A brief introduction to functional programming
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

A brief introduction to functional programming

on

  • 235 views

In this short presentation we explain some of the general concepts of functional programming.

In this short presentation we explain some of the general concepts of functional programming.

Statistics

Views

Total Views
235
Views on SlideShare
235
Embed Views
0

Actions

Likes
0
Downloads
0
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

A brief introduction to functional programming Presentation Transcript

  • 1. A brief introduction to functional programming Sebastian Wild Stylight GmbH October 31, 2012
  • 2. Functional programming languagesSome programming concepts Variables and Functions Currying Functions as parameters AccumulatorsAdvanced examplesSummary
  • 3. And that language is fast. I mean, really astoundingly fast, which is why it is so evil. It’s like that psychotic girlfriend that was amazing in bed. You keep trying to break up with her, but she seduces you right back into that abusive relationship.from brool.comArticle: The Genius of Python, The Agony of OCaml
  • 4. Functional programming languages Pure Haskell, Charity, Clean, Curry, Hope, Miranda Impure Erlang, F#, Lisp, ML (Standard ML, OCaml), Scala, Spreadsheets
  • 5. First program # p r i n t s t r i n g ” H e l l o , World ! ” ; ; H e l l o , World : u n i t = ( )
  • 6. Variables and Functions # let a = 5;; val a : int = 5 # let a = 5 + 3;; val a : int = 8 (∗ ! ! A t t e n t i o n ! ! Strong type system ∗) # let a = 5 + 3.0;;
  • 7. Variables and Functions # l e t a = (5 , () , ” Hello ” ) ; ; v a l a : i n t ∗ u n i t ∗ s t r i n g = (5 , ( ) , ” H e l l o ”) # let f x = x ∗ x ;; v a l f : i n t −> i n t = <fun>
  • 8. Currying # let f (x , y) = x ∗ y ; ; v a l f : i n t ∗ i n t −> i n t = <fun>
  • 9. Currying # let f x y = x ∗ y ;; v a l f : i n t −> i n t −> i n t = <fun> ( ∗ Types a r e r i g h t b r a c k e t e d ∗ ) i n t −> ( i n t −> i n t )
  • 10. Currying # let f x y = x ∗ y ;; # let a = f 5;; v a l a : i n t −> i n t = <fun> # let b = a 6;; v a l b : i n t = 30 (∗ Function c a l l s are l e f t b r a c k e t e d ∗) # v a l b = ( f 5) 6 ; ; v a l b : i n t = 30
  • 11. Functions as parameters # let a = [1;2;3;4];; val a : int l i s t = [ 1 ; 2; 3; 4] # l e t r e c map f s = match s w i t h [ ] −> [ ] | x : : x s −> ( f x ) : : ( map f x s ) ; ; v a l map : ( ’ a −> ’ b ) −> ’ a l i s t −> ’ b l i s t = <fun> # l e t b = map ( f u n v −> 2 ∗ v ) a ; ; val b : int l i s t = [ 2 ; 4; 6; 8]
  • 12. Functions as parameters L i s t . f o l d l e f t : ( ’ a −> ’ b −> ’ a ) −> ’ a −> ’ b l i s t − L i s t . f o l d l e f t f a [ b1 ; . . . ; bn ] f ( . . . ( f ( f a b1 ) b2 ) . . . ) # L i s t . f o l d l e f t (+) 0 [ 1 ; 2 ; 3 ; 4 ; 5 ; 6 ] ; ; − : i n t = 21
  • 13. Accumulators Faculty of n: # l e t rec fac n = i f n <= 0 t h e n 1 else n ∗ fac (n − 1 ) ; ; v a l f a c : i n t −> i n t = <fun>
  • 14. Accumulator Tail recursive: # l e t fac n = l e t r e c fac ’ acc n = i f n <= 0 t h e n a c c e l s e f a c ’ ( n∗ a c c ) ( n−1) i n fac ’ 1 n ; ; v a l f a c : i n t −> i n t = <fun>
  • 15. Advanced examples http://www.ffconsultancy.com/ocaml/bunny/index.html http://www.ffconsultancy.com/ocaml/ray tracer/index.html
  • 16. Summary No side effects Strong type system Mathematical functions can be expressed very easily Steep learning curve https://github.com/wildsebastian/AlgorithmsDataStructures