SlideShare a Scribd company logo
1 of 17
Download to read offline
Dynamic Equilibrium 
Closed system 
Reversible 
Forward Rate, Kf 
Reverse Rate, Kr 
2NO2(g) N2O4(g) 
Chemical system 
Forward rate rxn Rate Combining 
Backward rate rxn Rate dissociation 
Reversible rxn happening, same time with same rate 
Rate of forward = Rate of backward 
Conc of reactant and product remain UNCHANGED/CONSTANT not EQUAL 
combining 
dissociation 
Conc vs time 
Rate vs time 
Conc 
Time 
Conc NO2 
Conc N2O4 
With time 
•Conc NO2 decrease - Forward rate decrease 
•Conc N2O4 increase - Backward rate increase 
2NO2(g) N2O4(g) 
Forward rate 
Backward rate 
Forward Rate = Backward Rate 
Conc NO2 and N2O4 remain UNCHANGED/CONSTANT 
brown 
colourless
How dynamic equilibrium is achieved in closed system? 
Conc of NO2 decrease ↓over time 
Forward rate, Kf decrease ↓ over time 
Forward Rate = Reverse Rate 
NO2 
2NO2(g) N2O4(g) 
Conc of N2O4 increase ↑ over time 
N2O4 
Reverse rate, Kr increase ↑ over time 
NO2 
N2O4 
1 
2 
Conc of reactant/product remain constant 
Rate 
3 
Time 
Conc 
NO2 
N2O4 
At dynamic equilibrium 
As reaction proceeds Concentration 
As reaction proceeds Rate 
Time 
Click here to view simulation
Conc vs Time 
How dynamic equilibrium is achieved in a closed system? 
40 0 
Rate forward = ½ breakdown = ½ x 40 = 20 
Rate reverse = ¼ form = ¼ x 0 = 0 
20 20 
Rate forward = ½ breakdown = ½ x 20 = 10 
Rate reverse = ¼ form = ¼ x 20 = 5 
15 25 
Rate forward = ½ breakdown = ½ x 15 = 8 
Rate reverse = ¼ form = ¼ x 25 = 6 
13 27 
Rate forward = ½ breakdown = ½ x 13 = 7 
Rate reverse = ¼ form = ¼ x 27 = 7 
13 27 
At dynamic Equilibrium 
Rate forward = Rate reverse 
Breakdown (7) = Formation (7) 
At dynamic Equilibrium 
Conc reactant 13 /Product 27 constant 
Rate vs Time 
1/ 4 
1/ 2 
.. tan .. 
.. tan .. 
1 
1   
 rate cons t reverse 
rate cons t forward 
K 
  K 
  
  
  
2 
13 
27 
tan 
   
reac t 
product 
Kc 2 
1/ 4 
1/ 2 
1 
1    
 K 
K 
Kc or
Dynamic Equilibrium 
Reversible (closed system) 
Forward Rate, K1 Reverse Rate, K-1 
Kc = ratio of molar conc of product (raised to power of their respective stoichiometry coefficient) 
to molar conc of reactant (raised to power of their respective stoichiometry coefficient) 
Conc of product and reactant 
at equilibrium 
At Equilibrium 
Forward rate = Backward rate 
Conc reactants and products remain 
CONSTANT/UNCHANGE 
Equilibrium Constant Kc 
aA(aq) + bB(aq) cC(aq) + dD(aq) 
coefficient 
Solid/liq not included in Kc 
Conc represented by [ ] 
K1 
K-1 
    
   a b 
c d 
c 
A B 
C D 
K  
1 
1 
 
 
K 
K 
Kc 
Equilibrium Constant Kc 
express in 
Conc vs time Rate vs time 
A + B 
C + D 
Conc 
Time 
Click here notes on dynamic equilibrium 
Excellent Notes 
rate cons t reverse 
rate cons t forward 
K 
K 
.. tan .. 
.. tan .. 
1 
1  

Large Kc 
• Position equilibrium shift to right 
• More products > reactants 
Magnitude of Kc 
    
   a b 
c d 
c 
A B 
C D 
K  
Extend of reaction 
How far rxn shift to right or left? 
Not how fast 
    
   a b 
c d 
c 
A B 
C D 
K  
Small Kc 
• Position equilibrium shift to left 
• More reactants > products 
  
 c  K c K 
Position of equilibrium 
2CO2(g) ↔ 2CO(g) + O2(g) 
92 3 10   c K 
2H2(g) + O2(g) ↔ 2H2O(g) 
81  310 c K 
H2(g) + I2(g) ↔ 2HI(g) 
2  8.710 c K 
1 
Kc 
• Position equilibrium lies slightly right 
• Reactants and products equal amount 
Reaction completion 
Reactant favoured Reactant/Product equal Product favoured 
c K 
Temp 
dependent 
Extend 
of rxn 
Not how fast
Equilibrium Constant Kc 
    
   a b 
c d 
c 
A B 
C D 
K  
aA(aq) + bB(aq) cC(aq) + dD(aq) 
Conc of product and reactant at equilibrium 
Equilibrium expression HOMOGENEOUS gaseous rxn 
4NH3(g) + 5O2(g) ↔ 4NO(g) + 6H2O(g) N2(g) + 3H2(g) ↔ 2NH3(g) 
NH4CI(s) ↔ NH3(g) + HCI(g) 
2SO2(g) + O2(g) ↔ 2SO3(g) 
    
   5 
2 
4 
3 
6 
2 
4 
NH O 
NO H O 
Kc  
  
   3 
2 
1 
2 
2 
3 
N H 
NH 
Kc  
   1 1 
3 K NH HCI c  
    
 0 
4 
1 1 
3 
NH CI 
NH HCI 
Kc  
  
   1 
2 
2 
2 
2 
3 
SO O 
SO 
Kc  
Equilibrium expression HETEROGENOUS rxn 
CaCO3(s) ↔ CaO(g) + CO2(g) 
    
 0 
3 
1 
2 
1 
CaCO 
CaO CO 
Kc  
   1 
2 
1 K CaO CO c  
CH3COOH(l) + C2H5OH(l) ↔ CH3COOC2H5(l) + H2O(l) 
    
   1 
2 5 
1 
3 
1 
2 
1 
3 2 5 
CH COOH C H OH 
CH COOC H H O 
Kc  
Equilibrium expression HOMOGENEOUS liquid rxn 
Cu2+ 
(aq) + 4NH3(aq) ↔ [Cu(NH3)4]2+ 
    
   4 
3 
2 1 
2 
3 4 ( ) 
Cu NH 
Cu NH 
Kc 
 
 
 
Reactant/product same phase 
Reactant/product diff phase
aA bB 
2aA 2bB 
bB aA 
aA bB 
aA bB 
  
 a 
b 
c 
A 
B 
K  
aA bB 
Equilibrium Constant Kc Equilibrium Constant Kc 
  
 b 
a 
c 
B 
A 
K  ' 
c 
c K 
K 
' 1  
inverse 
X2 coefficient 
' 2 
c c K  K 
coefficient 
2 
1 
  
  a 
b 
c 
A 
B 
K 
2 
1 
2 
1 
'  c c c K  K 2  K 
' 1 
  
 a 
b 
c 
A 
B 
K  
  
 a 
b 
c 
A 
B 
K  
  
  a 
b 
c 
A 
B 
K 2 
2 
'  
2 
1 
aA bB bB cC 
  
 a 
b 
ci 
A 
B 
K  
  
 b 
c 
cii 
B 
C 
K  
+ 2 reactions + aA cC 
  
  
  
  
  
 a 
c 
a 
b 
b 
c 
c 
A 
C 
A 
B 
B 
C 
K    ' 
c cii ci K  K  K ' 
Effect on Kc 
Inverse Kc 
Square Kc 
Square root c K 
Multiply both Kc 
2 
1 
cii K ci K
N2(g) + O2(g) ↔ 2NO(g) 
2NO(g) + O2(g) ↔ 2NO2(g) 
19 2.3 10   ci K 
6  310 cii K 
2NO2(g) ↔ N2(g) + 2O2(g) 
13 
19 6 
7 10 
2.3 10 3 10 
 
 
  
    
  
c 
c 
c ci cii 
K 
K 
N2(g) + 2O2(g) ↔ 2NO2(g) K K K 
13 7 10   c K 
' 12 
13 
' 
1.42 10 
7 10 
1 1 
  
 
   
c 
c 
c 
K 
K 
K 
HF(ag) ↔ H+ 
(aq) + F - 
(aq) 
H2C2O4(ag) ↔ 2H+ 
(aq) + C2O4 
2 - 
(aq) 
4 6.8 10   ci K 
6 3.8 10   cii K 
2HF(ag) + C2O4 
2- ↔ 2F - 
(aq) + H2C2O4(aq) 
2HF(ag) ↔ 2H+ 
(aq) + 2F - 
(aq) 
2H+ 
(ag) + C2O4 
2- ↔ H2C2O4(aq) 
' 2  4 2 7 6.8 10 4.6 10       c ci K K 
5 
6 
'' 2.6 10 
3.8 10 
1 1 
  
 
   
cii 
c K 
K 
4.6 10 2.6 10 0.12 7 5 
' '' 
     
  
 
c 
c c c 
K 
K K K 
Kc for diff rxn 
Adding 2 rxns 
+ 
Inverse rxn 
Adding 2 rxns 
2HF(ag) + C2O4 
2- ↔ 2F - 
(aq) + H2C2O4(aq) 
+ 
HF(ag) ↔ H+ 
(aq) + F - 
(aq) 
4 6.8 10   ci K 
x2 coefficient 
H2C2O4(ag) ↔ 2H+ 
(aq) + C2O4 
2 - 
Inverse rxn 
6 3.8 10   cii K 
2HF(ag) ↔ 2H+ 
(aq) + 2F - 
(aq) 
2H+ 
(ag) + C2O4 
2- ↔ H2C2O4(aq) 
Add 2 rxn 
' 7 4.6 10   c K 
'' 5  2.610 c + K 
Effect on Kc Effect on Kc 
Inverse rxn Inverts expression 
Doubling rxn coefficient Squares expression 
Tripling rxn coefficient Cubes expression 
Halving rxn coefficient Square root expression 
Adding 2 reactions Multiplies 2 expression 
c K 
1 
2 
c K 
3 
c K 
c K 
ii 
c 
i 
c K  K 
Square Kc 
Invert Kc 
Multiply Kc 
1 
2 
3 
N2(g) + 2O2(g) ↔ 2NO2(g)
H2 + I2 ↔ 2HI 
 50 c K 
  
   1 
2 
1 
2 
2 
H I 
HI 
Kc  
2HI ↔ H2 + I2 
    
 2 
1 
2 
1 
' 2 
HI 
H I 
Kc  
0.02 
50 
' 1 1    
c 
c K 
K 
2SO2 + O2 ↔ 2SO3 
  
   1 
2 
2 
2 
2 
3 
SO O 
SO 
Kc  
 200 c K 
SO2 + O2 ↔ SO3 
200 14.1 '    c c K K 
2 
1 
4SO2 + 2O2 ↔ 4SO3 
    
40000 
200 
, 
' 2 2 
 
  
c 
c c 
K 
K K 
N2(g) + 3H2(g) ↔ 2NH3(g) 
  
   3 
2 
1 
2 
2 
3 
N H 
NH 
Kc  
Kc is 170 at 500K 
Determine if rxn is at equilibrium when conc are at: 
[N2] =1.50, [H2] = 1.00, [NH3] = 8.00 
  
    
  
1.501.00 
8.00 
3 
2 
1 
2 
2 
3 
 
 
c 
c 
Q 
N H 
NH 
Q 
• Rxn not at equilibrium 
• Shift to right, favour product 
• Qc must increase, till equal to Kc 
IB Questions 
Determine Kc for inversing rxn 
inverse 
Determine Kc for halving rxn 
  
    
2 
1 
1 
2 
2 
2 
2 
3 
  
 
 
  
 
 
 
SO O 
SO 
Kc 
halving 
Determine Kc for doubling rxn 
2SO2 + O2 ↔ 2SO3 
doubling 
  
   1 
2 
2 
2 
2 
3 
SO O 
SO 
Kc  
 200 c K 
  
    
2 
1 
2 
2 
2 
2 
3 
  
 
 
  
 
 
 
SO O 
SO 
Kc 
1 2 
4 3 
 170 c  42.7 K c Q 
c c Q  K
Kc and Qc 
H2(g) + I2(g) ↔ 2HI(g) 
c K 
Constant at 
fixed Temp 
  
   1 
2 
1 
2 
2 
H I 
HI 
Kc  
At equilibrium 
Independent of 
initial conc 
Initial conc of H2 , I2 and HI 
 4.00 c Q 
  
   1 
2 
1 
2 
2 
H I 
HI 
Qc  
  
    
46.4 
1.14 10 0.12 10 
2.52 10 
2 1 2 1 
2 2 
 
  
 
 
  
 
c K  46.4 c K 
Expt Initial 
Conc H2 
Initial 
Conc I2 
Initial 
Conc HI 
1 0.0500 0.0500 0.100 
Initial conc of H2 , I2 and HI 
Expt Initial 
Conc H2 
Initial 
Conc I2 
Initial 
Conc HI 
1 2.40 x 10-2 1.38 x 10-2 0 
Expt Equilibrium 
Conc H2 
Equilibrium 
Conc I2 
Equilibrium 
Conc HI 
1 1.14 x 10-2 0.12 x 10-2 2.52 x 10-2 
At equilibrium conc 
Not at equilibrium 
H2(g) + I2(g) ↔ 2HI(g) 
  
   
4.00 
0.050 0.050 
0.100 2 
  c Q 
Predict the 
direction of rxn 
Difference between 
c Q 
Conc of 
product/reactant at 
equilibruim conc 
Reaction quotient 
at particular time 
Not at equilibrium 
conc 
Varies NOT constant
Kc and Qc 
H2(g) + I2(g) ↔ 2HI(g) 
  
   1 
2 
1 
2 
2 
H I 
HI 
Kc  
  
    
46.4 
1.14 10 0.12 10 
2.52 10 
2 1 2 1 
2 2 
 
  
 
 
  
 
c K  46.4 c K 
At equilibrium conc 
c c Q  K c c Q  K 
c c Q  K 
Reaction at 
equilibrium 
More product > reactant 
Rxn shift left more reactant 
→ 
c c Q  K 
 c Q 
Bring Qc down 
More reactant > product 
Rxn shift right → more product 
Bring Qc up  c Q 
c c Q  K 
 c Q 
Expt Initial 
Conc H2 
Initial 
Conc I2 
Initial 
Conc HI 
1 0.0500 0.0500 0.100 
Initial conc of H2 , I2 and HI 
  
   1 
2 
1 
2 
2 
H I 
HI 
Qc  
  
   
4.00 
0.050 0.050 
0.100 2 
  c Q 
 c Q 
Expt Initial 
Conc H2 
Initial 
Conc I2 
Initial 
Conc HI 
1 0.0250 0.0350 0.300 
Initial conc of H2 , I2 and HI 
  
   1 
2 
1 
2 
2 
H I 
HI 
Qc    
   
103 
0.0250 0.0350 
0.300 2 
  c Q 
Click here to view notes
Kc from reaction stoichiometry 
H2(g) + I2(g) ↔ 2HI(g) 
K  same  46.4 c 
  
   1 
2 
1 
2 
2 
H I 
HI 
Kc  
4 diff initial conc of H2 , I2 and HI At equilibrium Kc = 46.4 ( 730K) 
  
    
46.4 
1.14 10 0.12 10 
2.52 10 
2 1 2 1 
2 2 
 
  
 
 
  
 
c Rxn 1 K 
same 
Qc = Kc - rxn at equilibrium, no side/shift occur 
Qc < Kc – rxn shift right, favour product 
Qc > Kc – rxn shift left, favour reactant 
Rxn 2, 3, 4 
diff initial conc 
more products 
H2(g) + I2(g) ↔ 2HI(g) 
 c Q 
Rxn shift to right 
more reactants Rxn shift to left 
  
reac t 
product 
Qc 
tan 
 
  
reac t 
product 
Qc 
tan 
 
 c Q 
c c Q  K 
c c Q  K c c Q  K 
  
   1 
2 
1 
2 
2 
H I 
HI 
Kc 
Kc and Qc 
H2(g) + I2(g) ↔ 2HI(g) 
  
   1 
2 
1 
2 
2 
H I 
HI 
Kc  
 4.00 c Q   
   1 
2 
1 
2 
2 
H I 
HI 
Qc  
  
    
46.4 
1.14 10 0.12 10 
2.52 10 
2 1 2 1 
2 2 
 
  
 
 
  
 
c K  46.4 c K 
Expt Initial 
Conc H2 
Initial 
Conc I2 
Initial 
Conc HI 
1 0.0500 0.0500 0.100 
Initial conc of H2 , I2 and HI 
At equilibrium conc 
Not at equilibrium 
H2(g) + I2(g) ↔ 2HI(g) 
  
   
4.00 
0.050 0.050 
0.100 2 
  c Q 
c c Q  K c c Q  K 
Reaction at 
equilibrium 
More reactant > product 
Rxn shift right → more product 
Bring Qc up  c Q 
 c Q 
c c Q  K 
 4.00 c Q  46.4 c < K
Kc and Qc 
H2(g) + I2(g) ↔ 2HI(g) 
  
   1 
2 
1 
2 
2 
H I 
HI 
Kc  
 103 c Q 
  
   1 
2 
1 
2 
2 
H I 
HI 
Qc  
  
    
46.4 
1.14 10 0.12 10 
2.52 10 
2 1 2 1 
2 2 
 
  
 
 
  
 
c K  46.4 c K 
Initial conc of H2 , I2 and HI 
At equilibrium conc 
Not at equilibrium 
H2(g) + I2(g) ↔ 2HI(g) 
c c Q  K 
c c Q  K 
Reaction at 
equilibrium 
More product > reactant 
Rxn shift left more reactant 
→ 
c c Q  K 
 c Q 
Bring Qc down  c Q 
Expt Initial 
Conc H2 
Initial 
Conc I2 
Initial 
Conc HI 
1 0.0250 0.0350 0.300 
  
   
103 
0.0250 0.0350 
0.300 2 
  c Q 
103 c Q  46.4 c > K
How dynamic equilibrium is shifted when H2 is added ? 
• Add H2 , Qc decrease 
• Position equilibrium shift to right 
• Rate forward and reverse increase 
• New equilibrium conc achieved when 
Rate forward Kf = Rate reverse Kr 
• More product NH3 ,but Kc unchanged 
N2(g) + 3H2(g) ↔ 2NH3(g)  4.07 c K 
Equilibrium disturbed 
H2 added. More reactant 
At equilibrium 
Conc reactant/product no change 
At new equilibrium 
Conc reactant/product no change 
 2.24 c Q 
Equilibrium Conc H2 = 0.82M 
Equilibrium Conc N2 = 0.20M 
Equilibrium Conc NH3 = 0.67M 
  
   3 
2 
1 
2 
2 
3 
N H 
NH 
Kc  
  
   1 3 
2 
0.20 0.82 
0.67 
 c K 
New Conc H2 = 1.00M 
Conc N2 = 0.20M 
Conc NH3 = 0.67M 
  
   3 
2 
1 
2 
2 
3 
N H 
NH 
Qc  
  
   1 3 
2 
0.20 1.00 
0.67 
 c Q 
 4.07 c K 
New Equilibrium Conc H2 = 0.90M 
New Equilibrium Conc N2 = 0.19M 
New Equilibrium Conc NH3 = 0.75M 
  
   1 3 
2 
0.19 0.90 
0.75 
 c K 
  
   3 
2 
1 
2 
2 
3 
N H 
NH 
Kc  
 4.07 c K 
Shift to the right 
- Increase product 
- New Conc achieve 
- Qc = Kc again 
c c Q  K
How dynamic equilibrium is shifted when H2 is added ? 
• Add H2 , Qc decrease 
• Position equilibrium shift to right 
• Rate forward and reverse increase 
• New equilibrium conc achieved when 
Rate forward Kf = Rate reverse Kr 
• More product NH3 ,but Kc unchanged 
Rate forward Kf = Rate reverse Kr 
N2(g) + 3H2(g) ↔ 2NH3(g)  4.07 c K 
  4.07 c c Q K 
Equilibrium disturbed 
H2 added. More reactant 
c c Q  K 
Equilibrium shift to right 
Rate forward Kf > Rate reverse Kr 
 c Q 
At equilibrium 
Conc reactant/product no change 
At new equilibrium 
Conc reactant/product no change 
Qc increase until Qc = Kc 
 c Q 
Rate forward Kf = Rate reverse Kr 
c c Q  K 
c c Q  K c c Q  K
Click here to view simulation 
Click here simulation using paper clips 
Click here simulation on reversible rxn 
Click here on reversible rxn 
Simulation on Dynamic equilibrium 
Click here on equilibrium constant

More Related Content

What's hot

Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibriumArunesh Gupta
 
05c reversible reactions
05c reversible reactions05c reversible reactions
05c reversible reactionsDr Ahmad Fahmi
 
Types Of Reactions
Types Of ReactionsTypes Of Reactions
Types Of Reactionstulincetin
 
Chem 2 - Chemical Equilibrium V: ICE Tables and Equilibrium Calculations
Chem 2 - Chemical Equilibrium V: ICE Tables and Equilibrium CalculationsChem 2 - Chemical Equilibrium V: ICE Tables and Equilibrium Calculations
Chem 2 - Chemical Equilibrium V: ICE Tables and Equilibrium CalculationsLumen Learning
 
IGCSE 11.5.4
IGCSE 11.5.4IGCSE 11.5.4
IGCSE 11.5.4shaunoff
 
Energy Changes
Energy ChangesEnergy Changes
Energy ChangesEmersius
 
Chapter 3 Chemical Reactions
Chapter 3   Chemical ReactionsChapter 3   Chemical Reactions
Chapter 3 Chemical Reactionsjtripp8
 
Chem 2 - Chemical Equilibrium IX: Le Chatelier's Principle and Pressure - Vol...
Chem 2 - Chemical Equilibrium IX: Le Chatelier's Principle and Pressure - Vol...Chem 2 - Chemical Equilibrium IX: Le Chatelier's Principle and Pressure - Vol...
Chem 2 - Chemical Equilibrium IX: Le Chatelier's Principle and Pressure - Vol...Lumen Learning
 
Chapter 3 Alkenes: Structures, Nomenclature, and an Introduction to Reacti...
Chapter 3  Alkenes:   Structures, Nomenclature, and an Introduction to Reacti...Chapter 3  Alkenes:   Structures, Nomenclature, and an Introduction to Reacti...
Chapter 3 Alkenes: Structures, Nomenclature, and an Introduction to Reacti...Vutey Venn
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibriumUsman Shah
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibriumArifBillah35
 
Oxidation numbers
Oxidation numbersOxidation numbers
Oxidation numbersKris Reddy
 
Chemistry - Chp 11 - Chemical Reactions - PowerPoint
Chemistry - Chp 11 - Chemical Reactions - PowerPointChemistry - Chp 11 - Chemical Reactions - PowerPoint
Chemistry - Chp 11 - Chemical Reactions - PowerPointMr. Walajtys
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibriumHoshi94
 

What's hot (20)

Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibrium
 
05c reversible reactions
05c reversible reactions05c reversible reactions
05c reversible reactions
 
Types Of Reactions
Types Of ReactionsTypes Of Reactions
Types Of Reactions
 
Chem 2 - Chemical Equilibrium V: ICE Tables and Equilibrium Calculations
Chem 2 - Chemical Equilibrium V: ICE Tables and Equilibrium CalculationsChem 2 - Chemical Equilibrium V: ICE Tables and Equilibrium Calculations
Chem 2 - Chemical Equilibrium V: ICE Tables and Equilibrium Calculations
 
Redox
RedoxRedox
Redox
 
IGCSE 11.5.4
IGCSE 11.5.4IGCSE 11.5.4
IGCSE 11.5.4
 
Energy Changes
Energy ChangesEnergy Changes
Energy Changes
 
Chapter 3 Chemical Reactions
Chapter 3   Chemical ReactionsChapter 3   Chemical Reactions
Chapter 3 Chemical Reactions
 
Oxidation reduction reactions honors
Oxidation reduction reactions honorsOxidation reduction reactions honors
Oxidation reduction reactions honors
 
Balancing Equations
Balancing EquationsBalancing Equations
Balancing Equations
 
Chem 2 - Chemical Equilibrium IX: Le Chatelier's Principle and Pressure - Vol...
Chem 2 - Chemical Equilibrium IX: Le Chatelier's Principle and Pressure - Vol...Chem 2 - Chemical Equilibrium IX: Le Chatelier's Principle and Pressure - Vol...
Chem 2 - Chemical Equilibrium IX: Le Chatelier's Principle and Pressure - Vol...
 
Chapter 3 Alkenes: Structures, Nomenclature, and an Introduction to Reacti...
Chapter 3  Alkenes:   Structures, Nomenclature, and an Introduction to Reacti...Chapter 3  Alkenes:   Structures, Nomenclature, and an Introduction to Reacti...
Chapter 3 Alkenes: Structures, Nomenclature, and an Introduction to Reacti...
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibrium
 
Chapter 11 equilibrium lecture notes
Chapter 11 equilibrium lecture notesChapter 11 equilibrium lecture notes
Chapter 11 equilibrium lecture notes
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibrium
 
Oxidation numbers
Oxidation numbersOxidation numbers
Oxidation numbers
 
Energy changes
Energy changesEnergy changes
Energy changes
 
Chemistry - Chp 11 - Chemical Reactions - PowerPoint
Chemistry - Chp 11 - Chemical Reactions - PowerPointChemistry - Chp 11 - Chemical Reactions - PowerPoint
Chemistry - Chp 11 - Chemical Reactions - PowerPoint
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibrium
 
Chemical kinetics
Chemical kineticsChemical kinetics
Chemical kinetics
 

Viewers also liked

IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.Lawrence kok
 
IB Chemistry on Dynamic Equilibrium and Equilibrium Constant
IB Chemistry on Dynamic Equilibrium and Equilibrium ConstantIB Chemistry on Dynamic Equilibrium and Equilibrium Constant
IB Chemistry on Dynamic Equilibrium and Equilibrium ConstantLawrence kok
 
IB Chemistry on Le Chatelier's Principle, Haber and Contact Process
IB Chemistry on Le Chatelier's Principle, Haber and Contact ProcessIB Chemistry on Le Chatelier's Principle, Haber and Contact Process
IB Chemistry on Le Chatelier's Principle, Haber and Contact ProcessLawrence kok
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.Lawrence kok
 
IB Chemistry on Dynamic Equilibrium and Equilibrium Constant
IB Chemistry on Dynamic Equilibrium and Equilibrium ConstantIB Chemistry on Dynamic Equilibrium and Equilibrium Constant
IB Chemistry on Dynamic Equilibrium and Equilibrium ConstantLawrence kok
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.Lawrence kok
 
IB Chemistry on Le Chatelier's Principle, Haber and Contact Process
IB Chemistry on Le Chatelier's Principle, Haber and Contact ProcessIB Chemistry on Le Chatelier's Principle, Haber and Contact Process
IB Chemistry on Le Chatelier's Principle, Haber and Contact ProcessLawrence kok
 
IB Chemistry Serial Dilution, Molarity and Concentration
IB Chemistry Serial Dilution, Molarity and ConcentrationIB Chemistry Serial Dilution, Molarity and Concentration
IB Chemistry Serial Dilution, Molarity and ConcentrationLawrence kok
 
Uncertainty calculation for rate of reaction
Uncertainty calculation for rate of reactionUncertainty calculation for rate of reaction
Uncertainty calculation for rate of reactionLawrence kok
 
Pre-Treatment Characteristics of Sleepy and Non-Sleepy Patients with Obstruct...
Pre-Treatment Characteristics of Sleepy and Non-Sleepy Patients with Obstruct...Pre-Treatment Characteristics of Sleepy and Non-Sleepy Patients with Obstruct...
Pre-Treatment Characteristics of Sleepy and Non-Sleepy Patients with Obstruct...Leonard Davis Institute of Health Economics
 
Sleepy American Heroes
Sleepy American HeroesSleepy American Heroes
Sleepy American HeroesNapCave.com
 
Homeopathic Remedies
Homeopathic RemediesHomeopathic Remedies
Homeopathic RemediesBruce Shelton
 
Equilibrium constant-presentation
Equilibrium constant-presentationEquilibrium constant-presentation
Equilibrium constant-presentationstarlanter
 
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...Lawrence kok
 
IB Chemistry Limiting, Excess, Theoretical and Percentage Yield
IB Chemistry Limiting, Excess, Theoretical and Percentage YieldIB Chemistry Limiting, Excess, Theoretical and Percentage Yield
IB Chemistry Limiting, Excess, Theoretical and Percentage YieldLawrence kok
 
IB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin couplingIB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin couplingLawrence kok
 
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionIB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionLawrence kok
 
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell PotentialIB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell PotentialLawrence kok
 
IB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation EnergyIB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation EnergyLawrence kok
 
IB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
IB Chemistry on Gibbs Free Energy vs Entropy on spontanietyIB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
IB Chemistry on Gibbs Free Energy vs Entropy on spontanietyLawrence kok
 

Viewers also liked (20)

IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
 
IB Chemistry on Dynamic Equilibrium and Equilibrium Constant
IB Chemistry on Dynamic Equilibrium and Equilibrium ConstantIB Chemistry on Dynamic Equilibrium and Equilibrium Constant
IB Chemistry on Dynamic Equilibrium and Equilibrium Constant
 
IB Chemistry on Le Chatelier's Principle, Haber and Contact Process
IB Chemistry on Le Chatelier's Principle, Haber and Contact ProcessIB Chemistry on Le Chatelier's Principle, Haber and Contact Process
IB Chemistry on Le Chatelier's Principle, Haber and Contact Process
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
 
IB Chemistry on Dynamic Equilibrium and Equilibrium Constant
IB Chemistry on Dynamic Equilibrium and Equilibrium ConstantIB Chemistry on Dynamic Equilibrium and Equilibrium Constant
IB Chemistry on Dynamic Equilibrium and Equilibrium Constant
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
 
IB Chemistry on Le Chatelier's Principle, Haber and Contact Process
IB Chemistry on Le Chatelier's Principle, Haber and Contact ProcessIB Chemistry on Le Chatelier's Principle, Haber and Contact Process
IB Chemistry on Le Chatelier's Principle, Haber and Contact Process
 
IB Chemistry Serial Dilution, Molarity and Concentration
IB Chemistry Serial Dilution, Molarity and ConcentrationIB Chemistry Serial Dilution, Molarity and Concentration
IB Chemistry Serial Dilution, Molarity and Concentration
 
Uncertainty calculation for rate of reaction
Uncertainty calculation for rate of reactionUncertainty calculation for rate of reaction
Uncertainty calculation for rate of reaction
 
Pre-Treatment Characteristics of Sleepy and Non-Sleepy Patients with Obstruct...
Pre-Treatment Characteristics of Sleepy and Non-Sleepy Patients with Obstruct...Pre-Treatment Characteristics of Sleepy and Non-Sleepy Patients with Obstruct...
Pre-Treatment Characteristics of Sleepy and Non-Sleepy Patients with Obstruct...
 
Sleepy American Heroes
Sleepy American HeroesSleepy American Heroes
Sleepy American Heroes
 
Homeopathic Remedies
Homeopathic RemediesHomeopathic Remedies
Homeopathic Remedies
 
Equilibrium constant-presentation
Equilibrium constant-presentationEquilibrium constant-presentation
Equilibrium constant-presentation
 
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
 
IB Chemistry Limiting, Excess, Theoretical and Percentage Yield
IB Chemistry Limiting, Excess, Theoretical and Percentage YieldIB Chemistry Limiting, Excess, Theoretical and Percentage Yield
IB Chemistry Limiting, Excess, Theoretical and Percentage Yield
 
IB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin couplingIB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin coupling
 
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionIB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
 
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell PotentialIB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
 
IB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation EnergyIB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation Energy
 
IB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
IB Chemistry on Gibbs Free Energy vs Entropy on spontanietyIB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
IB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
 

Similar to IB Chemistry Equilibrium constant, Kc and Reaction quotient, Qc.

chapter_14_chemical equilibrium.ppt
chapter_14_chemical equilibrium.pptchapter_14_chemical equilibrium.ppt
chapter_14_chemical equilibrium.pptJennetteBelliot
 
Chapter_14_Chemical_Equilibrium.ppt
Chapter_14_Chemical_Equilibrium.pptChapter_14_Chemical_Equilibrium.ppt
Chapter_14_Chemical_Equilibrium.pptSitiNurMayranti
 
IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, KcIB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, KcLawrence kok
 
Basic chemistry in school for student to learn
Basic chemistry in school for student  to learnBasic chemistry in school for student  to learn
Basic chemistry in school for student to learnwidhyahrini1
 
Introductory physical chemistry lecture note
Introductory physical chemistry lecture noteIntroductory physical chemistry lecture note
Introductory physical chemistry lecture noteBelete Asefa Aragaw
 
IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, KcIB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, KcLawrence kok
 
5-Determining Equilibrium Constant General Chemistry 2
5-Determining Equilibrium Constant General Chemistry 25-Determining Equilibrium Constant General Chemistry 2
5-Determining Equilibrium Constant General Chemistry 2OliricFabiolas
 
The concept of equilibrium
The concept of equilibriumThe concept of equilibrium
The concept of equilibriumgbsliebs2002
 
Equilibrium student 2014 2
Equilibrium student 2014 2Equilibrium student 2014 2
Equilibrium student 2014 2Abraham Ramirez
 
Intro to equilibrium abbrev alg
Intro to equilibrium abbrev algIntro to equilibrium abbrev alg
Intro to equilibrium abbrev algchelss
 
Unit-6.pptEquilibrium concept and acid-base equilibrium
Unit-6.pptEquilibrium concept and acid-base equilibriumUnit-6.pptEquilibrium concept and acid-base equilibrium
Unit-6.pptEquilibrium concept and acid-base equilibriumHikaShasho
 
Tang 03 equilibrium law - keq 2
Tang 03   equilibrium law - keq 2Tang 03   equilibrium law - keq 2
Tang 03 equilibrium law - keq 2mrtangextrahelp
 
chapt15_Equilibrium.ppt
chapt15_Equilibrium.pptchapt15_Equilibrium.ppt
chapt15_Equilibrium.pptAngelonUdani
 

Similar to IB Chemistry Equilibrium constant, Kc and Reaction quotient, Qc. (20)

chapter_14_chemical equilibrium.ppt
chapter_14_chemical equilibrium.pptchapter_14_chemical equilibrium.ppt
chapter_14_chemical equilibrium.ppt
 
Chapter_14_Chemical_Equilibrium.ppt
Chapter_14_Chemical_Equilibrium.pptChapter_14_Chemical_Equilibrium.ppt
Chapter_14_Chemical_Equilibrium.ppt
 
IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, KcIB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibrium
 
Basic chemistry in school for student to learn
Basic chemistry in school for student  to learnBasic chemistry in school for student  to learn
Basic chemistry in school for student to learn
 
Introductory physical chemistry lecture note
Introductory physical chemistry lecture noteIntroductory physical chemistry lecture note
Introductory physical chemistry lecture note
 
Chapter 14
Chapter 14Chapter 14
Chapter 14
 
IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, KcIB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
 
Ch16
Ch16Ch16
Ch16
 
5-Determining Equilibrium Constant General Chemistry 2
5-Determining Equilibrium Constant General Chemistry 25-Determining Equilibrium Constant General Chemistry 2
5-Determining Equilibrium Constant General Chemistry 2
 
The concept of equilibrium
The concept of equilibriumThe concept of equilibrium
The concept of equilibrium
 
Equilibrium student 2014 2
Equilibrium student 2014 2Equilibrium student 2014 2
Equilibrium student 2014 2
 
Intro to equilibrium abbrev alg
Intro to equilibrium abbrev algIntro to equilibrium abbrev alg
Intro to equilibrium abbrev alg
 
Unit-6.pptEquilibrium concept and acid-base equilibrium
Unit-6.pptEquilibrium concept and acid-base equilibriumUnit-6.pptEquilibrium concept and acid-base equilibrium
Unit-6.pptEquilibrium concept and acid-base equilibrium
 
Tang 03 equilibrium law - keq 2
Tang 03   equilibrium law - keq 2Tang 03   equilibrium law - keq 2
Tang 03 equilibrium law - keq 2
 
chapt15_Equilibrium.ppt
chapt15_Equilibrium.pptchapt15_Equilibrium.ppt
chapt15_Equilibrium.ppt
 
Gc chemical equilibrium
Gc  chemical equilibriumGc  chemical equilibrium
Gc chemical equilibrium
 
GC Chemical Equilibrium
GC  Chemical EquilibriumGC  Chemical Equilibrium
GC Chemical Equilibrium
 
GC Chemical Equilibrium
GC  Chemical EquilibriumGC  Chemical Equilibrium
GC Chemical Equilibrium
 
2012 topic 7.2
2012 topic 7.22012 topic 7.2
2012 topic 7.2
 

More from Lawrence kok

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...Lawrence kok
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...Lawrence kok
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...Lawrence kok
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...Lawrence kok
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...Lawrence kok
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...Lawrence kok
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...Lawrence kok
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...Lawrence kok
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...Lawrence kok
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...Lawrence kok
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...Lawrence kok
 

More from Lawrence kok (20)

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
 

Recently uploaded

Mythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWMythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWQuiz Club NITW
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptxmary850239
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSMae Pangan
 
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvRicaMaeCastro1
 
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQ-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQuiz Club NITW
 
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...DhatriParmar
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17Celine George
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptxmary850239
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptxDhatriParmar
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxCLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxAnupam32727
 
ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6Vanessa Camilleri
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
How to Manage Buy 3 Get 1 Free in Odoo 17
How to Manage Buy 3 Get 1 Free in Odoo 17How to Manage Buy 3 Get 1 Free in Odoo 17
How to Manage Buy 3 Get 1 Free in Odoo 17Celine George
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQuiz Club NITW
 
Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfPrerana Jadhav
 

Recently uploaded (20)

Mythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWMythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITW
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHS
 
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
 
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptxINCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
 
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQ-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
 
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17
 
Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxCLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
 
ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
How to Manage Buy 3 Get 1 Free in Odoo 17
How to Manage Buy 3 Get 1 Free in Odoo 17How to Manage Buy 3 Get 1 Free in Odoo 17
How to Manage Buy 3 Get 1 Free in Odoo 17
 
Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of EngineeringFaculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
 
Paradigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTAParadigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTA
 
Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdf
 

IB Chemistry Equilibrium constant, Kc and Reaction quotient, Qc.

  • 1. Dynamic Equilibrium Closed system Reversible Forward Rate, Kf Reverse Rate, Kr 2NO2(g) N2O4(g) Chemical system Forward rate rxn Rate Combining Backward rate rxn Rate dissociation Reversible rxn happening, same time with same rate Rate of forward = Rate of backward Conc of reactant and product remain UNCHANGED/CONSTANT not EQUAL combining dissociation Conc vs time Rate vs time Conc Time Conc NO2 Conc N2O4 With time •Conc NO2 decrease - Forward rate decrease •Conc N2O4 increase - Backward rate increase 2NO2(g) N2O4(g) Forward rate Backward rate Forward Rate = Backward Rate Conc NO2 and N2O4 remain UNCHANGED/CONSTANT brown colourless
  • 2. How dynamic equilibrium is achieved in closed system? Conc of NO2 decrease ↓over time Forward rate, Kf decrease ↓ over time Forward Rate = Reverse Rate NO2 2NO2(g) N2O4(g) Conc of N2O4 increase ↑ over time N2O4 Reverse rate, Kr increase ↑ over time NO2 N2O4 1 2 Conc of reactant/product remain constant Rate 3 Time Conc NO2 N2O4 At dynamic equilibrium As reaction proceeds Concentration As reaction proceeds Rate Time Click here to view simulation
  • 3. Conc vs Time How dynamic equilibrium is achieved in a closed system? 40 0 Rate forward = ½ breakdown = ½ x 40 = 20 Rate reverse = ¼ form = ¼ x 0 = 0 20 20 Rate forward = ½ breakdown = ½ x 20 = 10 Rate reverse = ¼ form = ¼ x 20 = 5 15 25 Rate forward = ½ breakdown = ½ x 15 = 8 Rate reverse = ¼ form = ¼ x 25 = 6 13 27 Rate forward = ½ breakdown = ½ x 13 = 7 Rate reverse = ¼ form = ¼ x 27 = 7 13 27 At dynamic Equilibrium Rate forward = Rate reverse Breakdown (7) = Formation (7) At dynamic Equilibrium Conc reactant 13 /Product 27 constant Rate vs Time 1/ 4 1/ 2 .. tan .. .. tan .. 1 1    rate cons t reverse rate cons t forward K   K       2 13 27 tan    reac t product Kc 2 1/ 4 1/ 2 1 1     K K Kc or
  • 4. Dynamic Equilibrium Reversible (closed system) Forward Rate, K1 Reverse Rate, K-1 Kc = ratio of molar conc of product (raised to power of their respective stoichiometry coefficient) to molar conc of reactant (raised to power of their respective stoichiometry coefficient) Conc of product and reactant at equilibrium At Equilibrium Forward rate = Backward rate Conc reactants and products remain CONSTANT/UNCHANGE Equilibrium Constant Kc aA(aq) + bB(aq) cC(aq) + dD(aq) coefficient Solid/liq not included in Kc Conc represented by [ ] K1 K-1        a b c d c A B C D K  1 1   K K Kc Equilibrium Constant Kc express in Conc vs time Rate vs time A + B C + D Conc Time Click here notes on dynamic equilibrium Excellent Notes rate cons t reverse rate cons t forward K K .. tan .. .. tan .. 1 1  
  • 5. Large Kc • Position equilibrium shift to right • More products > reactants Magnitude of Kc        a b c d c A B C D K  Extend of reaction How far rxn shift to right or left? Not how fast        a b c d c A B C D K  Small Kc • Position equilibrium shift to left • More reactants > products    c  K c K Position of equilibrium 2CO2(g) ↔ 2CO(g) + O2(g) 92 3 10   c K 2H2(g) + O2(g) ↔ 2H2O(g) 81  310 c K H2(g) + I2(g) ↔ 2HI(g) 2  8.710 c K 1 Kc • Position equilibrium lies slightly right • Reactants and products equal amount Reaction completion Reactant favoured Reactant/Product equal Product favoured c K Temp dependent Extend of rxn Not how fast
  • 6. Equilibrium Constant Kc        a b c d c A B C D K  aA(aq) + bB(aq) cC(aq) + dD(aq) Conc of product and reactant at equilibrium Equilibrium expression HOMOGENEOUS gaseous rxn 4NH3(g) + 5O2(g) ↔ 4NO(g) + 6H2O(g) N2(g) + 3H2(g) ↔ 2NH3(g) NH4CI(s) ↔ NH3(g) + HCI(g) 2SO2(g) + O2(g) ↔ 2SO3(g)        5 2 4 3 6 2 4 NH O NO H O Kc       3 2 1 2 2 3 N H NH Kc     1 1 3 K NH HCI c       0 4 1 1 3 NH CI NH HCI Kc       1 2 2 2 2 3 SO O SO Kc  Equilibrium expression HETEROGENOUS rxn CaCO3(s) ↔ CaO(g) + CO2(g)      0 3 1 2 1 CaCO CaO CO Kc     1 2 1 K CaO CO c  CH3COOH(l) + C2H5OH(l) ↔ CH3COOC2H5(l) + H2O(l)        1 2 5 1 3 1 2 1 3 2 5 CH COOH C H OH CH COOC H H O Kc  Equilibrium expression HOMOGENEOUS liquid rxn Cu2+ (aq) + 4NH3(aq) ↔ [Cu(NH3)4]2+        4 3 2 1 2 3 4 ( ) Cu NH Cu NH Kc    Reactant/product same phase Reactant/product diff phase
  • 7. aA bB 2aA 2bB bB aA aA bB aA bB    a b c A B K  aA bB Equilibrium Constant Kc Equilibrium Constant Kc    b a c B A K  ' c c K K ' 1  inverse X2 coefficient ' 2 c c K  K coefficient 2 1     a b c A B K 2 1 2 1 '  c c c K  K 2  K ' 1    a b c A B K     a b c A B K      a b c A B K 2 2 '  2 1 aA bB bB cC    a b ci A B K     b c cii B C K  + 2 reactions + aA cC            a c a b b c c A C A B B C K    ' c cii ci K  K  K ' Effect on Kc Inverse Kc Square Kc Square root c K Multiply both Kc 2 1 cii K ci K
  • 8. N2(g) + O2(g) ↔ 2NO(g) 2NO(g) + O2(g) ↔ 2NO2(g) 19 2.3 10   ci K 6  310 cii K 2NO2(g) ↔ N2(g) + 2O2(g) 13 19 6 7 10 2.3 10 3 10           c c c ci cii K K N2(g) + 2O2(g) ↔ 2NO2(g) K K K 13 7 10   c K ' 12 13 ' 1.42 10 7 10 1 1       c c c K K K HF(ag) ↔ H+ (aq) + F - (aq) H2C2O4(ag) ↔ 2H+ (aq) + C2O4 2 - (aq) 4 6.8 10   ci K 6 3.8 10   cii K 2HF(ag) + C2O4 2- ↔ 2F - (aq) + H2C2O4(aq) 2HF(ag) ↔ 2H+ (aq) + 2F - (aq) 2H+ (ag) + C2O4 2- ↔ H2C2O4(aq) ' 2  4 2 7 6.8 10 4.6 10       c ci K K 5 6 '' 2.6 10 3.8 10 1 1       cii c K K 4.6 10 2.6 10 0.12 7 5 ' ''         c c c c K K K K Kc for diff rxn Adding 2 rxns + Inverse rxn Adding 2 rxns 2HF(ag) + C2O4 2- ↔ 2F - (aq) + H2C2O4(aq) + HF(ag) ↔ H+ (aq) + F - (aq) 4 6.8 10   ci K x2 coefficient H2C2O4(ag) ↔ 2H+ (aq) + C2O4 2 - Inverse rxn 6 3.8 10   cii K 2HF(ag) ↔ 2H+ (aq) + 2F - (aq) 2H+ (ag) + C2O4 2- ↔ H2C2O4(aq) Add 2 rxn ' 7 4.6 10   c K '' 5  2.610 c + K Effect on Kc Effect on Kc Inverse rxn Inverts expression Doubling rxn coefficient Squares expression Tripling rxn coefficient Cubes expression Halving rxn coefficient Square root expression Adding 2 reactions Multiplies 2 expression c K 1 2 c K 3 c K c K ii c i c K  K Square Kc Invert Kc Multiply Kc 1 2 3 N2(g) + 2O2(g) ↔ 2NO2(g)
  • 9. H2 + I2 ↔ 2HI  50 c K      1 2 1 2 2 H I HI Kc  2HI ↔ H2 + I2      2 1 2 1 ' 2 HI H I Kc  0.02 50 ' 1 1    c c K K 2SO2 + O2 ↔ 2SO3      1 2 2 2 2 3 SO O SO Kc   200 c K SO2 + O2 ↔ SO3 200 14.1 '    c c K K 2 1 4SO2 + 2O2 ↔ 4SO3     40000 200 , ' 2 2    c c c K K K N2(g) + 3H2(g) ↔ 2NH3(g)      3 2 1 2 2 3 N H NH Kc  Kc is 170 at 500K Determine if rxn is at equilibrium when conc are at: [N2] =1.50, [H2] = 1.00, [NH3] = 8.00         1.501.00 8.00 3 2 1 2 2 3   c c Q N H NH Q • Rxn not at equilibrium • Shift to right, favour product • Qc must increase, till equal to Kc IB Questions Determine Kc for inversing rxn inverse Determine Kc for halving rxn       2 1 1 2 2 2 2 3          SO O SO Kc halving Determine Kc for doubling rxn 2SO2 + O2 ↔ 2SO3 doubling      1 2 2 2 2 3 SO O SO Kc   200 c K       2 1 2 2 2 2 3          SO O SO Kc 1 2 4 3  170 c  42.7 K c Q c c Q  K
  • 10. Kc and Qc H2(g) + I2(g) ↔ 2HI(g) c K Constant at fixed Temp      1 2 1 2 2 H I HI Kc  At equilibrium Independent of initial conc Initial conc of H2 , I2 and HI  4.00 c Q      1 2 1 2 2 H I HI Qc        46.4 1.14 10 0.12 10 2.52 10 2 1 2 1 2 2         c K  46.4 c K Expt Initial Conc H2 Initial Conc I2 Initial Conc HI 1 0.0500 0.0500 0.100 Initial conc of H2 , I2 and HI Expt Initial Conc H2 Initial Conc I2 Initial Conc HI 1 2.40 x 10-2 1.38 x 10-2 0 Expt Equilibrium Conc H2 Equilibrium Conc I2 Equilibrium Conc HI 1 1.14 x 10-2 0.12 x 10-2 2.52 x 10-2 At equilibrium conc Not at equilibrium H2(g) + I2(g) ↔ 2HI(g)      4.00 0.050 0.050 0.100 2   c Q Predict the direction of rxn Difference between c Q Conc of product/reactant at equilibruim conc Reaction quotient at particular time Not at equilibrium conc Varies NOT constant
  • 11. Kc and Qc H2(g) + I2(g) ↔ 2HI(g)      1 2 1 2 2 H I HI Kc        46.4 1.14 10 0.12 10 2.52 10 2 1 2 1 2 2         c K  46.4 c K At equilibrium conc c c Q  K c c Q  K c c Q  K Reaction at equilibrium More product > reactant Rxn shift left more reactant → c c Q  K  c Q Bring Qc down More reactant > product Rxn shift right → more product Bring Qc up  c Q c c Q  K  c Q Expt Initial Conc H2 Initial Conc I2 Initial Conc HI 1 0.0500 0.0500 0.100 Initial conc of H2 , I2 and HI      1 2 1 2 2 H I HI Qc       4.00 0.050 0.050 0.100 2   c Q  c Q Expt Initial Conc H2 Initial Conc I2 Initial Conc HI 1 0.0250 0.0350 0.300 Initial conc of H2 , I2 and HI      1 2 1 2 2 H I HI Qc       103 0.0250 0.0350 0.300 2   c Q Click here to view notes
  • 12. Kc from reaction stoichiometry H2(g) + I2(g) ↔ 2HI(g) K  same  46.4 c      1 2 1 2 2 H I HI Kc  4 diff initial conc of H2 , I2 and HI At equilibrium Kc = 46.4 ( 730K)       46.4 1.14 10 0.12 10 2.52 10 2 1 2 1 2 2         c Rxn 1 K same Qc = Kc - rxn at equilibrium, no side/shift occur Qc < Kc – rxn shift right, favour product Qc > Kc – rxn shift left, favour reactant Rxn 2, 3, 4 diff initial conc more products H2(g) + I2(g) ↔ 2HI(g)  c Q Rxn shift to right more reactants Rxn shift to left   reac t product Qc tan    reac t product Qc tan   c Q c c Q  K c c Q  K c c Q  K      1 2 1 2 2 H I HI Kc 
  • 13. Kc and Qc H2(g) + I2(g) ↔ 2HI(g)      1 2 1 2 2 H I HI Kc   4.00 c Q      1 2 1 2 2 H I HI Qc        46.4 1.14 10 0.12 10 2.52 10 2 1 2 1 2 2         c K  46.4 c K Expt Initial Conc H2 Initial Conc I2 Initial Conc HI 1 0.0500 0.0500 0.100 Initial conc of H2 , I2 and HI At equilibrium conc Not at equilibrium H2(g) + I2(g) ↔ 2HI(g)      4.00 0.050 0.050 0.100 2   c Q c c Q  K c c Q  K Reaction at equilibrium More reactant > product Rxn shift right → more product Bring Qc up  c Q  c Q c c Q  K  4.00 c Q  46.4 c < K
  • 14. Kc and Qc H2(g) + I2(g) ↔ 2HI(g)      1 2 1 2 2 H I HI Kc   103 c Q      1 2 1 2 2 H I HI Qc        46.4 1.14 10 0.12 10 2.52 10 2 1 2 1 2 2         c K  46.4 c K Initial conc of H2 , I2 and HI At equilibrium conc Not at equilibrium H2(g) + I2(g) ↔ 2HI(g) c c Q  K c c Q  K Reaction at equilibrium More product > reactant Rxn shift left more reactant → c c Q  K  c Q Bring Qc down  c Q Expt Initial Conc H2 Initial Conc I2 Initial Conc HI 1 0.0250 0.0350 0.300      103 0.0250 0.0350 0.300 2   c Q 103 c Q  46.4 c > K
  • 15. How dynamic equilibrium is shifted when H2 is added ? • Add H2 , Qc decrease • Position equilibrium shift to right • Rate forward and reverse increase • New equilibrium conc achieved when Rate forward Kf = Rate reverse Kr • More product NH3 ,but Kc unchanged N2(g) + 3H2(g) ↔ 2NH3(g)  4.07 c K Equilibrium disturbed H2 added. More reactant At equilibrium Conc reactant/product no change At new equilibrium Conc reactant/product no change  2.24 c Q Equilibrium Conc H2 = 0.82M Equilibrium Conc N2 = 0.20M Equilibrium Conc NH3 = 0.67M      3 2 1 2 2 3 N H NH Kc       1 3 2 0.20 0.82 0.67  c K New Conc H2 = 1.00M Conc N2 = 0.20M Conc NH3 = 0.67M      3 2 1 2 2 3 N H NH Qc       1 3 2 0.20 1.00 0.67  c Q  4.07 c K New Equilibrium Conc H2 = 0.90M New Equilibrium Conc N2 = 0.19M New Equilibrium Conc NH3 = 0.75M      1 3 2 0.19 0.90 0.75  c K      3 2 1 2 2 3 N H NH Kc   4.07 c K Shift to the right - Increase product - New Conc achieve - Qc = Kc again c c Q  K
  • 16. How dynamic equilibrium is shifted when H2 is added ? • Add H2 , Qc decrease • Position equilibrium shift to right • Rate forward and reverse increase • New equilibrium conc achieved when Rate forward Kf = Rate reverse Kr • More product NH3 ,but Kc unchanged Rate forward Kf = Rate reverse Kr N2(g) + 3H2(g) ↔ 2NH3(g)  4.07 c K   4.07 c c Q K Equilibrium disturbed H2 added. More reactant c c Q  K Equilibrium shift to right Rate forward Kf > Rate reverse Kr  c Q At equilibrium Conc reactant/product no change At new equilibrium Conc reactant/product no change Qc increase until Qc = Kc  c Q Rate forward Kf = Rate reverse Kr c c Q  K c c Q  K c c Q  K
  • 17. Click here to view simulation Click here simulation using paper clips Click here simulation on reversible rxn Click here on reversible rxn Simulation on Dynamic equilibrium Click here on equilibrium constant