
)890000(
−
+=∆
−−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
1
)tan()(
7
596589
−
−=∆
−+=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys
1
297929867 −
+=+−=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
∆H = - 890 kJ
= - 890 000J
surrsysuni SSS ∆+∆=∆
S /JK-1
+ve
-ve
spontaneous
∆Ssys = - 7
∆Ssurr = + 2986
=+
∆Suni = + 2979
∆S uni > 0 (+ve) Spontaneous→
∆S uni < 0 (-ve) Non spontaneous→
Assume Q = H at constant pressure
Is Combustion at
298K spontaneous?
Entropy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Entropy
Thermodynamic Entropy
Gas mixesSolution diffuse Heat flow hot →cold
X X X
1
Quatitatively
T
H
T
Q
Ssurr
∆−
==∆
Quatitatively
Entropy sys decrease - More order - Liquid form↓
↓
Entropy surr increase - Heat released increase motion surr particles↑ ↑
↓
Heat release by sys to surr increase entropy surr↑
↓
∆S surr > ∆S sys (More +ve)
↓
∆S uni = ∆S sys + ∆S surr
↓
∆S uni > 0 - Condensation at 298K - Spontaneous
surrsysuni SSS ∆+∆=∆
)tan()( treacprosys SSS ∑−∑=∆
H2O (g) H→ 2O(l) ∆H = - 44.1 kJ at 298K
H2O (g) H→ 2O(l)
S0
+ 188 + 70
+ 188 + 70
Reactant Product
1
148
298
)44100(
−
+=∆
−−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
1
)tan()(
118
18870
−
−=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys
1
30148118 −
+=+−=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
∆H = -44.1 kJ
= - 44 100J
surrsysuni SSS ∆+∆=∆
S /JK-1
spontaneous
∆Ssys = - 118
∆Ssurr = + 148
=+
∆Suni = + 30
∆S uni > 0 (+ve) Spontaneous→
∆S uni < 0 (-ve) Non spontaneous→
Condensation steam at
298K (25C) spontaneous?
Assume Q = H at constant pressure
Entropy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Entropy
Thermodynamic Entropy
Gas mixesSolution diffuse Heat flow hot →cold
X X X
1
Quatitatively
T
H
T
Q
Ssurr
∆−
==∆
Quatitatively
Entropy sys increase - More disorder - More gas atoms form↑
↓
Entropy surr decrease - Heat absorb decrease motion surr particles↓ ↓
↓
Heat absorb by sys from surr decrease entropy surr↓
↓
∆S surr < ∆S sys (More -ve)
↓
∆S uni = ∆S sys + ∆S surr
↓
∆S uni < 0 - Atomization at 298K - Non Spontaneous
surrsysuni SSS ∆+∆=∆
)tan()( treacprosys SSS ∑−∑=∆
H2(g) 2 H→ (g) ∆H = + 436 kJ at 298K
H2 (g) 2 H→ (g)
S0
+ 130 + 115 x 2
+ 130 + 230
Reactant Product
1
1463
298
)436000(
−
−=∆
+−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
1
)tan()(
100
130230
−
+=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys
1
13631463100 −
−=−+=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
∆H = + 436 kJ
= + 436 000J
surrsysuni SSS ∆+∆=∆
S /JK-1
+ve
-ve
non - spontaneous
∆Ssys = +100
∆Ssurr = - 1463
=+
∆Suni = - 1363
∆S uni > 0 (+ve) Spontaneous→
∆S uni < 0 (-ve) Non spontaneous→
Is Atomization of H2 at
298K spontaneous?
Assume Q = H at constant pressure
Entropy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Entropy
Thermodynamic Entropy
Gas mixesSolution diffuse Heat flow hot →cold
X X X
1
Quatitatively
T
H
T
Q
Ssurr
∆−
==∆
Quatitatively
Entropy sys decrease - More order - Solid form↓
↓
Entropy surr increase - Heat released increase motion surr particles↑ ↑
↓
Heat release by sys to surr increase entropy surr↑
↓
∆S sys > ∆S surr (More -ve)
↓
∆S uni = ∆S sys + ∆S surr
↓
∆S uni < 0 - Freezing at 298K - Non Spontaneous
surrsysuni SSS ∆+∆=∆
)tan()( treacprosys SSS ∑−∑=∆
H2O (l) H→ 2O(s) ∆H = - 6 kJ at 298K
H2O (l) H→ 2O(s)
S0
+ 70 + 48
+ 70 + 48
Reactant Product
1
20
298
)6000(
−
+=∆
−−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
1
)tan()(
22
7048
−
−=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys
1
22022 −
−=+−=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
∆H = -6 kJ
= - 6000J
surrsysuni SSS ∆+∆=∆
S /JK-1
+ve
-ve non - spontaneous
∆Ssys = - 22
∆Ssurr = + 20
=+
∆Suni= - 2
∆S uni > 0 (+ve) Spontaneous→
∆S uni < 0 (-ve) Non spontaneous→
Is Freezing water to ice at
298K (25C) spontaneous?
Assume Q = H at constant pressure
Entropy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Entropy
Thermodynamic Entropy
Gas mixesSolution diffuse Heat flow hot →cold
X X X
1
Quatitatively
T
H
T
Q
Ssurr
∆−
==∆
Quatitatively
Entropy sys decrease - More order - Solid form↓
↓
Entropy surr increase - Heat released increase motion surr particles↑ ↑
↓
Heat release by sys to surr increase entropy surr↑
↓
∆S surr > ∆S sys (More +ve)
↓
∆S uni = ∆S sys + ∆S surr
↓
∆S uni > 0 - Freezing at 263K (-10C) - Spontaneous
surrsysuni SSS ∆+∆=∆
)tan()( treacprosys SSS ∑−∑=∆
H2O (l) H→ 2O(s) ∆H = - 6 kJ at 263K
H2O (l) H→ 2O(s)
S0
+ 70 + 48
+ 70 + 48
Reactant Product
1
8.22
263
)6000(
−
+=∆
−−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
1
)tan()(
22
7048
−
−=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys
1
8.08.2222 −
+=+−=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
∆H = -6 kJ
= - 6000J
surrsysuni SSS ∆+∆=∆
S /JK-1
+ve
-ve
spontaneous
∆Ssys = - 22
∆Ssurr = + 22.8
=+
∆Suni= + 0.8
∆S uni > 0 (+ve) Spontaneous→
∆S uni < 0 (-ve) Non spontaneous→
Is Freezing water to ice at
263K (-10C) spontaneous?
Assume Q = H at constant pressure
Entropy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Entropy
Thermodynamic Entropy
Gas mixesSolution diffuse Heat flow hot →cold
X X X
1
Quatitatively
T
H
T
Q
Ssurr
∆−
==∆
Quatitatively
Entropy sys increase - More disorder - Gas form↑
↓
Entropy surr decrease - Heat absorb decrease motion surr particles↓ ↓
↓
Heat absorb by sys from surr decrease entropy surr↓
↓
∆S surr < ∆S sys (More -ve)
↓
∆S uni = ∆S sys + ∆S surr
↓
∆S uni < 0 - Decomposition at 298K - Non Spontaneous
surrsysuni SSS ∆+∆=∆
)tan()( treacprosys SSS ∑−∑=∆
CaCO3 (s) CaO→ (s) + CO2(g) ∆H = + 178 kJ at 298K
CaCO3 (s) CaO→ (s) + CO2(g)
S0
+ 93 + 40 + 213
+ 93 + 253
Reactant Product
1
597
298
)178000(
−
−=∆
+−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
1
)tan()(
160
93253
−
+=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys
1
437597160 −
−=−+=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
∆H = + 178 kJ
=+ 178 000J
surrsysuni SSS ∆+∆=∆
S /JK-1
+ve
-ve non - spontaneous
∆Ssys = + 160
∆Ssurr = - 597
=+
∆Suni= - 437
∆S uni > 0 (+ve) Spontaneous→
∆S uni < 0 (-ve) Non spontaneous→
Decomposition CaCO3 at
298K (25C) spontaneous?
Assume Q = H at constant pressure
Entropy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Entropy
Thermodynamic Entropy
Gas mixesSolution diffuse Heat flow hot →cold
X X X
1
Quatitatively
T
H
T
Q
Ssurr
∆−
==∆
Quatitatively
Entropy sys increase - More disorder - Gas form↑
↓
Entropy surr decrease - Heat aborb decrease motion surr particles↓ ↓
↓
Heat absorb by sys from surr decrease entropy surr↓
↓
∆S sys > ∆S surr (More +ve)
↓
∆S uni = ∆S sys + ∆S surr
↓
∆S uni > 0 - Decomposition at 1500K - Spontaneous
surrsysuni SSS ∆+∆=∆
)tan()( treacprosys SSS ∑−∑=∆
CaCO3 (s) CaO→ (s) + CO2(g) ∆H = + 178 kJ at 1500K
CaCO3 (s) CaO→ (s) + CO2(g)
S0
+ 93 + 40 + 213
+ 93 + 253
Reactant Product
1
118
1500
)178000(
−
−=∆
+−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
1
)tan()(
160
93253
−
+=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys
1
42118160 −
+=−+=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
∆H = + 178 kJ
=+ 178 000J
surrsysuni SSS ∆+∆=∆
S /JK-1
+ve
-ve
spontaneous
∆Ssys = + 160
∆Ssurr = - 118
=+
∆Suni = + 42
∆S uni > 0 (+ve) Spontaneous→
∆S uni < 0 (-ve) Non spontaneous→
Decomposition CaCO3 at
1500K (1227C) spontaneous?
Assume Q = H at constant pressure
Entropy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Entropy
Thermodynamic Entropy
Gas mixesSolution diffuse Heat flow hot →cold
X X X
1
Quatitatively
T
H
T
Q
Ssurr
∆−
==∆
Quatitatively
Entropy sys decrease - More order - Less gas form↓
↓
Entropy surr increase - Heat release increase motion surr particles↑ ↑
↓
Heat release by sys to surr increase entropy surr↑
↓
∆S surr > ∆S sys (More +ve)
↓
∆S uni = ∆S sys + ∆S surr
↓
∆S uni > 0 - Oxidation at 298K - Spontaneous
surrsysuni SSS ∆+∆=∆
)tan()( treacprosys SSS ∑−∑=∆
2NO(g) + O2(g) 2NO→ 2(g) ∆H = - 114 kJ at 298K
2 NO(g) + O2 (g) 2NO→ 2(g)
S0
+ 210 x 2 + 102 + 240 x 2
+ 522 + 480
Reactant Product
1
382
298
)114000(
−
+=∆
−−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
1
)tan()(
42
522480
−
−=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys
1
33938242 −
+=+−=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
∆H = - 114 kJ
= - 114 000J
surrsysuni SSS ∆+∆=∆
S /JK-1
+ve
-ve
spontaneous
∆Ssys = - 42
∆Ssurr = + 382
=+
∆Suni = + 339
∆S uni > 0 (+ve) Spontaneous→
∆S uni < 0 (-ve) Non spontaneous→
Is Oxidation of NO at
298K (25C) spontaneous?
Assume Q = H at constant pressure
Entropy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Entropy
Thermodynamic Entropy
Gas mixesSolution diffuse Heat flow hot →cold
X X X
1
Quatitatively
T
H
T
Q
Ssurr
∆−
==∆
Quatitatively
Entropy sys decrease - More order - Less gas form↓
↓
Entropy surr increase - Heat release increase motion surr particles↑ ↑
↓
Heat release by sys to surr increase entropy surr↑
↓
∆S surr > ∆S sys (More +ve)
↓
∆S uni = ∆S sys + ∆S surr
↓
∆S uni > 0 - NH3 production at 298K - Spontaneous
surrsysuni SSS ∆+∆=∆
)tan()( treacprosys SSS ∑−∑=∆
N2(g) + 3H2(g) 2NH→ 3(g) ∆H = - 92 kJ at 298K
N2(g) + 3H2 (g) 2NH→ 3(g)
S0
+ 192 + 131 x 3 + 192 x 2
+ 585 + 384
Reactant Product
1
308
298
)92000(
−
+=∆
−−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
1
)tan()(
201
585384
−
−=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys
1
107308201 −
+=+−=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
∆H = - 92 kJ
= - 92 000J
surrsysuni SSS ∆+∆=∆
S /JK-1
+ve
-ve
spontaneous
∆Ssys = - 201
∆Ssurr = + 308
=+
∆Suni = + 107
∆S uni > 0 (+ve) Spontaneous→
∆S uni < 0 (-ve) Non spontaneous→
Is Haber, NH3 production
298K (25C) spontaneous?
Assume Q = H at constant pressure
NH3
Entropy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Entropy
Thermodynamic Entropy
Gas mixesSolution diffuse Heat flow hot →cold
X X X
1
Quatitatively
T
H
T
Q
Ssurr
∆−
==∆
Quatitatively
Entropy sys decrease - More order↓
↓
Entropy surr increase - Heat release increase motion surr particles↑ ↑
↓
Heat release by sys to surr increase entropy surr↑
↓
∆S surr > ∆S sys (More +ve)
↓
∆S uni = ∆S sys + ∆S surr
↓
∆S uni > 0 - AI production at 298K - Spontaneous
surrsysuni SSS ∆+∆=∆
)tan()( treacprosys SSS ∑−∑=∆
Fe2O3(s) + 2AI(s) 2Fe→ (s) + AI2O3(s) ∆H = - 851 kJ at 298K
+ 143 + 105
Reactant Product
1
2855
298
)851000(
−
+=∆
−−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
1
)tan()(
38
143105
−
−=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys
1
2817285538 −
+=+−=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
∆H = - 851 kJ
= - 851 000J
surrsysuni SSS ∆+∆=∆
S /JK-1
+ve
-ve
spontaneous
∆Ssys = - 38
∆Ssurr = + 2855
=+
∆Suni = + 2817
∆S uni > 0 (+ve) Spontaneous→
∆S uni < 0 (-ve) Non spontaneous→
Is Thermite, AI production
298K (25C) spontaneous?
Assume Q = H at constant pressure
Fe2O3(s) + 2AI(s) 2Fe→ (s) + AI2O3(s)
S0 + 87 + 28 x 2 + 27 x 2 + 51
Entropy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Entropy
Thermodynamic Entropy
Gas mixesSolution diffuse Heat flow hot →cold
X X X
1
Quatitatively
T
H
T
Q
Ssurr
∆−
==∆
Quatitatively
Entropy sys decrease - More order↓
↓
Entropy surr increase - Heat release increase motion surr particles↑
↓
Heat release by sys to surr increase entropy surr↑
↓
∆S surr > ∆S sys (More +ve)
↓
∆S uni = ∆S sys + ∆S surr
↓
∆S uni > 0 - Decomposition KCIO3 at 298K - Spontaneous
surrsysuni SSS ∆+∆=∆
)tan()( treacprosys SSS ∑−∑=∆
4KCIO3(s) 3KCIO→ 4(s) + KCI(s) ∆H = - 144 kJ at 298K
+ 572 + 535
Reactant Product
1
483
298
)144000(
−
+=∆
−−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
1
)tan()(
37
572535
−
−=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys
1
44648337 −
+=+−=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
∆H = - 144 kJ
= - 144 000J
surrsysuni SSS ∆+∆=∆
S /JK-1
+ve
-ve
spontaneous
∆Ssys = - 37
∆Ssurr = + 483
=+
∆Suni = + 446
∆S uni > 0 (+ve) Spontaneous→
∆S uni < 0 (-ve) Non spontaneous→
Is decomposition KCIO3
298K (25C) spontaneous?
Assume Q = H at constant pressure
∆S/∆H constant over range of temp
4KCIO3(s) 3KCIO→ 4(s) + KCI(s)
S0 + 143 x 4 + 151 x 3 + 82
Entropy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Entropy
Thermodynamic Entropy
Gas mixesSolution diffuse Heat flow hot →cold
X X X
1
Quatitatively
T
H
T
Q
Ssurr
∆−
==∆
Quatitatively
Entropy sys increase - More disorder↑
↓
Entropy surr increase - Heat release increase motion particles↑ ↑
↓
Heat release by sys to surr increase entropy surr↑
↓
∆S surr + ∆S sys > 0 (More +ve)
↓
∆S uni = ∆S sys + ∆S surr
↓
∆S uni > 0 Combustion sugar at 298K - Spontaneous
surrsysuni SSS ∆+∆=∆
)tan()( treacprosys SSS ∑−∑=∆
C6H12O6(s) + 6O2 (g) 6CO→ 2(g) + 6H2O(l) ∆H = - 2810 kJ at 298K
+ 821 + 1698
Reactant Product
1
9430
298
)2810000(
−
+=∆
−−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
1
)tan()(
877
8211698
−
+=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys
1
103079430877 −
+=++=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
∆H = - 2810 kJ
= - 2810 000J
surrsysuni SSS ∆+∆=∆
S /JK-1
+ve
-ve
spontaneous
∆Ssys = + 877
∆Ssurr = + 9430
=+
∆Suni = + 10307
∆S uni > 0 (+ve) Spontaneous→
∆S uni < 0 (-ve) Non spontaneous→
Is combustion sugar
298K (25C) spontaneous?
Assume Q = H at constant pressure
∆S/∆H constant over range of temp
C6H12O6 (s) + 6O2(g) 6CO→ 2(g) + 6H2O(l)
S0 + 209 +102 x 6 + 213 x 6 + 70 x 6
Entropy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Predict entropy change - quatitatively
Gas mixesSolution diffuse Heat flow hot →cold
X X X
Reactant Product
CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l)
CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(l)
∆Hf
0
- 74 0 - 393 - 286 x 2
S0
+ 186 +205 x 2 + 213 + 70 x 2
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
1
)tan()(
243
596353
−
−=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys
1
2990
298
)891000(
−
+=∆
−−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
kJHsys 891)74(965 −=−−−=∆
surrsysuni SSS ∆+∆=∆
1
27472990243 −
+=+−=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
Is Combustion at
298K spontaneous?
Unit for ∆S - JK-1
Unit for ∆H - kJ
∆S uni = ∆S sys + ∆S surr
↓
∆S uni > 0 - Combustion at 298K - Spontaneous
C3H8(g) + 5O2 (g) 3CO→ 2(g) + 4H2O(l)
C3H8(g) + 5 O2 (g) 3 CO→ 2(g) + 4 H2O(l)
∆Hf
0
- 104 0 - 393 x 3 - 286 x 4
S0
+270 +205 x 5 +213 x 3 + 70 x 4
Reactant Product
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
1
)tan()(
376
1295919
−
−=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys kJHsys 2219)104(2323 −=−−−=∆
1
7446
298
)2219000(
−
+=∆
−−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
surrsysuni SSS ∆+∆=∆
1
70707446376 −
+=+−=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
∆S uni = ∆S sys + ∆S surr
↓
∆S uni > 0 - Combustion at 298K - Spontaneous
1 2
Entropy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Predict entropy change - quatitatively
Gas mixesSolution diffuse Heat flow hot →cold
X X X
Reactant Product
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
1
)tan()(
118
18870
−
−=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys
1
148
298
)44000(
−
+=∆
−−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
kJHsys 44)242(286 −=−−−=∆
surrsysuni SSS ∆+∆=∆
1
30148118 −
+=+−=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
Is Condensation/Freezing at
298K spontaneous?
∆S uni = ∆S sys + ∆S surr
↓
∆S uni > 0 - Condensation at 298K - Spontaneous
Reactant Product
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
1
)tan()(
22
7048
−
−=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys kJHsys 6)286(292 −=−−−=∆
1
20
298
)6000(
−
+=∆
−−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
surrsysuni SSS ∆+∆=∆
1
22022 −
−=+−=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
∆S uni = ∆S sys + ∆S surr
↓
∆S uni < 0 -Freezing at 298K - Non Spontaneous
3 4H2O (g) H→ 2O(l) H2O (l) H→ 2O(s)
H2O (g) H→ 2O(l)
∆Hf
0
- 242 - 286
S0
+ 188 + 70
H2O (l) H→ 2O(s)
∆Hf
0
- 286 - 292
S0
+ 70 + 48
Entropy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Predict entropy change - quatitatively
Gas mixesSolution diffuse Heat flow hot →cold
X X X
Reactant Product
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
1
308
298
)92000(
−
+=∆
−−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
kJHsys 92)0(92 −=−−=∆
surrsysuni SSS ∆+∆=∆
1
107308201 −
+=+−=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
Are these rxn at
298K spontaneous?
∆S uni = ∆S sys + ∆S surr
↓
∆S uni > 0 - NH3 production at 298K - Spontaneous
Reactant Product
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
kJHsys 168)1564(1732 −=−−−=∆
1
563
298
)168000(
−
+=∆
−−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
surrsysuni SSS ∆+∆=∆
1
52656337 −
+=+−=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
∆S uni = ∆S sys + ∆S surr
↓
∆S uni > 0 - Decomposition at 298K - Spontaneous
5 6N2(g) + 3H2(g) 2NH→ 3(g)
N2(g) + 3H2 (g) 2NH→ 3(g)
∆Hf
0
0 0 - 46 x 2
S0
+ 192 + 131 x 3 + 192 x 2
1
)tan()(
201
585384
−
−=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys
4KCIO3(s) 3KCIO→ 4(s) + KCI(s)
4KCIO3(s) 3KCIO→ 4(s) + KCI(s)
∆Hf
0
- 391 x 4 - 432 x 3 - 436
S0
+ 143 x 4 + 151 x 3 + 82
1
)tan()(
37
572535
−
−=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys
1
118
1500
)178000(
−
−=∆
+−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
Entropy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Predict entropy change - quatitatively
Gas mixesSolution diffuse Heat flow hot →cold
X X X
Reactant Product
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
kJHsys 178)1206(1028 +=−−−=∆
surrsysuni SSS ∆+∆=∆
1
437597160 −
−=−+=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
∆S uni = ∆S sys + ∆S surr
↓
∆S uni < 0 - Decomposition at 298K - Non Spontaneous
Reactant Product
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
surrsysuni SSS ∆+∆=∆
1
42118160 −
+=−+=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
∆S uni = ∆S sys + ∆S surr
↓
∆S uni > 0 - Decomposition at 1500K - Spontaneous
7 8CaCO3 (s) CaO→ (s) + CO2(g)
CaCO3 (s) CaO→ (s) + CO2(g)
∆Hf
0
- 1206 - 635 - 393
S0
+ 93 + 40 + 213
1
)tan()(
160
93253
−
+=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys
Decomposition at 298K Decomposition at 1500K
CaCO3 (s) CaO→ (s) + CO2(g)
CaCO3 (s) CaO→ (s) + CO2(g)
∆Hf
0
- 1206 - 635 - 393
S0
+ 93 + 40 + 213
1
)tan()(
160
93253
−
+=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys kJHsys 178)1206(1028 +=−−−=∆
Rxn Temp dependent
Spontaneous at High Temp↑
1500K (1227C)298K (25C)
Decomposition limestone
CaCO3 spontaneous?
1
597
298
)178000(
−
−=∆
+−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
Entropy
Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold?
Predict entropy change - quatitatively
Gas mixesSolution diffuse Heat flow hot →cold
X X X
Reactant Product
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
1
)tan()(
22
7048
−
−=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys kJHsys 6)286(292 −=−−−=∆
surrsysuni SSS ∆+∆=∆
1
22022 −
−=+−=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
Is Freezing
spontaneous?
∆S uni = ∆S sys + ∆S surr
↓
∆S uni < 0 - Freezing at 298K - Non Spontaneous
Reactant Product
∆Ssys
θ
= ∑Sf
θ
(pro) - ∑Sf
θ
(react)
∆Hsys
θ
= ∑∆Hf
θ
(pro) - ∑∆Hf
θ
(react)
1
)tan()(
22
7048
−
−=∆
−=∆
−=∆
JKS
S
SSS
sys
sys
treacproductsys kJHsys 6)286(292 −=−−−=∆
1
8.22
263
)6000(
−
+=∆
−−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
surrsysuni SSS ∆+∆=∆
1
8.08.2222 −
+=+−=∆
∆+∆=∆
JKS
SSS
uni
surrsysuni
∆S uni = ∆S sys + ∆S surr
↓
∆S uni > 0 -Freezing at 263K - Spontaneous
9 10H2O (l) H→ 2O(s) H2O (l) H→ 2O(s)
H2O (l) H→ 2O(s)
∆Hf
0
- 286 - 292
S0
+ 70 + 48
H2O (l) H→ 2O(s)
∆Hf
0
- 286 - 292
S0
+ 70 + 48
Freezing at 298K (25C)
Freezing at 263K (-10C)
Rxn Temp dependent
Spontaneous at Low temp↓
1
20
298
)6000(
−
+=∆
−−
=∆
∆−
=∆
JKS
S
T
H
S
surr
surr
surr
263K (-10C)298K (25C)

More Related Content

Viewers also liked

IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...Lawrence kok
 
IB Chemistry on ICT, 3D software, Jmol, Rasmol and Pymol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Rasmol and Pymol for Internal AssessmentIB Chemistry on ICT, 3D software, Jmol, Rasmol and Pymol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Rasmol and Pymol for Internal AssessmentLawrence kok
 
IB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomization
IB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomizationIB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomization
IB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomizationLawrence kok
 
IB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting Pattern
IB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting PatternIB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting Pattern
IB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting PatternLawrence kok
 
IB Chemistry on Homologous series and functional groups of organic molecules
IB Chemistry on Homologous series and functional groups of organic moleculesIB Chemistry on Homologous series and functional groups of organic molecules
IB Chemistry on Homologous series and functional groups of organic moleculesLawrence kok
 
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...Lawrence kok
 
IB Chemistry on Free radical substitution, Addition and Nucleophilic substitu...
IB Chemistry on Free radical substitution, Addition and Nucleophilic substitu...IB Chemistry on Free radical substitution, Addition and Nucleophilic substitu...
IB Chemistry on Free radical substitution, Addition and Nucleophilic substitu...Lawrence kok
 
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionIB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionLawrence kok
 
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...Lawrence kok
 
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and IsotopesIB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and IsotopesLawrence kok
 
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...Lawrence kok
 
IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...
IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...
IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...Lawrence kok
 
IB Chemistry on Structural Isomers and Benzene Structure
IB Chemistry on Structural Isomers and Benzene StructureIB Chemistry on Structural Isomers and Benzene Structure
IB Chemistry on Structural Isomers and Benzene StructureLawrence kok
 
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...Lawrence kok
 
IB Chemistry on Infrared Spectroscopy
IB Chemistry on Infrared SpectroscopyIB Chemistry on Infrared Spectroscopy
IB Chemistry on Infrared SpectroscopyLawrence kok
 
IB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst EquationIB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst EquationLawrence kok
 
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell PotentialIB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell PotentialLawrence kok
 
IB Chemistry on Absorption Spectrum and Line Emission/Absorption Spectrum
IB Chemistry on Absorption Spectrum and Line Emission/Absorption SpectrumIB Chemistry on Absorption Spectrum and Line Emission/Absorption Spectrum
IB Chemistry on Absorption Spectrum and Line Emission/Absorption SpectrumLawrence kok
 
IB Chemistry on Entropy and Law of Thermodynamics
IB Chemistry on Entropy and Law of ThermodynamicsIB Chemistry on Entropy and Law of Thermodynamics
IB Chemistry on Entropy and Law of ThermodynamicsLawrence kok
 
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal AssessmentIB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal AssessmentLawrence kok
 

Viewers also liked (20)

IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
 
IB Chemistry on ICT, 3D software, Jmol, Rasmol and Pymol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Rasmol and Pymol for Internal AssessmentIB Chemistry on ICT, 3D software, Jmol, Rasmol and Pymol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Rasmol and Pymol for Internal Assessment
 
IB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomization
IB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomizationIB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomization
IB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomization
 
IB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting Pattern
IB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting PatternIB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting Pattern
IB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting Pattern
 
IB Chemistry on Homologous series and functional groups of organic molecules
IB Chemistry on Homologous series and functional groups of organic moleculesIB Chemistry on Homologous series and functional groups of organic molecules
IB Chemistry on Homologous series and functional groups of organic molecules
 
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
 
IB Chemistry on Free radical substitution, Addition and Nucleophilic substitu...
IB Chemistry on Free radical substitution, Addition and Nucleophilic substitu...IB Chemistry on Free radical substitution, Addition and Nucleophilic substitu...
IB Chemistry on Free radical substitution, Addition and Nucleophilic substitu...
 
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionIB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
 
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
 
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and IsotopesIB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
 
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
 
IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...
IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...
IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...
 
IB Chemistry on Structural Isomers and Benzene Structure
IB Chemistry on Structural Isomers and Benzene StructureIB Chemistry on Structural Isomers and Benzene Structure
IB Chemistry on Structural Isomers and Benzene Structure
 
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
 
IB Chemistry on Infrared Spectroscopy
IB Chemistry on Infrared SpectroscopyIB Chemistry on Infrared Spectroscopy
IB Chemistry on Infrared Spectroscopy
 
IB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst EquationIB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst Equation
 
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell PotentialIB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
 
IB Chemistry on Absorption Spectrum and Line Emission/Absorption Spectrum
IB Chemistry on Absorption Spectrum and Line Emission/Absorption SpectrumIB Chemistry on Absorption Spectrum and Line Emission/Absorption Spectrum
IB Chemistry on Absorption Spectrum and Line Emission/Absorption Spectrum
 
IB Chemistry on Entropy and Law of Thermodynamics
IB Chemistry on Entropy and Law of ThermodynamicsIB Chemistry on Entropy and Law of Thermodynamics
IB Chemistry on Entropy and Law of Thermodynamics
 
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal AssessmentIB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
 

More from Lawrence kok

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...Lawrence kok
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...Lawrence kok
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...Lawrence kok
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...Lawrence kok
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...Lawrence kok
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...Lawrence kok
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...Lawrence kok
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...Lawrence kok
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...Lawrence kok
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...Lawrence kok
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...Lawrence kok
 

More from Lawrence kok (20)

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
 

Recently uploaded

Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...DhatriParmar
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptxDhatriParmar
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSMae Pangan
 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxSayali Powar
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17Celine George
 
Using Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea DevelopmentUsing Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea Developmentchesterberbo7
 
Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17Celine George
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxMichelleTuguinay1
 
4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptxmary850239
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQuiz Club NITW
 
How to Manage Buy 3 Get 1 Free in Odoo 17
How to Manage Buy 3 Get 1 Free in Odoo 17How to Manage Buy 3 Get 1 Free in Odoo 17
How to Manage Buy 3 Get 1 Free in Odoo 17Celine George
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptxmary850239
 
Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfPrerana Jadhav
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4JOYLYNSAMANIEGO
 
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQ-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQuiz Club NITW
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 

Recently uploaded (20)

INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptxINCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
 
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
 
Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of EngineeringFaculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHS
 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17
 
Using Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea DevelopmentUsing Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea Development
 
Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
 
Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"
 
4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
 
How to Manage Buy 3 Get 1 Free in Odoo 17
How to Manage Buy 3 Get 1 Free in Odoo 17How to Manage Buy 3 Get 1 Free in Odoo 17
How to Manage Buy 3 Get 1 Free in Odoo 17
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx
 
Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdf
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4
 
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQ-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 

IB Chemistry on Gibbs Free energy vs entropy on spontaneity

  • 1. http://lawrencekok.blogspot.com IB Chemistry on Gibbs Free Energy vs Entropy on spontaneity. Prepared by Prepared by Lawrence Kok
  • 2. E = sum kinetic energy/motion of molecule, and potential energy represented by chemical bond bet atom ∆E = q + w ∆E = Change internal energy q = heat transfer w = work done by/on system Thermodynamics Study of work, heat and energy on a system ∆E universe = ∆E sys + ∆E surrounding = 0 1st Law Thermodynamics Entropy - Measure of disorder ↓ ∆S uni = ∆S sys + ∆S surr > 0 (irreversible rxn) ↓ All spontaneous rxn produce increase in entropy of universe 2nd Law Thermodynamics ∆S uni = ∆S sys + ∆S surr Isolated system - Entropy change of universe always increase Click here thermodynamics entropy Entropy Measure molecular disorder/randomness ↓ More disorder - More dispersion of matter/energy ↓ More random - Rxn toward right- Entropy Increases ↑ Direction to right- Spontaneous to right → 2nd Law Thermodynamics Embrace the chaos Over time - Entropy increase ↑ Direction to left ← Never happen ! Click here thermodynamics Energy cannot be created or destroyed > 0
  • 3. ∆S = Entropy change Entropy Dispersal/Distribution Matter Energy Matter more disperse ↑ Entropy increases ↑ solid liquid gas spontaneous - entropy ↑ Over time - Entropy increase ↑ Phase change - sol liq gas→ → ↓ Entropy increase ↑ Every energy transfer - increase entropy universe Entropy universe can only go up - never go down Entropy increase - many ways energy spread out Dispersion energy as heat - increase entropy Stoichiometry- more gas/liq in product ↓ Entropy increase ↑ T Q S =∆ Heat added ↑ Phase change Stoichiometry Embrace the chaos N2O4(g) 2NO→ 2(g) 1 2 2H2O(l) 2H→ 2 (g) + O2 (g) 1 2 3 3 More gas in product - Entropy ↑ Heat added ↑ Entropy Measure molecular disorder/randomness ↓ More disorder - More dispersion of matter/energy ↓ More randon - Rxn towards right- Entropy Increases ↑ Liq more disorder than solid Gas more disorder than liq kinetic energy distributed over wide range Q = heat transfer T = Temp/K Distribution matter in space Distribution energy bet particles Direction to left ← Never happen !Direction to right- Spontaneous to right →
  • 4. Statistical Entropy Entropy Measure molecular disorder/randomness ↓ More disorder - More dispersion of matter/energy ↓ More random - Entropy Increases ↑ 1st Law Thermodynamics - Doesn't help explain direction of rxn ∆S uni > 0 (+ve) More disorder - spontaneous→ ∆S uni < 0 (-ve) More order - non spontaneous→ Change sol liq gas - Higher entropy→ → Greater number particles in product - Higher entropy More complex molecule - More atoms bonded - Higher entropy Higher temp - Vibrate faster - More random - Higher entropy Why gas mixes and not unmix? Why heat flow from hot to cold? Entropy Notes on Entropy 1st Law Thermodynamics 2nd Law Thermodynamics Energy cannot be created or destroyed Transfer from one form to another ∆E universe = ∆E sys + ∆E surrounding = 0 Isolated system ↓ ∆S uni always increase ∆E = q + w Method to calculate entropy Number microstates Thermodynamic Entropy Heat + Temp involved Gas mixesSolution diffuse Heat flow hot →cold X X X ∆E = internal energy q = heat transfer w = work done ∆S = Entropy universe ∆S = Entropy system ∆S = Entropy surrounding ∆S uni = ∆S sys + ∆S surr Law Thermodynamics 1 2 ∆S = Entropy uni WkS ln=∆ ∆S = Entropy change k = boltzmann constant W = Microstate Click here statistical entropy Click here thermodynamics entropy Why solution diffuse and not undiffuse? Unit - J mol -1 K-1 surrsysuni SSS ∆+∆=∆ ∆S = Entropy sys and surr High chaos factor
  • 5. 1st Law Thermodynamics - Doesn't help explain direction of rxn ∆S uni > 0 (+ve) More disorder - spontaneous→ ∆S uni < 0 (-ve) More order - non spontaneous→ Change sol liq gas - Higher entropy→ → Greater number particles in product - Higher entropy More complex molecule - More atoms bonded - Higher entropy Higher temp - Vibrate faster - More random - Higher entropy Measure molecular disorder/randomness ↓ More disorder - More dispersion of matter/energy ↓ More random - Entropy Increases ↑ Isolated system ↓ ∆S uni always increase Entropy Why gas mixes and not unmix? Why heat flow from hot to cold? Notes on Entropy 1st Law Thermodynamics 2nd Law Thermodynamics Energy cannot be created or destroyed Transfer from one form to another ∆E universe = ∆E sys + ∆E surrounding = 0 ∆E = q + w Gas mixesSolution diffuse Heat flow hot →cold X X X ∆E = internal energy q = heat transfer w = work done ∆S = Entropy universe ∆S = Entropy system ∆S = Entropy surrounding ∆S uni = ∆S sys + ∆S surr Law Thermodynamics 3rd Law Thermodynamics Unit - J mol -1 K-1 Standard Molar Entropy, S0 Entropy perfectly crystal at 0K = 0 Std molar entropy, S0 (absolute value) ↓ S0 when substance heated from 0K to 298K Std state - 1 atm / 1M sol Temp = 298K Std Molar Entropy/S0 S0 at 298 /JK-1 mol-1 Fe (s) + 27 H2O (s) + 48 Na (s) + 52 H2O (l) + 69 CH3OH (l) + 127 H2 (g) + 130 H2O (g) + 188 CO2 (g) + 218 Solid - Order ↓ Entropy Lowest Liq - Less order ↓ Entropy Higher Gas - Disorder ↓ Entropy Highest Entropy highest Why solution diffuse and not undiffuse? High chaos factor
  • 6. Entropy Why gas mix and not unmix?Why solution diffuse and not undiffuse? Why heat flow from hot to cold? Gas mixesSolution diffuse Heat flow hot →cold X X X Unit - J mol -1 K-1 Standard Molar Entropy, S0 Entropy perfectly crystal at 0K = 0 (Absolute value) ↓ S0 when substance heated from 0K to 298K Std state - 1 atm / 1M sol Temp = 298K Std Molar Entropy/S0 S0 at 298 /JK-1 mol-1 Fe (s) + 27 H2O (s) + 48 Na (s) + 52 H2O (l) + 69 CH3OH (l) + 127 H2 (g) + 130 H2O (g) + 188 CO2 (g) + 218 Solid - Order ↓ Entropy Lowest Liq - Less order ↓ Entropy Higher Gas - Disorder ↓ Entropy Highest Entropy highest Entropy Standard Molar Entropy, S0 Depend on Temp increase - Entropy increase↑ ↑ Physical/phase state Dissolving solid Molecular mass Click here thermodynamics entropy Ba(OH)2 Temp Temp/K 273 295 298 S0 for H2 + 31 + 32 + 33.2 Sol Liq Gas - Entropy increase→ → ↑ State solid liquid gas S0 for H2O + 48 + 69 + 188 entropy increase ↑ entropy increase ↑ Depend on Substance NaCI NH4NO3 S0 for solid + 72 + 151 S0 for aq + 115 + 260 More motion - entropy increase ↑ Higher mass - entropy increase ↑ Substance HF HCI HBr Molar mass 20 36 81 S0 + 173 + 186 + 198 S0 = 0 at 0K All sub > 0K, have +ve S0
  • 7. Entropy perfectly crystal at 0K = 0 (Absolute value) ↓ S0 when substance heated from 0K to 298K Entropy Why gas mix and not unmix?Why solution diffuse and not undiffuse? Why heat flow from hot to cold? Gas mixesSolution diffuse Heat flow hot →cold X X X Unit - J mol -1 K-1 Standard Molar Entropy, S0 Std state - 1 atm / 1M sol Temp = 298K Std Molar Entropy/S0 S0 at 298 /JK-1 mol-1 H2O (s) + 48 Na (s) + 52 H2O (l) + 69 CH3OH (l) + 127 H2O (g) + 188 CO2 (g) + 218 Solid - Order ↓ Entropy Lowest Liq - Less order ↓ Entropy Higher Gas - Disorder ↓ Entropy Highest Entropy highest Entropy Standard Molar Entropy, S0 Depend on Temp increase - Entropy increase↑ ↑ Physical/phase state Dissolving solid Molecular mass Temp Temp/K 273 295 298 S0 for H2 + 31 + 32 + 33.2 Sol Liq Gas - Entropy increase→ → ↑ State solid liquid gas S0 for H2O + 48 + 69 + 188 entropy increase ↑ entropy increase ↑ Depend on More motion - entropy increase ↑ Click here entropy notes Click here entropy, enthalpy free energy data Click here entropy CRC data booklet Higher mass - entropy increase ↑ S0 = 0 at 0K All sub > 0K, have +ve S0 Substance NaCI NH4NO3 S0 for solid + 72 + 151 S0 for aq + 115 + 260 Substance HF HCI HBr Molar mass 20 36 81 S0 + 173 + 186 + 198
  • 8. ∆Hf θ (reactant) ∆Hf θ (product) Using Std ∆Hf θ formation to find ∆H rxn ∆H when 1 mol form from its element under std condition Na(s) + ½ CI2(g) → NaCI(s) ∆Hf θ = - 411 kJ mol -1 Std Enthalpy Changes ∆Hθ Std condition Pressure 100kPa Temp 298K Conc 1M All substance at std states Std ∆Hf θ formation Mg(s) + ½ O2(g) → MgO(s) ∆Hf θ =- 602 kJ mol -1 Reactants Products O2(g) → O2 (g) ∆Hf θ = 0 kJ mol -1 ∆Hrxn θ = ∑∆Hf θ (products) - ∑∆Hf θ (reactants) ∆Hf θ (products)∆Hf θ (reactants) ∆Hrxn θ Elements Std state solid gas 2C(s) + 3H2(g)+ ½O2(g) → C2H5OH(I) ∆Hf θ =- 275 kJ mol -1 1 mole formed H2(g) + ½O2(g) → H2O(I) ∆Hf θ =- 286 kJ mol -1 Std state solid gas 1 mol liquid For element Std ∆Hf θ formation = 0 Mg(s)→ Mg(s) ∆Hf θ = 0 kJ mol -1 No product form Using Std ∆Hf θ formation to find ∆H rxn PDF version Click here chem database (std formation enthalpy) Online version Click here chem database (std formation enthalpy) C2H4 + H2 C2H6 Find ΔHθ rxn using std ∆H formation Reactants Products 2C + 3H2 Elements C2H4 + H2 C→ 2H6 ∆Hrxn θ ∆Hrxn θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Hrxn θ = Hf θ C2H6 - ∆Hf θ C2H4+ H2 = - 84.6 – ( + 52.3 + 0 ) = - 136.9 kJ mol -1 Enthalpy Formation, ∆Hf
  • 9. Std ∆Gf θ formation ∆Grxn θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Grxn θ = Gf θ C2H6 - ∆Gf θ C2H4+ H2 = - 33 – ( + 68 + 0 ) = - 101 kJ mol -1 ∆Gf θ (reactant) ∆Gf θ (product) Using Std ∆Gf θ formation to find ∆G rxn o ∆Gf when 1 mol form from its element under std condition Na(s) + ½ CI2(g) → NaCI(s) ∆Gf θ = - 384 kJ mol -1 Std Free Energy Change ∆Gθ Std condition Pressure 100kPa Temp 298K Conc 1M All substance at std states Gibbs Free Energy change formation, ∆Gf Mg(s) + ½ O2(g) → MgO(s) ∆Gf θ =- 560 kJ mol -1 Reactants Products O2(g) → O2 (g) ∆Gf θ = 0 kJ mol -1 ∆Grxn θ = ∑∆Gf θ (prod) - ∑∆Gf θ (react) ∆Gf θ (product)∆Gf θ (reactant) ∆Grxn θ Elements Std state solid gas 2C(s) + 3H2(g)+ ½O2(g) → C2H5OH(I) ∆Gf θ =- 175 kJ mol -1 1 mole formed H2(g) + ½O2(g) → H2O(I) ∆Gf θ =- 237 kJ mol -1 Std state solid gas 1 mol liquid For element Std ∆Gf θ formation = 0 Mg(s)→ Mg(s) ∆Gf θ = 0 kJ mol -1 No product form Using Std ∆Gf θ formation to find ∆G rxn PDF version Click here chem database (std ∆G formation) Online version Click here chem database (std ∆G formation) C2H4 + H2 C2H6 Find ΔGθ rxn using std ∆G0 formation Reactants Products 2C + 3H2 Elements C2H4 + H2 C→ 2H6 ∆Grxn θ
  • 10. ∆S sys + ve , ∆S surr - ve ↓ ∆S uni > 0 (+ve) (Rxn Spontaneous) ∆S sys - ve , ∆S surr + ve ↓ ∆S uni < 0 (-ve) (Rxn Non spontaneous) spontaneous +ve -ve = S /JK-1 ∆Ssys = + ve ∆Ssurr = + ve ∆Suni = + ve + ∆Ssys = - ve + ∆Ssurr = + ve ∆Suni = + ve = spontaneous S /JK-1 S /JK-1 ∆Ssys = + ve + ∆Ssurr = - ve = ∆Suni = + ve spontaneous C6H12O6(s) + 6O2 (g) 6CO→ 2(g) + 6H2O(l) Using ∆Hsys , ∆Suni , ∆Ssys , ∆S surr to predict spontaneity 2NO(g) + O2(g) 2NO→ 2(g) CaCO3 (s) CaO→ (s) + CO2(g) ∆H = -ve (Heat released) Difficult !! ∆S sys + ve , ∆S surr - ve ↓ ∆S uni < 0 (-ve) (Rxn Non spontaneous) ∆Ssys = + ve ∆Ssurr = - ve + = ∆Suni = - ve Non spontaneous ∆H = -ve (Heat released) ∆H = +ve (Heat absorb) CaCO3 (s) CaO→ (s) + CO2(g) ∆H = +ve (Heat absorb) ∆Ssys = + ve + ∆Ssurr = - ve ∆Suni = - ve Non spontaneous = H2(g) 2 H→ (g) ∆H = +ve (Heat absorb) H2O (l) H→ 2O(s) ∆H = -ve (Heat released) ∆Ssys = - ve + ∆Suni = - ve ∆Ssurr = + ve = ∆S sys + ve , ∆S surr - ve ↓ ∆S uni < 0 (-ve) (Rxn Non spontaneous) ∆S sys + ve , ∆S surr + ve ↓ ∆S uni > 0 (+ve) (Rxn Spontaneous) ∆S sys - ve , ∆S surr + ve ↓ ∆S uni > 0 (+ve) (Rxn Spontaneous)
  • 11. ∆Hsys ∆Ssys ∆Suni Description - + > 0 (+) Spontaneous, All Temp + - < 0 (-) Non spontaneous, All Temp + + > 0 (+) Spontaneous, High ↑ Temp - - > 0 (+) Spontaneous, Low ↓ Temp Predicting Spontaneity rxn ∆G - Temp/Pressure remain constant Assume ∆S/∆H constant with temp Using ∆Hsys , ∆Suni , ∆Ssys , ∆S surr to predict spontaneity Using ∆Gsys to predict spontaneity syssyssys STHG ∆−∆=∆ Difficult !! surrsysuni SSS ∆+∆=∆ T H Ssurr ∆− =∆)()( reactfprofsys HHH ∆∑−∆∑=∆ CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l) CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(l) ∆Hf 0 - 74 0 - 393 - 286 x 2 S0 + 186 +205 x 2 + 213 + 171 x 2 Reactant Product ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) 1 )tan()( 41 596555 − −=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys kJHsys 891)74(965 −=−−−=∆ 1 2990 298 )891000( − +=∆ −− =∆ ∆− =∆ JKS S T H S surr surr surr 1 2949299041 − +=+−=∆ ∆+∆=∆ JKS SSS uni surrsysuni ∆S uni > 0 spontaneous Easier Unit ∆G - kJUnit ∆S - JK-1 Unit ∆H - kJ CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l) Only ∆S sys involved ∆S surr, ∆S uni not needed ∆Hsys ∆Ssys ∆Gsys Description - + ∆G = ∆H - T∆S ∆G = - ve Spontaneous, All Temp + - ∆G = ∆H - T∆S ∆G = + ve Non spontaneous, All Temp + + ∆G = ∆H - T∆S ∆G = - ve Spontaneous, High ↑ Temp - - ∆G = ∆H - T∆S ∆G = - ve Spontaneous, Low ↓ Temp CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(g) S0 + 186 +205 x 2 +213 + 188 x 2 Reactant (+596) Product (+589) kJG G STHG syssyssys 888 )007.0(298890 −=∆ −−−=∆ ∆−∆=∆ ∆Hsys = - 890 kJ kJS JKS S SSS sys sys sys reactprodsys 007.0 7 596589 1 )()( −=∆ −=∆ −=∆ −=∆ − ∆G < 0 spontaneous Entropy change ∆S greater at low temp
  • 12. ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = -868 - (-51) = - 817 kJ Predicting Spontaneity rxn ∆G - Temp/Pressure remain constant Assume ∆S/∆H constant with temp Using ∆Gsys to predict spontaneity syssyssys STHG ∆−∆=∆ CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l) Reactant (-51) Product (-868) ∆G < 0 spontaneous Easier Unit ∆G - kJ mol-1 CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l) Only ∆Ssys involved ∆S surr, ∆S uni not needed ∆Hsys ∆Ssys ∆Gsys Description - + ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at all Temp + - ∆G = ∆H - T ∆S ∆G = + ve Non spontaneous, all Temp + + ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at high ↑ Temp - - ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at low ↓ Temp CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(g) S0 + 186 +205 x 2 +213 + 188 x 2 Reactant (+ 596) Product (+ 589) kJG G STHG syssyssys 888 )007.0(298890 −=∆ −−−=∆ ∆−∆=∆ ∆Hsys = - 890 kJ kJS JKS S SSS sys sys sys reactprodsys 007.0 7 596589 1 )()( −=∆ −=∆ −=∆ −=∆ − ∆G < 0 spontaneous Using ∆Gsys to predict spontaneity Easier CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(l) ∆G0 - 51 0 - 394 - 237 x 2 Method 1 Method 2 )()( reactfprofsys GGG °° ∆−∆=∆ CH4(g) + 2 O2 (g) CO2(g) + 2H2O(g) C + 2O2 + 2H2 Reactants Products ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product)Elements • Neither ∆H or ∆S can predict feasibility of spontaneous rxn • Gibbs Free Energy (∆G) – measure spontaneity and useful energy available • Gibbs Free Energy (∆G) - max amt useful work at constant Temp/Pressure • Involve ∆H sys and ∆S sys • ∆G involve only sys while ∆S uni involve sys and surr • Easier to find ∆H and ∆S for system Gibbs Free Energy change formation, ∆Gf 0 At std condition/states Temp - 298K Press - 1 atm
  • 13. ∆G - Temp/Pressure remain constant Assume ∆S/∆H constant with temp Using ∆Gsys to predict spontaneity syssyssys STHG ∆−∆=∆ Easier Unit ∆G - kJCH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l) Only ∆S sys involved ∆S surr, ∆S uni not needed ∆Hsys ∆Ssys ∆Gsys Description - + ∆G = ∆H - T∆S ∆G = - ve Spontaneous, All Temp + - ∆G = ∆H - T∆S ∆G = + ve Non spontaneous, All Temp + + ∆G = ∆H - T∆S ∆G = - ve Spontaneous, High ↑ Temp - - ∆G = ∆H - T∆S ∆G = - ve Spontaneous, Low ↓ Temp CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(g) S0 + 186 +205 x 2 +213 + 188 x 2 Reactant (+ 596) Product (+ 589) kJG G G STHG syssyssys 888 2890 )007.0(298890 −=∆ +−=∆ −−−=∆ ∆−∆=∆ ∆Hsys = - 890 kJ kJS JKS S SSS sys sys sys reactprodsys 007.0 7 596589 1 )()( −=∆ −=∆ −=∆ −=∆ − ∆G < 0 spontaneous Gibbs Free Energy Change, ∆G ∆G sys T∆S sys Total energy change, ∆H Measure spontaneity and useful energy available Max amt useful work at constant Temp/Pressure Free Energy syssyssys STHG ∆−∆=∆ Free energy available to do work not available for work syssyssys STHG ∆−∆=∆ Free Energy Total energy change, ∆H ∆G sys T∆S sys -890kJ Free energy available to do work not available for work -888kJ +2 kJ
  • 14. Gibbs Free Energy Change, ∆G ∆G - Temp/Pressure remain constant Assume ∆S/∆H constant with temp Using ∆Gsys to predict spontaneity syssyssys STHG ∆−∆=∆ Easier Unit ∆G - kJ mol-1 Only ∆Ssys involved ∆S surr, ∆S uni not needed Using ∆Gsys to predict spontaneity Easier Method 1 Method 2 )()( reactfprofsys GGG °° ∆−∆=∆ At std condition/states Temp - 298K Press - 1 atm Gibbs Free Energy change formation, ∆Gf 0 At High Temp ↑ Temp dependent syssyssys STHG ∆−∆=∆ At low Temp ↓ veG STG HST sys −=∆ ∆−≈∆ ∆>∆− syssyssys STHG ∆−∆=∆ veG HG STH −=∆ ∆≈∆ ∆−>∆ spontaneous spontaneous surrsysuni SSS ∆+∆=∆ T H S sys surr ∆− =∆ syssysuni STHST ∆−∆=∆− Deriving Gibbs Free Energy Change, ∆G T H SS sys sysuni ∆ −∆=∆ ∆S sys / ∆H sys multi by -T syssyssys STHG ∆−∆=∆ ∆Hsys ∆Ssys ∆Gsys Description - + ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at all Temp + - ∆G = ∆H - T ∆S ∆G = + ve Non spontaneous, all Temp unisys STG ∆−=∆ syssyssys STHG ∆−∆=∆ Only ∆H sys/∆Ssys involved ∆S surr, ∆S uni not needed °°° ∆−∆=∆ syssyssys STHG Non standard conditionStandard condition or Gibbs Free Energy Change, ∆G syssyssys STHG ∆−∆=∆unisys STG ∆−=∆ veGsys −=∆ ∆Suni = +ve Spontaneous Spontaneous veGsys −=∆ ∆H = - ve ∆S sys = +ve ∆Hsys ∆Ssys ∆Gsys Description + + ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at high ↑ Temp - - ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at low ↓ Temp
  • 15. kJG G STHG 130 )16.0(298178 +=∆ +−+=∆ ∆−∆=∆ Predict entropy change - quatitatively Reactant Product ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) kJHsys 178)1206(1028 +=−−−=∆ ∆G uni > 0 - Decomposition at 298K - Non Spontaneous Reactant Product ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) CaCO3 (s) CaO→ (s) + CO2(g) CaCO3 (s) CaO→ (s) + CO2(g) ∆Hf 0 - 1206 - 635 - 393 S0 + 93 + 40 + 213 kJS S S SSS sys sys sys treacproductsys 16.0 160 93253 )tan()( +=∆ +=∆ −=∆ −=∆ Decomposition at 298K Decomposition at 1500K CaCO3 (s) CaO→ (s) + CO2(g) CaCO3 (s) CaO→ (s) + CO2(g) ∆Hf 0 - 1206 - 635 - 393 S0 + 93 + 40 + 213 kJHsys 178)1206(1028 +=−−−=∆ Rxn Temp dependent Spontaneous at High temp↑ 1500K 298K Decomposition limestone CaCO3 spontaneous? Gibbs Free Energy Change, ∆G kJS S S SSS sys sys sys treacproductsys 16.0 160 93253 )tan()( +=∆ +=∆ −=∆ −=∆ kJG G STHG 62 )16.0(1500178 −=∆ +−+=∆ ∆−∆=∆ ∆G uni < 0 - Decomposition at 1500K - Spontaneous ∆H = +ve ∆S = +ve Temp dependent ∆Hsys ∆Ssys ∆Gsys Description + + ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at high ↑ Temp - - ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at low ↓ Temp At Low Temp At High Temp
  • 16. Predict entropy change - quatitatively Reactant Product ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) ∆G uni > 0 - Decomposition at 298K - Non Spontaneous Reactant Product ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) Rxn Temp dependent Spontaneous at Low temp↓ 298K (25C) Gibbs Free Energy Change, ∆G ∆G uni < 0 - Decomposition at 1500K - Spontaneous ∆H = - ve ∆S = - ve Temp dependent ∆Hsys ∆Ssys ∆Gsys Description + + ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at high ↑ Temp - - ∆G = ∆H - T ∆S ∆G = - ve Spontaneous at low ↓ Temp H2O (l) H→ 2O(s) H2O (l) H→ 2O(s) ∆Hf 0 - 286 - 292 S0 + 70 + 48 Freezing at 298K (25C) Is Freezing spontaneous? kJHsys 6)286(292 −=−−−=∆ kJS S S SSS sys sys sys treacproductsys 02.0 22 7048 )tan()( −=∆ −=∆ −=∆ −=∆ kJG G STHG 55.0 )022.0(2986 +=∆ −−−=∆ ∆−∆=∆ Freezing at 263K (-10C) H2O (l) H→ 2O(s) H2O (l) H→ 2O(s) ∆Hf 0 - 286 - 292 S0 + 70 + 48 kJHsys 6)286(292 −=−−−=∆ kJS S S SSS sys sys sys treacproductsys 02.0 22 7048 )tan()( −=∆ −=∆ −=∆ −=∆ 263K (-10C) kJG G STHG 21.0 )022.0(2636 −=∆ −−−=∆ ∆−∆=∆ At High Temp At Low Temp
  • 17. C3H8(g) + 5 O2 (g) 3CO2(g) + 4H2O(l) Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X 1 syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ C3H8(g) + 5O2 (g) 3CO→ 2(g) + 4H2O(l) ∆H = -2220 kJ at 298K C3H8(g) + 5 O2 (g) 3 CO→ 2(g) + 4 H2O(l) S0 +270 +205 x 5 +213 x 3 +70 x 4 1295 919 Reactant Product kJG G STHG 2108 )376.0(2982220 −=∆ −−−=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 376.0 376 1295919 1 )tan()( −=∆ −=∆ −=∆ −=∆ − ∆H = -2220 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Is Combustion at 298K spontaneous? Using Free Energy to predict spontaneity Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = -2130 - (-23) = - 2153 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G < 0 - Combustion at 298K - Spontaneous C3H8(g) + 5 O2 (g) 3 CO→ 2(g) + 4 H2O(l) ∆G0 - 23 0 - 394 x 3 - 237 x 4 Elements 3C + 5O2 + 4H2 Reactant (-23) Product (-2130) ∆G < 0 - Combustion at 298K - Spontaneous
  • 18. CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(g) ∆H = - 890 kJ at 298K CH4(g) + 2 O2 (g) CO2(g) + 2H2O(g) Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X 2 syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 596 + 589 Reactant Product kJG G STHG 888 )007.0(298890 −=∆ −−−=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 007.0 7 596589 1 )tan()( −=∆ −=∆ −=∆ −=∆ − ∆H = - 890 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Is Combustion at 298K spontaneous? Using Free Energy to predict spontaneity Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = -868 - (-51) = - 817 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G < 0 - Combustion at 298K - Spontaneous CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(l) ∆G0 - 51 0 - 394 - 237 x 2 Elements C + 2O2 + 2H2 Reactant (-51) Product (-868) ∆G < 0 - Combustion at 298K - Spontaneous CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(g) S0 + 186 +205 x 2 +213 + 188 x 2
  • 19. H2O (g) H→ 2O(l) ∆H = - 44.1 kJ at 298K H2O(g) H2O(l) Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 188 + 70 Reactant Product kJG G STHG 1.9 )118.0(2981.44 −=∆ −−−=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 118.0 118 18870 1 )tan()( −=∆ −=∆ −=∆ −=∆ − ∆H = - 44.1 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = -237 - (-228) = - 9 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G < 0 - Combustion at 298K - Spontaneous H2O(g) H→ 2O(l) ∆G0 -228 - 237 Elements H2 + O2 Reactant (-228) Product (-237) ∆G < 0 - Combustion at 298K - Spontaneous Condensation steam at 298K (25C) spontaneous? H2O (g) H→ 2O(l) S0 + 188 + 70 3 Using Free Energy to predict spontaneity
  • 20. H2(g) 2 H→ (g) ∆H = + 436 kJ at 298K H2(g) 2H(g) Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 130 + 230 Reactant Product kJG G STHG 406 )1.0(298436 +=∆ +−+=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 1.0 100 130230 1 )tan()( +=∆ +=∆ −=∆ −=∆ − ∆H = + 436 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = + 406 - (0) = +406 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G > 0 - Atomization at 298K - Non Spontaneous H2(g) 2H→ (g) ∆G0 0 + 203 x 2 Elements H2 Reactant (0) Product ( + 406) 4Is Atomization of H2 at 298K spontaneous? H2 (g) 2 H→ (g) S0 + 130 + 115 x 2 ∆G > 0 - Atomization at 298K - Non Spontaneous Using Free Energy to predict spontaneity
  • 21. H2O (l) H→ 2O(s) ∆H = - 6 kJ at 298K H2O(l) H2O(s) Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X 2 syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 70 + 48 Reactant Product kJG G STHG 55.0 )022.0(2986 +=∆ −−−=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 022.0 22 7048 1 )tan()( −=∆ −=∆ −=∆ −=∆ − ∆H = - 6 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = -236.6 - (-237) = + 0.4kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G > 0 -Freezing at 298K - Non Spontaneous H2O(l) H→ 2O(s) ∆G0 -237 - 236.6 Elements H2 + O2 Reactant (-237) Product (-236.6) 5 H2O (l) H→ 2O(s) S0 + 70 + 48 ∆G > 0 -Freezing at 298K - Non Spontaneous Is Freezing water to ice at 298K (25C) spontaneous? Using Free Energy to predict spontaneity
  • 22. H2O (l) H→ 2O(s) ∆H = - 6 kJ at 263K H2O(l) H2O(s) Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X 2 syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 70 + 48 Reactant Product kJG G STHG 21.0 )022.0(2636 −=∆ −−−=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 022.0 22 7048 1 )tan()( −=∆ −=∆ −=∆ −=∆ − ∆H = - 6 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = -237.2 - (-237) = - 0.2 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G < 0 -Freezing at 263K - Spontaneous H2O(l) H→ 2O(s) ∆G0 -237 - 237.2 Elements H2 + O2 Reactant (-237) Product (-237.2) 6 H2O (l) H→ 2O(s) S0 + 70 + 48 ∆G < 0 -Freezing at 263K - Spontaneous Is Freezing water to ice at 263K (-10C) spontaneous? Assume std condition at 263K Using Free Energy to predict spontaneity
  • 23. CaCO3 (s) CaO→ (s) + CO2(g) ∆H = + 178 kJ at 298K Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 93 + 253 Reactant Product kJG G STHG 130 )16.0(298178 +=∆ +−+=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 16.0 160 93253 1 )tan()( +=∆ +=∆ −=∆ −=∆ − ∆H = + 178 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = - 999 - (- 1129) = + 130 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G > 0 - Decomposition at 298K - Non Spontaneous CaCO3(s) CaO + CO→ 2(g) ∆G0 -1129 - 604 - 395 Elements Ca + C + O2 Reactant ( -1129) Product (- 999) 7 Decomposition CaCO3 at 298K (25C) spontaneous? CaCO3 (s) CaO→ (s) + CO2(g) S0 + 93 + 40 + 213 ∆G > 0 - Decomposition at 298K - Non Spontaneous CaCO3 (s) CaO (s) + CO2(g) Using Free Energy to predict spontaneity
  • 24. CaCO3 (s) CaO→ (s) + CO2(g) ∆H = + 178 kJ at 1500K Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 93 + 253 Reactant Product kJG G STHG 62 )16.0(1500178 −=∆ +−+=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 16.0 160 93253 1 )tan()( +=∆ +=∆ −=∆ −=∆ − ∆H = + 178 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = - 999 - (- 939) = - 60 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G < 0 - Decomposition at 1500K - Spontaneous CaCO3(s) CaO + CO→ 2(g) ∆G0 -939 - 604 - 395 Elements Ca + C + O2 Reactant (- 939) Product (- 999) 8 CaCO3 (s) CaO→ (s) + CO2(g) S0 + 93 + 40 + 213 CaCO3 (s) CaO (s) + CO2(g) Decomposition CaCO3 at 1500K (1227C) spontaneous? ∆G < 0 - Decomposition at 1500K - Spontaneous Assume std condition at 1500K Using Free Energy to predict spontaneity
  • 25. 2NO(g) + O2(g) 2NO→ 2(g) ∆H = - 114 kJ at 298K Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 522 + 480 Reactant Product kJG G STHG 101 )042.0(298114 −=∆ −−−=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 042.0 42 522480 1 )tan()( −=∆ −=∆ −=∆ −=∆ − ∆H = - 114 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = + 104 - (174) = - 70 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G < 0 - Decomposition at 298K - Spontaneous 2 NO + O2 2NO→ 2(g) ∆G0 + 87 x 2 0 + 52 x 2 Elements N2 + O2 Reactant (+ 174) Product (+ 104) 9 2 NO(g) + O2 (g) 2NO2(g) ∆G < 0 - Decomposition at 298K - Spontaneous Is Oxidation of NO at 298K (25C) spontaneous? 2 NO(g) + O2 (g) 2NO→ 2(g) S0 + 210 x 2 + 102 + 240 x 2 Using Free Energy to predict spontaneity
  • 26. N2(g) + 3H2(g) 2NH→ 3(g) ∆H = - 92 kJ at 298K Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 585 + 384 Reactant Product kJG G STHG 32 )2.0(29892 −=∆ −−−=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 2.0 201 585384 1 )tan()( −=∆ −=∆ −=∆ −=∆ − ∆H = - 92 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = - 34 - (0) = - 34 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G < 0 - NH3 production at 298K - Spontaneous N2 + 3H2 2NH→ 3(g) ∆G0 0 0 - 17 x 2 Elements N2 + H2 Reactant (0) Product (- 34) 10 N2(g) + 3H2 (g) 2NH3(g) Is Haber, NH3 production 298K (25C) spontaneous? NH3 N2(g) + 3H2 (g) 2NH→ 3(g) S0 + 192 + 131 x 3 + 192 x 2 ∆G < 0 - NH3 production at 298K - Spontaneous Using Free Energy to predict spontaneity
  • 27. Fe2O3(s) + 2AI(s) 2Fe→ (s) + AI2O3(s) ∆H = - 851 kJ at 298K Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 143 + 105 Reactant Product kJG G STHG 840 )038.0(298851 −=∆ −−−=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 038.0 38 143105 1 )tan()( −=∆ −=∆ −=∆ −=∆ − ∆H = - 851 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = -1576 - (-741) = - 835 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G < 0 - AI production at 298K - Spontaneous Fe2O3 + 2AI 2Fe + AI→ 2O3 ∆G0 - 741 0 0 - 1576 Elements Fe + AI+ O2 Reactant (-741) Product (- 1576) 11Is Thermite, AI production 298K (25C) spontaneous? Fe2O3(s) + 2AI(s) 2Fe→ (s) + AI2O3(s) S0 + 87 + 28 x 2 + 27 x 2 + 51 ∆G < 0 - AI production at 298K - Spontaneous Fe2O3(s) + 2AI(s) 2Fe(s) + AI2O3(s) Using Free Energy to predict spontaneity
  • 28. 4KCIO3(s) 3KCIO→ 4(s) + KCI(s) ∆H = - 144 kJ at 298K Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 572 + 535 Reactant Product kJG G STHG 133 )037.0(298144 −=∆ −−−=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 037.0 37 572535 1 )tan()( −=∆ −=∆ −=∆ −=∆ − ∆H = - 144 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = -1317 - (-1160) = - 157 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G < 0 - Decomposition at 298K - Spontaneous 4KCIO3 3 KCIO→ 4 + KCI ∆G0 - 290 x 4 - 303 x 3 - 408 Elements K + CI2 + O2 Reactant (-1160) Product (- 1317) 13 ∆G < 0 - Decomposition at 298K - Spontaneous Is decomposition KCIO3 298K (25C) spontaneous? 4KCIO3(s) 3KCIO→ 4(s) + KCI(s) S0 + 143 x 4 + 151 x 3 + 82 4KCIO3(s) 3KCIO4(s) + KCI(s) Using Free Energy to predict spontaneity
  • 29. Entropy and Gibbs Free Energy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Will rxn be spontaneous ? Gas mixesSolution diffuse Heat flow hot →cold X X X syssyssys STHG ∆−∆=∆ )tan()( treacprosys SSS ∑−∑=∆ + 821 + 1698 Reactant Product kJG G STHG 3071 )877.0(2982810 −=∆ +−−=∆ ∆−∆=∆ kJS JKS S SSS sys sys sys treacproductsys 877.0 877 8211698 1 )tan()( +=∆ +=∆ −=∆ −=∆ − ∆H = - 2810 kJ Assume ∆S, ∆H at constant over Temp ∆G sys < 0 (-ve) Spontaneous→ ∆G sys > 0 (+ve) Non spontaneous→ Gibbs Free Energy, ∆G syssyssys STHG ∆−∆=∆ Unit ∆S - JK-1 Unit ∆H - kJ Unit ∆G - kJ Reactants Products ∆Gsys θ = ∑∆Gf θ (pro) - ∑∆Gf θ (react) ∆Gsys θ = -3792 - (-910) = - 2882 kJ ∆Gsys θ ∆Gf θ (reactant) ∆Gf θ (product) )()( reactfprofsys GGG °° ∆−∆=∆ ∆G < 0 Combustion sugar at 298K - Spontaneous Elements C + H2 + O2 Reactant (-910) Product (- 3792) 14 Is combustion sugar 298K (25C) spontaneous? C6H12O6(s) + 6O2 (g) 6CO→ 2(g) + 6H2O(l) ∆H = - 2810 kJ at 298K C6H12O6 (s) + 6O2(g) 6CO→ 2(g) + 6H2O(l) S0 + 209 +102 x 6 + 213 x 6 + 70 x 6 ∆G < 0 Combustion sugar at 298K - Spontaneous C6H12O6 + 6O2 6CO2 + 6H2O(l) C6H12O6 (s) + 6O2(g) 6CO→ 2(g) + 6H2O(l) ∆G0 - 910 0 - 395 x 6 - 237 x 6 Using Free Energy to predict spontaneity
  • 30. Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Predict ∆G change - quatitatively Gas mixesSolution diffuse Heat flow hot →cold X X X Reactant Product CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l) CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(l) ∆Hf 0 - 74 0 - 393 - 286 x 2 S0 + 186 +205 x 2 +213 + 171 x 2 ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) kJS JKS S SSS sys sys sys treacproductsys 041.0 41 596555 1 )tan()( −=∆ −=∆ −=∆ −=∆ − kJHsys 890)74(964 −=−−−=∆ Is Combustion at 298K spontaneous? Unit for ∆S - JK-1 Unit for ∆H - kJ C3H8(g) + 5O2 (g) 3CO→ 2(g) + 4H2O(l) C3H8(g) + 5 O2 (g) 3 CO→ 2(g) + 4 H2O(l) ∆Hf 0 - 104 0 - 393 x 3 - 286 x 4 S0 +270 +205 x 5 + 213 x 3 + 171 x 4 Reactant Product ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react)∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) kJS JKS S SSS sys sys sys treacproductsys 028.0 28 12951323 1 )tan()( +=∆ +=∆ −=∆ −=∆ − kJHsys 2219)104(2323 −=−−−=∆ 1 2 kJG G STHG 877 )041.0(298890 −=∆ −−−=∆ ∆−∆=∆ ∆G < 0 Combustion sugar at 298K - Spontaneous kJG G STHG 881 )028.0(2982219 −=∆ +−−=∆ ∆−∆=∆ ∆G < 0 Combustion sugar at 298K - Spontaneous Entropy and Gibbs Free Energy
  • 31. Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Gas mixesSolution diffuse Heat flow hot →cold X X X Reactant Product ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) kJS JKS S SSS sys sys sys treacproductsys 118.0 118 18870 1 )tan()( −=∆ −=∆ −=∆ −=∆ − kJHsys 44)242(286 −=−−−=∆ Is Condensation/Freezing at 298K spontaneous? Reactant Product ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) kJS JKS S SSS sys sys sys treacproductsys 022.0 22 7048 1 )tan()( −=∆ −=∆ −=∆ −=∆ − kJHsys 6)286(292 −=−−−=∆ 3 4H2O (g) H→ 2O(l) H2O (l) H→ 2O(s) H2O (g) H→ 2O(l) ∆Hf 0 - 242 - 286 S0 + 188 + 70 H2O (l) H→ 2O(s) ∆Hf 0 - 286 - 292 S0 + 70 + 48 kJG G STHG 1.9 )118.0(2981.44 −=∆ −−−=∆ ∆−∆=∆ ∆G < 0 Condensation at 298K - Spontaneous kJG G STHG 55.0 )022.0(2986 +=∆ −−−=∆ ∆−∆=∆ ∆G > 0 Freezing at 298K – Non Spontaneous Entropy and Gibbs Free Energy Predict ∆G change - quatitatively
  • 32. Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Gas mixesSolution diffuse Heat flow hot →cold X X X Reactant Product ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) kJHsys 92)0(92 −=−−=∆ Are these rxn at 298K spontaneous? Reactant Product ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react)∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) kJHsys 168)1564(1732 −=−−−=∆ 5 6N2(g) + 3H2(g) 2NH→ 3(g) N2(g) + 3H2 (g) 2NH→ 3(g) ∆Hf 0 0 0 - 46 x 2 S0 + 192 + 131 x 3 + 192 x 2 kJS JKS S SSS sys sys sys treacproductsys 201.0 201 585384 1 )tan()( −=∆ −=∆ −=∆ −=∆ − 4KCIO3(s) 3KCIO→ 4(s) + KCI(s) 4KCIO3(s) 3KCIO→ 4(s) + KCI(s) ∆Hf 0 - 391 x 4 - 432 x 3 - 436 S0 + 143 x 4 + 151 x 3 + 82 kJS JKS S SSS sys sys sys treacproductsys 037.0 37 572535 1 )tan()( −=∆ −=∆ −=∆ −=∆ − kJG G STHG 32 )2.0(29892 −=∆ −−−=∆ ∆−∆=∆ ∆G < 0 NH3 production at 298K - Spontaneous kJG G STHG 157 )037.0(298168 −=∆ −−−=∆ ∆−∆=∆ ∆G < 0 KCIO3 production at 298K - Spontaneous Entropy and Gibbs Free Energy Predict ∆G change - quatitatively
  • 33. Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Gas mixesSolution diffuse Heat flow hot →cold X X X Reactant Product ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) kJHsys 178)1206(1028 +=−−−=∆ Reactant Product ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react)∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) 7 8CaCO3 (s) CaO→ (s) + CO2(g) CaCO3 (s) CaO→ (s) + CO2(g) ∆Hf 0 - 1206 - 635 - 393 S0 + 93 + 40 + 213 kJS JKS S SSS sys sys sys treacproductsys 16.0 160 93253 1 )tan()( +=∆ +=∆ −=∆ −=∆ − Decomposition at 298K Decomposition at 1500K CaCO3 (s) CaO→ (s) + CO2(g) CaCO3 (s) CaO→ (s) + CO2(g) ∆Hf 0 - 1206 - 635 - 393 S0 + 93 + 40 + 213 kJHsys 178)1206(1028 +=−−−=∆ Rxn Temp dependent Spontaneous at High temp↑ 1500K 298K (25C) Decomposition limestone CaCO3 spontaneous? kJG G STHG 130 )16.0(298178 +=∆ +−+=∆ ∆−∆=∆ ∆G > 0 Decomposition at 298K – Non Spontaneous kJS JKS S SSS sys sys sys treacproductsys 16.0 160 93253 1 )tan()( +=∆ +=∆ −=∆ −=∆ − kJG G STHG 62 )16.0(1500178 −=∆ +−+=∆ ∆−∆=∆ ∆G < 0 Decomposition at 1500 K - Spontaneous At Low Temp At High Temp Entropy and Gibbs Free Energy Predict ∆G change - quatitatively
  • 34. Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Gas mixesSolution diffuse Heat flow hot →cold X X X Reactant Product ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) kJS JKS S SSS sys sys sys treacproductsys 022.0 22 7048 1 )tan()( −=∆ −=∆ −=∆ −=∆ − kJHsys 6)286(292 −=−−−=∆ Is Freezing spontaneous? Reactant Product ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) kJS JKS S SSS sys sys sys treacproductsys 022.0 22 7048 1 )tan()( −=∆ −=∆ −=∆ −=∆ − kJHsys 6)286(292 −=−−−=∆ 9 10H2O (l) H→ 2O(s) H2O (l) H→ 2O(s) H2O (l) H→ 2O(s) ∆Hf 0 - 286 - 292 S0 + 70 + 48 H2O (l) H→ 2O(s) ∆Hf 0 - 286 - 292 S0 + 70 + 48 Freezing at 298K (25C) Freezing at 263K (-10C) Rxn Temp dependent Spontaneous at Low temp↓ 263K (-10C)298K (25C) kJG G STHG 55.0 )022.0(2986 +=∆ −−−=∆ ∆−∆=∆ ∆G > 0 Freezing at 298K – Non Spontaneous kJG G STHG 21.0 )022.0(2636 −=∆ −−−=∆ ∆−∆=∆ ∆G < 0 Freezing at 263K – Spontaneous At High Temp At Low Temp Entropy and Gibbs Free Energy Predict ∆G change - quatitatively
  • 35. Entropy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Entropy Thermodynamic Entropy Gas mixesSolution diffuse Heat flow hot →cold X X X 1 Quatitatively T H T Q Ssurr ∆− ==∆ Quatitatively Entropy sys decrease - More order - Less number gas↓ ↓ Entropy surr increase - Heat release increase motion surr particles↑ ↑ ↓ Heat release by sys to surr increase entropy surr↑ ↓ ∆S surr > ∆S sys (More +ve) ↓ ∆S uni = ∆S sys + ∆S surr ↓ ∆S uni > 0 - Combustion at 298K - Spontaneous surrsysuni SSS ∆+∆=∆ )tan()( treacprosys SSS ∑−∑=∆ C3H8(g) + 5O2 (g) 3CO→ 2(g) + 4H2O(l) ∆H = -2220 kJ at 298K C3H8(g) + 5 O2 (g) 3 CO→ 2(g) + 4 H2O(l) S0 +270 +205 x 5 +213 x 3 +70 x 4 1295 919 Reactant Product 1 7450 298 )2220000( − +=∆ −− =∆ ∆− =∆ JKS S T H S surr surr surr 1 )tan()( 376 1295919 − −=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys 1 70747450376 − +=+−=∆ ∆+∆=∆ JKS SSS uni surrsysuni ∆H = -2220 kJ = -2220000J surrsysuni SSS ∆+∆=∆ S /JK-1 Assume Q = H at constant pressure +ve -ve spontaneous ∆Ssys = - 376 ∆Ssurr = +7450 =+ ∆Suni = + 7074 ∆S uni > 0 (+ve) Spontaneous→ ∆S uni < 0 (-ve) Non spontaneous→ Is Combustion at 298K spontaneous?
  • 36. Entropy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Entropy Thermodynamic Entropy Gas mixesSolution diffuse Heat flow hot →cold X X X 1 Quatitatively T H T Q Ssurr ∆− ==∆ Quatitatively Entropy sys decrease - More order - Less number gas↓ ↓ Entropy surr increase - Heat released increase motion surr particles↑ ↑ ↓ Heat release by sys to surr increase entropy surr↑ ↓ ∆S surr > ∆S sys (More +ve) ↓ ∆S uni = ∆S sys + ∆S surr ↓ ∆S uni > 0 - Combustion at 298K - Spontaneous surrsysuni SSS ∆+∆=∆ )tan()( treacprosys SSS ∑−∑=∆ CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(g) ∆H = - 890 kJ at 298K CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(g) S0 + 186 +205 x 2 +213 + 188 x 2 + 596 + 589 Reactant Product 1 2986 298 )890000( − +=∆ −− =∆ ∆− =∆ JKS S T H S surr surr surr 1 )tan()( 7 596589 − −=∆ −+=∆ −=∆ JKS S SSS sys sys treacproductsys 1 297929867 − +=+−=∆ ∆+∆=∆ JKS SSS uni surrsysuni ∆H = - 890 kJ = - 890 000J surrsysuni SSS ∆+∆=∆ S /JK-1 +ve -ve spontaneous ∆Ssys = - 7 ∆Ssurr = + 2986 =+ ∆Suni = + 2979 ∆S uni > 0 (+ve) Spontaneous→ ∆S uni < 0 (-ve) Non spontaneous→ Assume Q = H at constant pressure Is Combustion at 298K spontaneous?
  • 37. Entropy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Entropy Thermodynamic Entropy Gas mixesSolution diffuse Heat flow hot →cold X X X 1 Quatitatively T H T Q Ssurr ∆− ==∆ Quatitatively Entropy sys decrease - More order - Liquid form↓ ↓ Entropy surr increase - Heat released increase motion surr particles↑ ↑ ↓ Heat release by sys to surr increase entropy surr↑ ↓ ∆S surr > ∆S sys (More +ve) ↓ ∆S uni = ∆S sys + ∆S surr ↓ ∆S uni > 0 - Condensation at 298K - Spontaneous surrsysuni SSS ∆+∆=∆ )tan()( treacprosys SSS ∑−∑=∆ H2O (g) H→ 2O(l) ∆H = - 44.1 kJ at 298K H2O (g) H→ 2O(l) S0 + 188 + 70 + 188 + 70 Reactant Product 1 148 298 )44100( − +=∆ −− =∆ ∆− =∆ JKS S T H S surr surr surr 1 )tan()( 118 18870 − −=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys 1 30148118 − +=+−=∆ ∆+∆=∆ JKS SSS uni surrsysuni ∆H = -44.1 kJ = - 44 100J surrsysuni SSS ∆+∆=∆ S /JK-1 spontaneous ∆Ssys = - 118 ∆Ssurr = + 148 =+ ∆Suni = + 30 ∆S uni > 0 (+ve) Spontaneous→ ∆S uni < 0 (-ve) Non spontaneous→ Condensation steam at 298K (25C) spontaneous? Assume Q = H at constant pressure
  • 38. Entropy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Entropy Thermodynamic Entropy Gas mixesSolution diffuse Heat flow hot →cold X X X 1 Quatitatively T H T Q Ssurr ∆− ==∆ Quatitatively Entropy sys increase - More disorder - More gas atoms form↑ ↓ Entropy surr decrease - Heat absorb decrease motion surr particles↓ ↓ ↓ Heat absorb by sys from surr decrease entropy surr↓ ↓ ∆S surr < ∆S sys (More -ve) ↓ ∆S uni = ∆S sys + ∆S surr ↓ ∆S uni < 0 - Atomization at 298K - Non Spontaneous surrsysuni SSS ∆+∆=∆ )tan()( treacprosys SSS ∑−∑=∆ H2(g) 2 H→ (g) ∆H = + 436 kJ at 298K H2 (g) 2 H→ (g) S0 + 130 + 115 x 2 + 130 + 230 Reactant Product 1 1463 298 )436000( − −=∆ +− =∆ ∆− =∆ JKS S T H S surr surr surr 1 )tan()( 100 130230 − +=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys 1 13631463100 − −=−+=∆ ∆+∆=∆ JKS SSS uni surrsysuni ∆H = + 436 kJ = + 436 000J surrsysuni SSS ∆+∆=∆ S /JK-1 +ve -ve non - spontaneous ∆Ssys = +100 ∆Ssurr = - 1463 =+ ∆Suni = - 1363 ∆S uni > 0 (+ve) Spontaneous→ ∆S uni < 0 (-ve) Non spontaneous→ Is Atomization of H2 at 298K spontaneous? Assume Q = H at constant pressure
  • 39. Entropy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Entropy Thermodynamic Entropy Gas mixesSolution diffuse Heat flow hot →cold X X X 1 Quatitatively T H T Q Ssurr ∆− ==∆ Quatitatively Entropy sys decrease - More order - Solid form↓ ↓ Entropy surr increase - Heat released increase motion surr particles↑ ↑ ↓ Heat release by sys to surr increase entropy surr↑ ↓ ∆S sys > ∆S surr (More -ve) ↓ ∆S uni = ∆S sys + ∆S surr ↓ ∆S uni < 0 - Freezing at 298K - Non Spontaneous surrsysuni SSS ∆+∆=∆ )tan()( treacprosys SSS ∑−∑=∆ H2O (l) H→ 2O(s) ∆H = - 6 kJ at 298K H2O (l) H→ 2O(s) S0 + 70 + 48 + 70 + 48 Reactant Product 1 20 298 )6000( − +=∆ −− =∆ ∆− =∆ JKS S T H S surr surr surr 1 )tan()( 22 7048 − −=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys 1 22022 − −=+−=∆ ∆+∆=∆ JKS SSS uni surrsysuni ∆H = -6 kJ = - 6000J surrsysuni SSS ∆+∆=∆ S /JK-1 +ve -ve non - spontaneous ∆Ssys = - 22 ∆Ssurr = + 20 =+ ∆Suni= - 2 ∆S uni > 0 (+ve) Spontaneous→ ∆S uni < 0 (-ve) Non spontaneous→ Is Freezing water to ice at 298K (25C) spontaneous? Assume Q = H at constant pressure
  • 40. Entropy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Entropy Thermodynamic Entropy Gas mixesSolution diffuse Heat flow hot →cold X X X 1 Quatitatively T H T Q Ssurr ∆− ==∆ Quatitatively Entropy sys decrease - More order - Solid form↓ ↓ Entropy surr increase - Heat released increase motion surr particles↑ ↑ ↓ Heat release by sys to surr increase entropy surr↑ ↓ ∆S surr > ∆S sys (More +ve) ↓ ∆S uni = ∆S sys + ∆S surr ↓ ∆S uni > 0 - Freezing at 263K (-10C) - Spontaneous surrsysuni SSS ∆+∆=∆ )tan()( treacprosys SSS ∑−∑=∆ H2O (l) H→ 2O(s) ∆H = - 6 kJ at 263K H2O (l) H→ 2O(s) S0 + 70 + 48 + 70 + 48 Reactant Product 1 8.22 263 )6000( − +=∆ −− =∆ ∆− =∆ JKS S T H S surr surr surr 1 )tan()( 22 7048 − −=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys 1 8.08.2222 − +=+−=∆ ∆+∆=∆ JKS SSS uni surrsysuni ∆H = -6 kJ = - 6000J surrsysuni SSS ∆+∆=∆ S /JK-1 +ve -ve spontaneous ∆Ssys = - 22 ∆Ssurr = + 22.8 =+ ∆Suni= + 0.8 ∆S uni > 0 (+ve) Spontaneous→ ∆S uni < 0 (-ve) Non spontaneous→ Is Freezing water to ice at 263K (-10C) spontaneous? Assume Q = H at constant pressure
  • 41. Entropy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Entropy Thermodynamic Entropy Gas mixesSolution diffuse Heat flow hot →cold X X X 1 Quatitatively T H T Q Ssurr ∆− ==∆ Quatitatively Entropy sys increase - More disorder - Gas form↑ ↓ Entropy surr decrease - Heat absorb decrease motion surr particles↓ ↓ ↓ Heat absorb by sys from surr decrease entropy surr↓ ↓ ∆S surr < ∆S sys (More -ve) ↓ ∆S uni = ∆S sys + ∆S surr ↓ ∆S uni < 0 - Decomposition at 298K - Non Spontaneous surrsysuni SSS ∆+∆=∆ )tan()( treacprosys SSS ∑−∑=∆ CaCO3 (s) CaO→ (s) + CO2(g) ∆H = + 178 kJ at 298K CaCO3 (s) CaO→ (s) + CO2(g) S0 + 93 + 40 + 213 + 93 + 253 Reactant Product 1 597 298 )178000( − −=∆ +− =∆ ∆− =∆ JKS S T H S surr surr surr 1 )tan()( 160 93253 − +=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys 1 437597160 − −=−+=∆ ∆+∆=∆ JKS SSS uni surrsysuni ∆H = + 178 kJ =+ 178 000J surrsysuni SSS ∆+∆=∆ S /JK-1 +ve -ve non - spontaneous ∆Ssys = + 160 ∆Ssurr = - 597 =+ ∆Suni= - 437 ∆S uni > 0 (+ve) Spontaneous→ ∆S uni < 0 (-ve) Non spontaneous→ Decomposition CaCO3 at 298K (25C) spontaneous? Assume Q = H at constant pressure
  • 42. Entropy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Entropy Thermodynamic Entropy Gas mixesSolution diffuse Heat flow hot →cold X X X 1 Quatitatively T H T Q Ssurr ∆− ==∆ Quatitatively Entropy sys increase - More disorder - Gas form↑ ↓ Entropy surr decrease - Heat aborb decrease motion surr particles↓ ↓ ↓ Heat absorb by sys from surr decrease entropy surr↓ ↓ ∆S sys > ∆S surr (More +ve) ↓ ∆S uni = ∆S sys + ∆S surr ↓ ∆S uni > 0 - Decomposition at 1500K - Spontaneous surrsysuni SSS ∆+∆=∆ )tan()( treacprosys SSS ∑−∑=∆ CaCO3 (s) CaO→ (s) + CO2(g) ∆H = + 178 kJ at 1500K CaCO3 (s) CaO→ (s) + CO2(g) S0 + 93 + 40 + 213 + 93 + 253 Reactant Product 1 118 1500 )178000( − −=∆ +− =∆ ∆− =∆ JKS S T H S surr surr surr 1 )tan()( 160 93253 − +=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys 1 42118160 − +=−+=∆ ∆+∆=∆ JKS SSS uni surrsysuni ∆H = + 178 kJ =+ 178 000J surrsysuni SSS ∆+∆=∆ S /JK-1 +ve -ve spontaneous ∆Ssys = + 160 ∆Ssurr = - 118 =+ ∆Suni = + 42 ∆S uni > 0 (+ve) Spontaneous→ ∆S uni < 0 (-ve) Non spontaneous→ Decomposition CaCO3 at 1500K (1227C) spontaneous? Assume Q = H at constant pressure
  • 43. Entropy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Entropy Thermodynamic Entropy Gas mixesSolution diffuse Heat flow hot →cold X X X 1 Quatitatively T H T Q Ssurr ∆− ==∆ Quatitatively Entropy sys decrease - More order - Less gas form↓ ↓ Entropy surr increase - Heat release increase motion surr particles↑ ↑ ↓ Heat release by sys to surr increase entropy surr↑ ↓ ∆S surr > ∆S sys (More +ve) ↓ ∆S uni = ∆S sys + ∆S surr ↓ ∆S uni > 0 - Oxidation at 298K - Spontaneous surrsysuni SSS ∆+∆=∆ )tan()( treacprosys SSS ∑−∑=∆ 2NO(g) + O2(g) 2NO→ 2(g) ∆H = - 114 kJ at 298K 2 NO(g) + O2 (g) 2NO→ 2(g) S0 + 210 x 2 + 102 + 240 x 2 + 522 + 480 Reactant Product 1 382 298 )114000( − +=∆ −− =∆ ∆− =∆ JKS S T H S surr surr surr 1 )tan()( 42 522480 − −=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys 1 33938242 − +=+−=∆ ∆+∆=∆ JKS SSS uni surrsysuni ∆H = - 114 kJ = - 114 000J surrsysuni SSS ∆+∆=∆ S /JK-1 +ve -ve spontaneous ∆Ssys = - 42 ∆Ssurr = + 382 =+ ∆Suni = + 339 ∆S uni > 0 (+ve) Spontaneous→ ∆S uni < 0 (-ve) Non spontaneous→ Is Oxidation of NO at 298K (25C) spontaneous? Assume Q = H at constant pressure
  • 44. Entropy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Entropy Thermodynamic Entropy Gas mixesSolution diffuse Heat flow hot →cold X X X 1 Quatitatively T H T Q Ssurr ∆− ==∆ Quatitatively Entropy sys decrease - More order - Less gas form↓ ↓ Entropy surr increase - Heat release increase motion surr particles↑ ↑ ↓ Heat release by sys to surr increase entropy surr↑ ↓ ∆S surr > ∆S sys (More +ve) ↓ ∆S uni = ∆S sys + ∆S surr ↓ ∆S uni > 0 - NH3 production at 298K - Spontaneous surrsysuni SSS ∆+∆=∆ )tan()( treacprosys SSS ∑−∑=∆ N2(g) + 3H2(g) 2NH→ 3(g) ∆H = - 92 kJ at 298K N2(g) + 3H2 (g) 2NH→ 3(g) S0 + 192 + 131 x 3 + 192 x 2 + 585 + 384 Reactant Product 1 308 298 )92000( − +=∆ −− =∆ ∆− =∆ JKS S T H S surr surr surr 1 )tan()( 201 585384 − −=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys 1 107308201 − +=+−=∆ ∆+∆=∆ JKS SSS uni surrsysuni ∆H = - 92 kJ = - 92 000J surrsysuni SSS ∆+∆=∆ S /JK-1 +ve -ve spontaneous ∆Ssys = - 201 ∆Ssurr = + 308 =+ ∆Suni = + 107 ∆S uni > 0 (+ve) Spontaneous→ ∆S uni < 0 (-ve) Non spontaneous→ Is Haber, NH3 production 298K (25C) spontaneous? Assume Q = H at constant pressure NH3
  • 45. Entropy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Entropy Thermodynamic Entropy Gas mixesSolution diffuse Heat flow hot →cold X X X 1 Quatitatively T H T Q Ssurr ∆− ==∆ Quatitatively Entropy sys decrease - More order↓ ↓ Entropy surr increase - Heat release increase motion surr particles↑ ↑ ↓ Heat release by sys to surr increase entropy surr↑ ↓ ∆S surr > ∆S sys (More +ve) ↓ ∆S uni = ∆S sys + ∆S surr ↓ ∆S uni > 0 - AI production at 298K - Spontaneous surrsysuni SSS ∆+∆=∆ )tan()( treacprosys SSS ∑−∑=∆ Fe2O3(s) + 2AI(s) 2Fe→ (s) + AI2O3(s) ∆H = - 851 kJ at 298K + 143 + 105 Reactant Product 1 2855 298 )851000( − +=∆ −− =∆ ∆− =∆ JKS S T H S surr surr surr 1 )tan()( 38 143105 − −=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys 1 2817285538 − +=+−=∆ ∆+∆=∆ JKS SSS uni surrsysuni ∆H = - 851 kJ = - 851 000J surrsysuni SSS ∆+∆=∆ S /JK-1 +ve -ve spontaneous ∆Ssys = - 38 ∆Ssurr = + 2855 =+ ∆Suni = + 2817 ∆S uni > 0 (+ve) Spontaneous→ ∆S uni < 0 (-ve) Non spontaneous→ Is Thermite, AI production 298K (25C) spontaneous? Assume Q = H at constant pressure Fe2O3(s) + 2AI(s) 2Fe→ (s) + AI2O3(s) S0 + 87 + 28 x 2 + 27 x 2 + 51
  • 46. Entropy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Entropy Thermodynamic Entropy Gas mixesSolution diffuse Heat flow hot →cold X X X 1 Quatitatively T H T Q Ssurr ∆− ==∆ Quatitatively Entropy sys decrease - More order↓ ↓ Entropy surr increase - Heat release increase motion surr particles↑ ↓ Heat release by sys to surr increase entropy surr↑ ↓ ∆S surr > ∆S sys (More +ve) ↓ ∆S uni = ∆S sys + ∆S surr ↓ ∆S uni > 0 - Decomposition KCIO3 at 298K - Spontaneous surrsysuni SSS ∆+∆=∆ )tan()( treacprosys SSS ∑−∑=∆ 4KCIO3(s) 3KCIO→ 4(s) + KCI(s) ∆H = - 144 kJ at 298K + 572 + 535 Reactant Product 1 483 298 )144000( − +=∆ −− =∆ ∆− =∆ JKS S T H S surr surr surr 1 )tan()( 37 572535 − −=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys 1 44648337 − +=+−=∆ ∆+∆=∆ JKS SSS uni surrsysuni ∆H = - 144 kJ = - 144 000J surrsysuni SSS ∆+∆=∆ S /JK-1 +ve -ve spontaneous ∆Ssys = - 37 ∆Ssurr = + 483 =+ ∆Suni = + 446 ∆S uni > 0 (+ve) Spontaneous→ ∆S uni < 0 (-ve) Non spontaneous→ Is decomposition KCIO3 298K (25C) spontaneous? Assume Q = H at constant pressure ∆S/∆H constant over range of temp 4KCIO3(s) 3KCIO→ 4(s) + KCI(s) S0 + 143 x 4 + 151 x 3 + 82
  • 47. Entropy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Entropy Thermodynamic Entropy Gas mixesSolution diffuse Heat flow hot →cold X X X 1 Quatitatively T H T Q Ssurr ∆− ==∆ Quatitatively Entropy sys increase - More disorder↑ ↓ Entropy surr increase - Heat release increase motion particles↑ ↑ ↓ Heat release by sys to surr increase entropy surr↑ ↓ ∆S surr + ∆S sys > 0 (More +ve) ↓ ∆S uni = ∆S sys + ∆S surr ↓ ∆S uni > 0 Combustion sugar at 298K - Spontaneous surrsysuni SSS ∆+∆=∆ )tan()( treacprosys SSS ∑−∑=∆ C6H12O6(s) + 6O2 (g) 6CO→ 2(g) + 6H2O(l) ∆H = - 2810 kJ at 298K + 821 + 1698 Reactant Product 1 9430 298 )2810000( − +=∆ −− =∆ ∆− =∆ JKS S T H S surr surr surr 1 )tan()( 877 8211698 − +=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys 1 103079430877 − +=++=∆ ∆+∆=∆ JKS SSS uni surrsysuni ∆H = - 2810 kJ = - 2810 000J surrsysuni SSS ∆+∆=∆ S /JK-1 +ve -ve spontaneous ∆Ssys = + 877 ∆Ssurr = + 9430 =+ ∆Suni = + 10307 ∆S uni > 0 (+ve) Spontaneous→ ∆S uni < 0 (-ve) Non spontaneous→ Is combustion sugar 298K (25C) spontaneous? Assume Q = H at constant pressure ∆S/∆H constant over range of temp C6H12O6 (s) + 6O2(g) 6CO→ 2(g) + 6H2O(l) S0 + 209 +102 x 6 + 213 x 6 + 70 x 6
  • 48. Entropy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Predict entropy change - quatitatively Gas mixesSolution diffuse Heat flow hot →cold X X X Reactant Product CH4(g) + 2O2 (g) CO→ 2(g) + 2H2O(l) CH4(g) + 2 O2 (g) CO→ 2(g) + 2 H2O(l) ∆Hf 0 - 74 0 - 393 - 286 x 2 S0 + 186 +205 x 2 + 213 + 70 x 2 ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react)∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) 1 )tan()( 243 596353 − −=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys 1 2990 298 )891000( − +=∆ −− =∆ ∆− =∆ JKS S T H S surr surr surr kJHsys 891)74(965 −=−−−=∆ surrsysuni SSS ∆+∆=∆ 1 27472990243 − +=+−=∆ ∆+∆=∆ JKS SSS uni surrsysuni Is Combustion at 298K spontaneous? Unit for ∆S - JK-1 Unit for ∆H - kJ ∆S uni = ∆S sys + ∆S surr ↓ ∆S uni > 0 - Combustion at 298K - Spontaneous C3H8(g) + 5O2 (g) 3CO→ 2(g) + 4H2O(l) C3H8(g) + 5 O2 (g) 3 CO→ 2(g) + 4 H2O(l) ∆Hf 0 - 104 0 - 393 x 3 - 286 x 4 S0 +270 +205 x 5 +213 x 3 + 70 x 4 Reactant Product ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) 1 )tan()( 376 1295919 − −=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys kJHsys 2219)104(2323 −=−−−=∆ 1 7446 298 )2219000( − +=∆ −− =∆ ∆− =∆ JKS S T H S surr surr surr surrsysuni SSS ∆+∆=∆ 1 70707446376 − +=+−=∆ ∆+∆=∆ JKS SSS uni surrsysuni ∆S uni = ∆S sys + ∆S surr ↓ ∆S uni > 0 - Combustion at 298K - Spontaneous 1 2
  • 49. Entropy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Predict entropy change - quatitatively Gas mixesSolution diffuse Heat flow hot →cold X X X Reactant Product ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react)∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) 1 )tan()( 118 18870 − −=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys 1 148 298 )44000( − +=∆ −− =∆ ∆− =∆ JKS S T H S surr surr surr kJHsys 44)242(286 −=−−−=∆ surrsysuni SSS ∆+∆=∆ 1 30148118 − +=+−=∆ ∆+∆=∆ JKS SSS uni surrsysuni Is Condensation/Freezing at 298K spontaneous? ∆S uni = ∆S sys + ∆S surr ↓ ∆S uni > 0 - Condensation at 298K - Spontaneous Reactant Product ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) 1 )tan()( 22 7048 − −=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys kJHsys 6)286(292 −=−−−=∆ 1 20 298 )6000( − +=∆ −− =∆ ∆− =∆ JKS S T H S surr surr surr surrsysuni SSS ∆+∆=∆ 1 22022 − −=+−=∆ ∆+∆=∆ JKS SSS uni surrsysuni ∆S uni = ∆S sys + ∆S surr ↓ ∆S uni < 0 -Freezing at 298K - Non Spontaneous 3 4H2O (g) H→ 2O(l) H2O (l) H→ 2O(s) H2O (g) H→ 2O(l) ∆Hf 0 - 242 - 286 S0 + 188 + 70 H2O (l) H→ 2O(s) ∆Hf 0 - 286 - 292 S0 + 70 + 48
  • 50. Entropy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Predict entropy change - quatitatively Gas mixesSolution diffuse Heat flow hot →cold X X X Reactant Product ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react)∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) 1 308 298 )92000( − +=∆ −− =∆ ∆− =∆ JKS S T H S surr surr surr kJHsys 92)0(92 −=−−=∆ surrsysuni SSS ∆+∆=∆ 1 107308201 − +=+−=∆ ∆+∆=∆ JKS SSS uni surrsysuni Are these rxn at 298K spontaneous? ∆S uni = ∆S sys + ∆S surr ↓ ∆S uni > 0 - NH3 production at 298K - Spontaneous Reactant Product ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) kJHsys 168)1564(1732 −=−−−=∆ 1 563 298 )168000( − +=∆ −− =∆ ∆− =∆ JKS S T H S surr surr surr surrsysuni SSS ∆+∆=∆ 1 52656337 − +=+−=∆ ∆+∆=∆ JKS SSS uni surrsysuni ∆S uni = ∆S sys + ∆S surr ↓ ∆S uni > 0 - Decomposition at 298K - Spontaneous 5 6N2(g) + 3H2(g) 2NH→ 3(g) N2(g) + 3H2 (g) 2NH→ 3(g) ∆Hf 0 0 0 - 46 x 2 S0 + 192 + 131 x 3 + 192 x 2 1 )tan()( 201 585384 − −=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys 4KCIO3(s) 3KCIO→ 4(s) + KCI(s) 4KCIO3(s) 3KCIO→ 4(s) + KCI(s) ∆Hf 0 - 391 x 4 - 432 x 3 - 436 S0 + 143 x 4 + 151 x 3 + 82 1 )tan()( 37 572535 − −=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys
  • 51. 1 118 1500 )178000( − −=∆ +− =∆ ∆− =∆ JKS S T H S surr surr surr Entropy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Predict entropy change - quatitatively Gas mixesSolution diffuse Heat flow hot →cold X X X Reactant Product ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react)∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) kJHsys 178)1206(1028 +=−−−=∆ surrsysuni SSS ∆+∆=∆ 1 437597160 − −=−+=∆ ∆+∆=∆ JKS SSS uni surrsysuni ∆S uni = ∆S sys + ∆S surr ↓ ∆S uni < 0 - Decomposition at 298K - Non Spontaneous Reactant Product ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) surrsysuni SSS ∆+∆=∆ 1 42118160 − +=−+=∆ ∆+∆=∆ JKS SSS uni surrsysuni ∆S uni = ∆S sys + ∆S surr ↓ ∆S uni > 0 - Decomposition at 1500K - Spontaneous 7 8CaCO3 (s) CaO→ (s) + CO2(g) CaCO3 (s) CaO→ (s) + CO2(g) ∆Hf 0 - 1206 - 635 - 393 S0 + 93 + 40 + 213 1 )tan()( 160 93253 − +=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys Decomposition at 298K Decomposition at 1500K CaCO3 (s) CaO→ (s) + CO2(g) CaCO3 (s) CaO→ (s) + CO2(g) ∆Hf 0 - 1206 - 635 - 393 S0 + 93 + 40 + 213 1 )tan()( 160 93253 − +=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys kJHsys 178)1206(1028 +=−−−=∆ Rxn Temp dependent Spontaneous at High Temp↑ 1500K (1227C)298K (25C) Decomposition limestone CaCO3 spontaneous? 1 597 298 )178000( − −=∆ +− =∆ ∆− =∆ JKS S T H S surr surr surr
  • 52. Entropy Why gas mixes and not unmix?Why conc solution diffuse and not undiffuse? Why heat flow from hot to cold? Predict entropy change - quatitatively Gas mixesSolution diffuse Heat flow hot →cold X X X Reactant Product ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react)∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) 1 )tan()( 22 7048 − −=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys kJHsys 6)286(292 −=−−−=∆ surrsysuni SSS ∆+∆=∆ 1 22022 − −=+−=∆ ∆+∆=∆ JKS SSS uni surrsysuni Is Freezing spontaneous? ∆S uni = ∆S sys + ∆S surr ↓ ∆S uni < 0 - Freezing at 298K - Non Spontaneous Reactant Product ∆Ssys θ = ∑Sf θ (pro) - ∑Sf θ (react) ∆Hsys θ = ∑∆Hf θ (pro) - ∑∆Hf θ (react) 1 )tan()( 22 7048 − −=∆ −=∆ −=∆ JKS S SSS sys sys treacproductsys kJHsys 6)286(292 −=−−−=∆ 1 8.22 263 )6000( − +=∆ −− =∆ ∆− =∆ JKS S T H S surr surr surr surrsysuni SSS ∆+∆=∆ 1 8.08.2222 − +=+−=∆ ∆+∆=∆ JKS SSS uni surrsysuni ∆S uni = ∆S sys + ∆S surr ↓ ∆S uni > 0 -Freezing at 263K - Spontaneous 9 10H2O (l) H→ 2O(s) H2O (l) H→ 2O(s) H2O (l) H→ 2O(s) ∆Hf 0 - 286 - 292 S0 + 70 + 48 H2O (l) H→ 2O(s) ∆Hf 0 - 286 - 292 S0 + 70 + 48 Freezing at 298K (25C) Freezing at 263K (-10C) Rxn Temp dependent Spontaneous at Low temp↓ 1 20 298 )6000( − +=∆ −− =∆ ∆− =∆ JKS S T H S surr surr surr 263K (-10C)298K (25C)