Your SlideShare is downloading. ×
  • Like
04-14-08 - Momentum And Impulse
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Now you can save presentations on your phone or tablet

Available for both IPhone and Android

Text the download link to your phone

Standard text messaging rates apply

04-14-08 - Momentum And Impulse

  • 2,966 views
Published

 

Published in Technology , Business
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
2,966
On SlideShare
0
From Embeds
0
Number of Embeds
3

Actions

Shares
Downloads
297
Comments
0
Likes
2

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1.  
  • 2. More force is needed to quickly stop a baseball thrown at 95 mph than to quickly stop a baseball thrown at 45 mph, even though they both have the same mass . Both mass and  velocity are important factors when considering the force needed to change the motion of an object. More force is needed to quickly stop a train moving at 45 mph than to quickly stop A car moving at 45 mph, even though they both have the same speed .
  • 3. momentum = mass x velocity p = mv p = momentum; has units of kg*m/s m = mass; has units of kg v = velocity; has units of m/s
  • 4. Momentum is a vector, so direction is important. An object’s momentum will change if its mass and/or velocity (speed and direction) changes. According to Newton’s laws, a net force causes an object to accelerate , or change its velocity . A net force, therefore, causes a change in an object’s momentum.
  • 5. F = ma (Newton’s Second Law) The formula F = m a can broken down into the following units: N = ( kg )( m/s 2 ) REMEMBER…
  • 6. Impulse = change in momentum To have a change in momentum there must be a force applied during a time interval Symbols: Units: Momentum Momentum equation Impulse equation Units: Impulse m v = p F t = p (kg)( m/s ) = p ( N )( s ) = p
  • 7. Symbols: Since Δ means “the change in” – we can rewrite the equation on the left to be: Now we can combine the two equations into one: mv f - mv i = p f - p i F t = p m v = p mv f – mv i = F t
  • 8. The greatest change in velocity will occur when the impulse is the greatest. By increasing the amount of force and the amount of time the force is applied, the greatest change in velocity can be achieved.
  • 9. A 1000 kg car moving at 30 m/s (p = 30,000 kg*m/s) can be stopped by 30,000 N of force acting for 1.0 s (a crash!) or by 3000 N of force acting for 10.0 s (normal stop)