• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
IB Chemistry on Uncertainty, significant figures and scientific notation
 

IB Chemistry on Uncertainty, significant figures and scientific notation

on

  • 512 views

IB Chemistry on Uncertainty, significant figures and scientific notation

IB Chemistry on Uncertainty, significant figures and scientific notation

Statistics

Views

Total Views
512
Views on SlideShare
227
Embed Views
285

Actions

Likes
0
Downloads
3
Comments
0

27 Embeds 285

http://lawrencekok.blogspot.com 86
http://lawrencekok.blogspot.kr 47
http://lawrencekok.blogspot.co.uk 35
http://lawrencekok.blogspot.hk 32
http://lawrencekok.blogspot.ca 12
http://lawrencekok.blogspot.sg 11
http://lawrencekok.blogspot.in 10
http://lawrencekok.blogspot.com.br 8
http://lawrencekok.blogspot.ch 5
http://lawrencekok.blogspot.de 5
http://lawrencekok.blogspot.fr 4
http://lawrencekok.blogspot.dk 4
http://lawrencekok.blogspot.cz 3
http://lawrencekok.blogspot.jp 3
http://www.lawrencekok.blogspot.in 2
http://lawrencekok.blogspot.se 2
http://lawrencekok.blogspot.mx 2
http://lawrencekok.blogspot.com.au 2
http://lawrencekok.blogspot.no 2
http://lawrencekok.blogspot.nl 2
http://lawrencekok.blogspot.co.nz 2
http://lawrencekok.blogspot.com.es 1
http://lawrencekok.blogspot.ie 1
http://lawrencekok.blogspot.co.il 1
http://lawrencekok.blogspot.ru 1
http://lawrencekok.blogspot.it 1
http://lawrencekok.blogspot.com.ar 1
More...

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

CC Attribution-NonCommercial-ShareAlike LicenseCC Attribution-NonCommercial-ShareAlike LicenseCC Attribution-NonCommercial-ShareAlike License

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    IB Chemistry on Uncertainty, significant figures and scientific notation IB Chemistry on Uncertainty, significant figures and scientific notation Presentation Transcript

    • Significant figures Used in measurements Degree of precision Show digits believed to be correct/certain + 1 estimated/uncertain All reads 80 80 80.0 80.00 80.000 least precise more precise Certain 23.00 Uncertain 5 Zeros bet (significant) 4.109 = 4sf 902 = 3sf 5002.05 = 6sf Zeros after decimal point (significant) 4.580 = 4 sf 9.30 = 3sf 86.90000 = 7sf 3.040 = 4sf 67.030 = 5sf measurement 15.831g 23.005g (15.831 ± 0.001)g (5 sig figures) Rules for significant figures All non zero digit (significant) 31.24 = 4 sf 563 = 3 sf 23 = 2sf Number sf necessary to express a measurement • Consistent with precision of measurement • Precise equipment = Measurement more sf • Last digit always an estimate/uncertain Zero right of decimal point and following a non zero digit (significant) 0.00500 = 3sf 0.02450 = 4sf 0.04050 = 4sf 0.50 = 2sf Deals with precision NOT accuracy!!!!!!!! Precise measurement doesnt mean, it’s accurate ( instrument may not be accurate) Zeros to left of digit (NOT significant) 0.0023 = 2sf 0.000342 = 3sf 0.00003 = 1sf Zero without decimal (ambiguous) 80 = may have 1 or 2 sf 500 = may have 1 or 3 sf Click here and here for notes on sig figures
    • Significant figures 1 22 Smallest division = 0.1 22 Max = 21.63 2 Certain 21.6 Uncertainty = 1/10 of smallest division. = 1/10 of 0.1 = 1/10 x 0.1 = ±0.01 3 Certain = 21.6 4 Uncertain = 21.62 ±0.01 5 (21.62 ±0.01) Measurement = Certain digits + 1 uncertain digit Min = 21.61 Answer = 21.62 (4 sf) 21.6 (certain) 1 Smallest division = 1 2 Uncertainty = 1/10 of smallest division. = 1/10 of 1 = 1/10 x 1 = ±0.1 2 (uncertain) Certain 36 3 Certain = 36 4 Measurement = Certain digits + 1 uncertain digit (36.5 ±0.1) Uncertain = 36.5 ±0.1 5 Max = 36.6 Min = 36.4 Answer = 36.5 (3 sf) 36. 5 (certain) (uncertain)
    • Significant figures 1 Smallest division = 10 Max = 47 2 Certain 40 Uncertainty = 1/10 of smallest division. = 1/10 of 10 = 1/10 x 10 = ±1 3 Certain = 40 4 Uncertain = 46 ±1 5 (46 ±1) Measurement = Certain digits + 1 uncertain digit Min = 45 Answer = 46 (2 sf) 4 (certain) 1 Certain 3.4 Smallest division = 0.1 2 Uncertainty = 1/10 of smallest division. = 1/10 of 0.1 = 1/10 x 0.1 = ±0.01 3 Certain = 3.4 4 Uncertain = 3.41±0.01 5 Measurement = Certain digits + 1 uncertain digit 6 (uncertain) Max = 3.42 (3.41 ±0.01) Min = 3.40 Answer = 3.41 (3sf) 3.4 (certain) 1 (uncertain)
    • Significant figures 1 Smallest division = 0.05 Max = 0.48 0.1 2 0.2 0.3 Certain 0.45 Uncertainty = 1/10 of smallest division. = 1/10 of 0.05 = 1/10 x 0.05 = ±0.005 (±0.01) Certain = 0.45 Uncertain = 0.47 ± 0.01 5 0.5 3 4 0.4 (0.47 ±0.01) Measurement = Certain digits + 1 uncertain digit Min = 0.46 Answer = 0.47 (2 sf) 0.4 (certain) Measurement 1 Smallest division = 0.1 2 Uncertainty = 1/10 of smallest division. = 1/10 of 0.1 = 1/10 x 0.1 = ±0.01 3 Certain = 5.7 4 Uncertain = 5.72 ± 0.01 (5.72 ±0.01) Answer = 5.72 (3sf) 5.7 (certain) 2 (uncertain) 1 Smallest division = 1 2 Uncertainty = 1/10 of smallest division. = 1/10 of 1 = 1/10 x 1 = ±0.1 3 Certain = 3 4 Uncertain = 3.0 ± 0.1 (3.0 ±0.1) Answer =3.0 (2 sf) 3 0 (certain) (uncertain) 7 (uncertain)
    • Scientific notation How many significant figures Written as a = 1 to 9 Number too big/small b = integer 3 sf Scientific  notation  a 10b 6,720,000,000  6.72109 Size sand 4 sf 0.0000000001254  1.2541010 3 sf Speed of light  3.00108 300000000 Scientific notation 80 3 ways to write 80 80 How many significant figures 4.66 x 4660000 10 6 3 sf 4.660 x 10 6 5 sf 80. – 8.0 x 101 – (2sf) Digit 8 is certain It can be 79 to 81 80.0 80.0 – 8.00 x 101 – (3sf) Digit 80 is certain It can be 79.9 or 80.1 4 sf 4.6600 x 10 6 80 – 8 x 101 – (1sf) Digit 8 uncertain It can be 70 to 90 80. 90 or 9 x 101 80 or 8 x 101 70 or 7 x 101 81 or 8.1 x 101 80 or 8.0 x 101 79 or 7.9 x 101 80.1 or 8.01 x 101 80.0 or 8.00 x 101 79.9 or 7.99 x 101 More precise Click here practice scientific notation Click here practice scientific notation ✔
    • Rules for sig figures addition /subtraction: • Last digit retained is set by the first doubtful digit. • Number decimal places be the same as least number of decimal places in any numbers being added/subtracted 23.112233 1.3324 + 0.25 24.694633 uncertain least number decimal places round down 4.7832 1.234 + 2.02 8.0372 uncertain least number decimal places round down 1247 134.5 450 + 78 1909.5 uncertain least number decimal places 1.0236 - 0.97268 0.05092 8.04 4.2 2.32 + 0.6157 7.1357 least number decimal places uncertain round down 0.03 3 x 10-2 (1sf) 1.910 x 103 (4sf) uncertain least number decimal places 5.09 x 10-2 (3sf) least number decimal places 68.7 - 68.42 0.28 uncertain 7.987 - 0.54 7.447 uncertain least number decimal places round up round down 0.3 16.96 7.1 x 100 (2sf) round up 12.587 4.25 + 0.12 16.957 0.0509 round up 7.1 1.367 - 1.34 0.027 1910 8.04 x 100 (3sf) 2.469 x 101 (4sf) uncertain round down round up 24.69 least number decimal places 1.696 x 101 (4sf) uncertain least number decimal places 2.300 x 103 + 4.59 x 103 6.890 x 103 7.45 3 x 10-1 (1sf) least number decimal places 7.45 x 100 (3sf) Convert to same exponent 47.68 x 104 + 23.2 x 103 476.8 x 103 + 23.2 x 103 500.0 x 103 round up 6.89 x 103 6.89 x 103 (3sf) 500.0 x 103 5.000 x 105 least number decimal places
    • Rules for sig figures - multiplication/division • Answer contains no more significant figures than the least accurately known number. 12.34 3.22 x 1.8 71.52264 23.123123 x 1.3344 30.855495 least sf (2sf) round up 21.45 x 0.023 0.49335 least sf (5sf) round down round down 30.855 72 7.2 x 101 (2sf) 3.0855 x 101 (5sf) 16.235 0.217 x 5 17.614975 least sf (1sf) round up 4.52 ÷ 6.3578 7.1093775 0.00435 x 4.6 0.02001 923 ÷ 20312 0.045441 1300 x 57240 round down 74412000 least sf (2sf) 0.020 7.11 x 100 (3sf) least sf (3sf) 4.6 x 100 (2sf) round down 7.11 2 x 101 (1sf) 4.6 4.9 x 10-1 (2sf) least sf (3sf) 2.0 x 10-2 (2sf) least sf (2sf) Scientific notation least sf (2sf) round up 0.49 round up 20 2.8723 x I.6 4.59568 least sf (2sf) 6305 ÷ 0.010 630500 least sf (2sf) round down 630000 6.3 x 105 (2sf) I.3*103 x 5.724*104 7.4412 x 107 round down 0.0454 74000000 7.4 x 107 4.54 x 10-2 (3sf) Click here for practice notes on sig figures
    • Rules for sig figures – Multiplication/Division/Addition/Subtraction Answer contains no more significant figures than the least accurately known number. Avoid rounding off error. • • 0.0000673 x 291 ÷ 0.125 = ? least sf (3sf) 0.0000673 x 291 0.0195843 0.0000673 x 291 0.0195843 Intermediate step – leave more sf DO NOT ROUND UP/DOWN intermediate steps Leave extra sf to avoid rounding off error 0.0195843 ÷ 0.125 0.15632 ROUND UP/DOWN intermediate step 0.0196 ÷ 0.125 0.1568 round down ✔ 0.156 1.56 x 10-1 round up Rounding off error (3sf) ✗ 0.157 1.57 x 10-1 (3sf) (21.5 + 21.53 + 22.548 ) x 8.45 = ? least number decimal places 21.5 21.53 + 22.548 65.578 Intermediate step – leave more sf 65.578 x 8.45 554.1341 round down 554 least number decimal places ✔ 5.54 x 102 (3sf) DO NOT ROUND UP/DOWN Leave extra sf to avoid rounding off error least sf (3sf) ROUND UP/DOWN intermediate step least sf (3sf) 21.5 21.53 22.548 65.578 65.5 x 8.45 553.47 round down 553 ✗ 5.53 x 102 (3sf)
    • Significant figures in measurement Recording measurement using significant figures Radius, r = 2.15 cm Volume, V = 4/3πr3 V = 4/3 x π x (2.15)3 = 4/3 x 3.14 x 2.15 x 2.15 x 2.15 = 41.60 4/3 – constant π – constant sf is not taken (not a measurement) least sf (3sf) round down 41.6 Recording measurement using significant figures Radius, r = 3.0 cm Circumference, C = 2πr 2 and π – constant sf is not taken (not a measurement) C = 2 x π x (3.0) = 2 x 3.14 x 3.0 = 18.8495 least sf (2sf) round up 19 Recording measurement using significant figures Time, t = 2.25 s Displacement, s = ½ gt2 s = 1/2 x 9.8 x (2.25)2 = 24.80625 g and ½ – constant sf is not taken (not a measurement) least sf (3sf) round down 24.8 Recording measurement using significant figures G = (20 ) H = (16 ) Z = (106) Speed, s = (G + H) Z 20 + 16 = 36 ÷ 106 0.339 least sf (2sf) round down 0.34
    • Significant figures in measurement Recording measurement using significant figures Length, I = 1.25 m Period, T = 2π √L √g least sf (3sf) T = 2 x π x √(1.25/9.8) = 2 x 3.14 x 0.35714 = 2.24399 round down 2.24 Recording measurement using significant figures Length, I = 4.52 cm Height, h = 2.0 cm Area, A = I x h 4.52 x 2.0 9.04 least sf (2sf) round down 9.0 Recording measurement using significant figures Conc, c = (2.00) M Volume, v = (2.0 )dm3 Moles, n = Conc x Vol 2.00 x 2.0 4.00 least sf (2sf) round down 4.0 2, π and g – constant sf is not taken (not a measurement)
    • Significant figures in measurement Recording measurement using significant figures Density = Mass Volume Mass, m = 482.63g Volume, v = 258 cm3 482.63 ÷ 258 1.870658 least sf (3sf) round down 1.87 Recording measurement using significant figures Enthalpy, H = m x c x ΔT Mass water, m = 2.00 g ΔTemp, ΔT = 2.0 C x 2.00 4.18 2.0 16.72 c (4.18) - constant sf is not taken (not a measurement) least sf (2sf) round up Recording measurement using significant figures Volt, v = 2.0 V Current, I = 3.0A Time, t = 4.52s 17 tI2 Energy  1/ 2 v 4.52 3.0 x 3.0 40.68 ÷ 1.414 28.769 round up 29 least sf (2sf)