SlideShare a Scribd company logo
1 of 84
Download to read offline
EnCOrE: Chemistry, Education, Knowledge
                    From the Real to the Virtual
                Needs, Perceptions, Tools, Concepts

      Encoding of Chemical Knowledge in the Context of Evolving Semantic Web




Consolidating networks of excellence - WebScience Montpellier Meetup
                              International Workshop on
                                   Web Science
                                    13th May, 2011
                                  Montpellier, France




                                     Dr. P. Sankar
                                 Associate Professor & Head

                                Department of Chemistry
               Pondicherry Engineering College, Puducherry – 605 014 INDIA
Simple Text                           Special Text



                       Images




                                                 Special Text




                                                   Simple Text




http://en.wikipedia.org/wiki/Acetaldehyde
Structure databases




                               Structure representation formats



                                                    Other structure related data




http://en.wikipedia.org/wiki/Acetaldehyde
http://en.wikipedia.org/wiki/Acetaldehyde
Conceptual

  Name            Formula        Structure        Properties         Reactions




                                                     Making the chemistry
Chemical structure is central                        domain different from other
for all chemical information                         domains in the context of
and related activities                               storage, retrieval and
                                                     communication in web
                                                     media




 Real substance / material                   Real time reactions
Where we are ?

  CAS              Chemical Abstract           50 million organic and inorganic substances, and
                   Services                    more than 60 million protein and DNA
                                               sequences
  PubChem          NCBI                        31 million compounds and 75 substances             free

  eMolecules       Commercial Suppliers        7.0 million molecules                              free

  ChEMBL           EBI                         2.97 million bioassay measurements covering        free
                                               636,269 compounds
  ChemSpider       Royal Chemical Society      25 million molecules                               free

  ChemACX          CambridgeSoft               2.5 million products and 727,161 substances




                          At present chemical information is almost fully                                Structure
                          handled with the support of databases using                                    Database
   Structure              various structure encoding formats
                                                                                                         Reaction
   Encoding                                                                                              Database
   Formats                 Unfortunately none of these are efficient enough to be
                                   interoperable with the web language                                   Property
                                                                                                         Database




  There is a serious need for linking the structural information with the text or image
  or any other appropriate part of the contents in a Web page containing the
  chemical information
Recent predictions on chemical information


  …the conventional resources of chemical information become incompatible
  with the requirements of the evolving Web 2.0
   Murray-Rust, P. Chemistry for All. Nature. 2008, 451, 648-651




  …huge capacity storage device and the revolutionary computer-human
  interface, will bring a new revolution to the entire human society. For example,
  the paper notebooks used for centuries by chemists will eventually be replaced
  with the electronic notebooks armed with the truly advanced technologies of
  hand-writing recognition and voice recognition. Chemists will become more and
  more computer dependent, Internet dependent, and chemoinformatics
  dependent.

  William Lingran Chen* Chemoinformatics: Past, Present, and Future
  J. Chem. Inf. Model., Vol. 46, No. 6, 2006
Web Scenario




The chemical domain has to adopt with the changing scenario of web by considering the
followings:

         encoding of chemical knowledge in semantically rich format

         development of knowledge based tools and techniques

         shift from database to knowledge base support

         making the computer intelligent enough to report like an experience chemist
EnCOrE project the only initiative taken to achieve new generation chemical informatics


 EnCOrE (Web-Based, free access Electronic Encyclopedia of Organic Chemistry)
 (a multinational collaborative project)

     Prof. Alain Krief     Director (Chief Coordinator cum Advisor)
                           Emeritus Professor FUNDP (Faculté N.-D de la Paix) Chemistry department
                           Laboratoire de Chimie des Matériaux Organiques Supramoléculaires (CMOS) & Laboratoire de
                           Chimie des Matériaux Inorganiques (CMI) 61 rue de Bruxelles, B-5000, Namur, Belgium
                           Director of IOCD (International Organization for Chemical Sciences in Development)


      Advisory Board

      Prof. Stefano Cerri             University of Montpellier, Laboratoire d’Informatique; de Robotique et de
                                      Microelectronique de Montpellier, Montpellier, France

      Prof, Ian Fleming               Cambridge University, Cambridge, United Kingdom

      Prof. Alain Krief               Département de Chimie, Facultés N.-D. de la Paix, Namur, Belgium and
                                      Executive    Director    IOCD (International Organization for Chemical
                                      Sciences in Development)

      Prof. Jean-Marie Lehn           Nobel, Strasbourg University, Strasbourg, France and Président of IOCD
                                      (International Organization for Chemical Sciences in Development)

      Prof. Goverdhan Mehta           FNA, FRS, CSIR Bhatnagar Fellow, Department of Organic Chemistry, Indian
                                      Institute of Science, Bangalore-560 012, India

      Prof. Ryoji Noyori              Nobel, Rikken Institute, Tokyo, Japan


     EnCOrE attempts to frame an Intelligent Chemical Web for the future
A possible attempt to achieve Intelligent Chemical Web




                                                   ontology supported, text based, semantically
                                                   rich structure description system

                                                   Human and Machine understandable
                                                   Chemist’s Knowledge

                                                   APIs to encode chemical knowledge through
                                                   Internet

                                                   Efficient algorithms

                                                   Chemical domain ontologies

                                                   Intelligent inference and reasoning
                                                   capabilities (in-silico basis)

                                                   chemical hyper-linking !?
ChemEd Model Tool to Describe Chemical Structures in XML Format    Utilizing Structural Fragments and Chemical Ontology
                                                    Developed by

                             Punnaivanam Sankar * Krief Alain and Gnanasekaran Aghila
                                                    Published in
                                      J. Chem. Inf. Model. 2010, 50, 755–770
Achieving Human and Machine understandable Chemist’s Knowledge


                                                      oxygen atom
                                                                                   Carbonyl carbon
                                                      has two lone
                                                                                 bonded to Hydrogen
                                                      pair electrons
                                                                                 atom through sigma
         Carbonyl Group
                                                                                        bond
   Sp2 carbon atom bonded with
    sp2 oxygen atom through a
    double bond composed of a
     sigma bond and a pi bond




       Carbonyl carbon
      bonded to a carbon
            atom




                                  This is an alpha                     The functional group
                                 carbon atom and is                        is aldehyde
                                    part of some
                                      skeleton




                                                                                                      Chemical
                                                                                                      Reactiivity
information and knowledge needed

                                                                                               Electron
                                      acid-catalysed hemiacetal formation
                                                                                              movements
                                               H                                      H
                                       O                      OH                   OH O CH3                  HO O CH3

                                           H                      H              H3C      H                 H3C   H

                                                        CH3OH                                                hemiacetal
Material / Substance

                                      acid-catalysed acetal formation from hemiacetal                                     intermediate

                                  H                                                                       H
                                        HO O CH3             H2O O CH3                   O CH3       H3CO O CH3            H3CO OCH3
          species                              H                      H                       H               H                   H
                                       H3C                  H3C                    H3C                H3C                   H3C

                                       hemiacetal                                       CH3OH                                 acetal
    Structural information                     Reaction Specific information                          Chemist knowledge


                                      Group
                                                                                           Formation of hemiacetal
                                      Functional group
Hybridization                                                                              Protonation at carbonyl oxygen atom
                                      Alpha carbon
geometry                                                                                   Addition of methanol to carbonyl carbon
                                      Ring skeleton (bridged, fused, spiro)
Charge status                                                                              Elimination of proton
                                      Linear skeleton
Electronic environment
                                      Bridgehead position
Bonding details                                                                            Formation of acetal
                                      Exo / endo orientation of groups
Location of the atom on
                                      Axial / equatorial orientation of groups
specific skeleton structure                                                                Protonation of hydroxyl group
                                      Reaction sites
Presence of lone pair electrons                                                            Loss of water by elemination
                                      Heat
isotope label                                                                              Addition of methanol to oxonium ion
                                      Pressure
Isomerism (optical,                                                                        Breaking of pi bond
                                      Light
geometrical, etc)                                                                          Loss of proton
                                      Time
etc.                                                                                       etc
                                      Action, equipments, observation
Chemist                                            Computer


 Structural                          Reaction        Structural                          Reaction
information                         information     information                        information




                    Chemist                                             Chemist
                   knowledge                                           knowledge




                                                     Through a proper structure description system
                                                     rich in semantics
Out of experience and expertise gained over
the period of years a chemist is capable of          Integration of external knowledge resources
correlating the structural features with reaction    through chemical ontologies
specific details
                                                     Tools to integrate reaction knowledge with
                                                     structural features
An approach available to achieve encoding of chemical knowledge




               ontology                                          XML




                                     Semantics


Chemical Ontologies implemented in OWL               Java based programs

Ontology Editors - Protege                           XML description to support software agents
ChemGp – A Knowledge Editor for Groups, Functional Groups and Chemical Reactivity or transformations




                                                                                    To be communicated
We believe strongly that we can provide challenging tasks in the following areas
                                                                       to build an Intelligent Chemical Web of Trust


                                                   Knowledge
                                                  Representation


                                                                            Visualization
                           Web Technology                                   Techniques


                                                                                       Cloud / distributed
                  APIs
                                                                                          Computing




                Robotics                                                               Linguistics / Theme




                                                     Education /
                                                     Academics




We are interested to associate with people / group to achieve our proposed objectives
Thank you




                                          Acknowledgement

The authors acknowledge the support of:

The Department           of Science and Technology (DST), New Delhi, India for a funding
    support

The Belgian Science Foundation              (FNRS) especially for the creation of Fragment Library
(A. Krief) and FUNDP (Namur, Belgium).

Prof. Mark A. Musen, and Dr. Tania Tudorache, Biomedical     Informatic Research Center
(BMIR), Stanford University for their support in learning Protégé and developing OWL
ontologies in Protégé.
Development of a Semantically Rich
    Structure Representation System




Model Tool to Describe Chemical Structures in XML Format Utilizing
           Structural Fragments and Chemical Ontology

     Punnaivanam Sankar*, Krief Alain, and Gnanasekaran Aghila

               J. Chem. Inf. Model. 2010, 50, 755–770
Development of Semantically Rich Structure Representation on conceptual basis


                         O
                                                                                    O

          H              C                    Structure                                 H
                 C           H

             H
                     H



         H               C                                                      H       C
                                 O            Fragment                                          O




                                                Atom                        H   C       O
     H           C           O

                                                                            H   C           O
     H           C               O             Electron
Development of Semantically Rich Structure Representation on conceptual basis




        Structure
                                              Fragment
               has

                             isA              Fragment                          Fragment
       Fragment

               has                                                  isA
                                              Fragment                          Fragment

          Atom
                                                                                Fragment
               has

        Electron
Development of Semantically Rich Structure Representation on conceptual basis



                                                              O

                                               H              C
            Structure                                 C           H

                                                  H
                                                          H
                                                                                Chemical
                                                                                Ontology
                                              H               C
            Fragment                                                      O




              Atom
                                          H           C               O


             Electron                     H           C               O

                                                                                XML
Fragment Ontology
Fragment Ontology
Fragment Ontology
Fragment Ontology
Fragment Ontology
Composition of Fragment



                                           Fragment


                                              has
                          Atom

                          has
                                                                      Atom

  ElectronLink        ElectronLink       ElectronLink
                                                                       has

                                                    ElectronLink   ElectronLink   ElectronLink


                             Atom

                             has

     ElectronLink         ElectronLink     ElectronLink
                                                                      Atom

                                                                      has

                                                    ElectronLink   ElectronLink   ElectronLink
Composition of Structure in tree view

       Structure

                   Fragment


                              Atom                                 XML Format
                                     ElectronLink   <structure >
                                                           <fragment >
                                     ElectronLink                        <atom >
                                                                                   <electronLink />
                                                                                   <electronLink />
                              Atom
                                                                         </atom>
                                                                         <atom >
                                     ElectronLink                                  <electronLink />
                                                                                   <electronLink />
                                     ElectronLink                        </atom>
                                                          </fragment>
                   Fragment                               <fragment >
                                                                         <atom >
                                                                                   <electronLink />
                              Atom                                                 <electronLink />
                                                                         </atom>
                                     ElectronLink                        <atom >
                                                                                   <electronLink />
                                     ElectronLink                                  <electronLink />
                                                                         </atom>
                              Atom                        </fragment>

                                     ElectronLink   </structure>

                                     ElectronLink
Composition of Structure in XML representation




      <structure                   id="" title="" type="" formula="" X="" Y="" caption="" captionX=""
                                   captionY="">

            <fragment              id="" title="" type="" symbol="" linkType="" orientation=""
                                   projection=“” x1="" y1="" x2="" y2="">

                <atom              id="" title="" hybridization="" symbol="" position=""
                                   isotopeLabel=“” x="" y="">

                  <electronLink id="" title="" electronStatus="" charge="" chargeCount=""
                                affinity="" bond=“” order="" linkStatus=""
                                target="" orientation="" projection="" x1="" y1="" x2="" y2=""/>
               </atom>

            </fragment>

      </structure>
structure construction based on conceptual description                                                      advantages


 the conceptual description of structural components based on fragments,
 atoms and the electronLinks allows:

    the structure construction through the selection of fragments represented by text


    the validation of bonding during the structure construction on screen instantaneously


    to make the computer to behave intelligently to infer the type of skeleton from the combination of
    fragments

    the generation of semantically rich XML representation of chemical structure


    the computer to understand the meaning of the components of the chemical structure


     the processing of the structural features in XML document of structure to arrive at useful inference


    the computer to mimic the Chemist’s view on the chemical structure



                                                                                                We need a tool
EnCOrE - ChemEd – the Structure Editor developed by us




                                                            ChemEd

                                 Model Tool to Describe Chemical Structures in XML Format
                                   Utilizing Structural Fragments and Chemical Ontology



                                                              Developed by

                                                      Punnaivanam Sankar *1
                                                               jointly with
                                             Krief Alain2 and Gnanasekaran Aghila3

                           1Department  of Chemistry, Pondicherry Engineering College, Puducherry - 605 014,
                                                                 India
                              2Department of Chemistry, Facultés N.–D. de la Paix, Namur, B 5000, Belgium
                          3Department of Computer Science, Pondicherry University, Puducherry - 605 014, India


                        ChemEd is the first of a series of tools designed in the context of EnCOrE, a project
                        aimed to create a Web-based Encyclopedia of Organic Chemistry built
                        collaboratively but under a strict editorial board policy. We have identified several
                        tools with original features to achieve this objective and have ranked first the design
                        of a tool able to interoperate between structure, and the perception of chemist, which
                        allows among others creativity through chemical synthesis and organization of
                        chemical data


      ChemEd is an ontology supported Structure Editor to draw/edit and to describe chemical structures
About EnCOrE project


 EnCOrE (Web-Based, free access Electronic Encyclopedia of Organic Chemistry)
 (a multinational collaborative project)

     Prof. Alain Krief     Director (Chief Coordinator cum Advisor)
                           Emeritus Professor FUNDP (Faculté N.-D de la Paix) Chemistry department
                           Laboratoire de Chimie des Matériaux Organiques Supramoléculaires (CMOS) & Laboratoire de
                           Chimie des Matériaux Inorganiques (CMI) 61 rue de Bruxelles, B-5000, Namur, Belgium
                           Director of IOCD (International Organization for Chemical Sciences in Development)




      Advisory Board

      Prof. Stefano Cerri             University of Montpellier, Laboratoire d’Informatique; de Robotique et de
                                      Microelectronique de Montpellier, Montpellier, France

      Prof, Ian Fleming               Cambridge University, Cambridge, United Kingdom

      Prof. Alain Krief               Département de Chimie, Facultés N.-D. de la Paix, Namur, Belgium and
                                      Executive    Director    IOCD (International Organization for Chemical
                                      Sciences in Development)

      Prof. Jean-Marie Lehn           Nobel, Strasbourg University, Strasbourg, France and Président of IOCD
                                      (International Organization for Chemical Sciences in Development)

      Prof. Goverdhan Mehta           FNA, FRS, CSIR Bhatnagar Fellow, Department of Organic Chemistry, Indian
                                      Institute of Science, Bangalore-560 012, India

      Prof. Ryoji Noyori              Nobel, Rikken Institute, Tokyo, Japan
Tool bar
ChemEd – Graphical User Interface
                                                                            Contains the icons to
                                                                           modify or to manipulate
                                                                          the structures on screen



                                          Fragment Icons
                                               bar
                      Menu bar                                     Functional Group
                                         Commonly needed
                                                                    Display Panel
                                             structural
                                         fragments to build
                                             structure
                                                                   Reactivity Panel

                                           Drawing Panel
                       ChemLib
                                         To draw structures
                        Fragment                                     Group Display
                     Instances from                                     Panel
                        Ontology


                                          ChemFul display panel

                                      Shows the full XML description of
                                       structure drawn on the screen
tool bar: consists of icons to manipulate the structure drawn on screen and to process the structure description

                                                       Cursor tool – used to select and create structures on screen
               Eraser
                                                       Eraser tool – erase drawings representing a structure

                                                       Show/Hide Grid tool – used to show or hide the grid guide lines to
Cursor                                                 align the structures on screen
                               Show/Hide
                                 Grid




     Move
   Structure                               Move Atom
    Group

                          Move
                        Structure

                                    Moving the drawings on the screen can be done using these icons.

                                    Move Structure Group – moves the whole drawings on the screen
                                    Move Structure – to move structures representing individual structures on the screen
                                    Move Structure Group – to relocate atoms or points representing atoms on the screen
tool bar: consists of icons to manipulate the structure drawn on screen and to process the structure description

                                 Projection
                                  Labeling
      Atom Position
                                                     Change Atom
        Labeling
                                                     Coordinates




                                                                      Change
                                                Add/Remove           Orientation
                                Isotope           Electron
                                Labeling

  Atom Position Labelling : Atom labelling allows official numbering in a skeleton

  Isotope Labelling : provides the facility to label a selected atom with appropriate isotope label guided by external
  ontology

  Projection Labelling : The bonds can be labelled to indicate the three projections, in plane, above plane, and below
  plane relative to the plane of screen using the “Projection Labeling” icons

  Add/Remove Electron : ChemEd has the facility to (i) create charge on an atom by adding or removing electron on the
  “electronLink” of the atom using this tool

  Change Atom Coordinates : can be used to relocate the atom positions so as to reflect this change in the ChemFil and
  ChemFul. This facility is particularly needed to create templates like “CyclohexaneChairRing” from a “SixMemberRing”

  Change Orientation : provides the possibility to edit the orientation of fragment if needed
tool bar: consists of icons to manipulate the structure drawn on screen and to process the structure description

                                                                                               to display a brief report
                                                                                               on the group, functional
                                                                                               group and skeleton
                                                                                               related information for the
                                                                       Electron Status
                                                                                               structure drawn on the
                                                                           Display             screen
 show / hide the lone pair, unpaired and empty electron
 status of “electronLink” to allow the display of more details
                                                                                                          Functional group
 of the atoms on the screen when needed                                                                       Report




                                                                                                                 Atom
                                               Draw Supra-                                                     Descriptor
                                            Molecular Interaction



                                                                           Display the atom descriptors such as
draw and encode supra-molecular interactions such as
                                                                           symbol; name; isotope label;
ion-ion, ion-dipole, dipole-dipole, metal-pi, hydrogen
                                                                           hybridization, charge, and electron status,
bonding and multi-centre bonding
                                                                           bonding details of any selected atom on
                                                                           the screen
Structure drawing




                     The structure drawing in ChemEd starts by bringing with
                                 cursor an appropriate fragment

                          available as icons on the Fragment Icons bars

                                                or

                                          from ChemLib

                                          into the screen.

                    The drawing can be pursued and completed by joining other
                     fragments to the existing one through a click or drag event
ChemLib: Provides the basic structural fragments organized in Fragment ontology for structure drawing




                               AtomFragment: represents single atom fragment classified as

                               NeutralAtomFragment such as C, H, O, N, Cl, Br, I, S, P, etc.

                               AnionicAtomFragment like C-, H-, F-, Cl-, Br-, I-

                               and

                               CationicAtomFragment such as C+, H+, Cl+, Br+, I+, Na+, K+, Mg2+, Fe2+, Fe3+,
                               etc
ChemLib: Provides the basic structural fragments organized in Fragment ontology for structure drawing




                                 The “AtomGroupFragment” represents a group of atoms to
                                 describe meaningful chemical groups such as carbonyl, formyl,
                                 hydroxyl, etc. It is also classified as anionic, cationic, neutral atom
                                 groups to represent condensed structures of atom groups such as
                                 OH-, COO-, NH2-, CN-; NH4+, OH3+; OH, CHO, CO, COOH, CH3,
                                 C2H5, C3H7, etc which can include molecular
                                 “AtomGroupFragment” such as BH3, NH3, CH3OH, (C2H5)2O,
                                 CH3COCH3 particularly useful for describing complexes.
ChemLib: Provides the basic structural fragments organized in Fragment ontology for structure drawing




                                   The “SkeletonFragment” represent the structural fragments with
                                   more than one atom connected with bonds. The default atom in
                                   the SkeletonFragment is carbon and the skeleton includes both
                                   acyclic and cyclic systems like single bond, double bond, three
                                   member ring, six member ring etc.

                                   There are five classes of skeleton fragments identified viz.
                                   BondSkeletonFragment
                                   RingSkeletonFragment
                                   BridgeSkeletonFragment
                                   FuseSkeletonFragment
                                   SpiroSkeletonFragment
ChemLib: Provides the basic structural fragments organized in Fragment ontology for structure drawing




                                     The “TemplateFragment” is to describe fragments derived from
                                     the first three fragment types.

                                     For example, a bicyclic template fragment like
                                     “Bicyclo221HeptaneRing” can be constructed with a suitable
                                     “RingSkeletonFragment” and one of the
                                     “BridgeSkeletonFragment” fragments.

                                     Similarly a polyclyclic template fragment representing a steroid
                                     skeleton can be constructed by fusing the ring skeleton
                                     fragments appropriately.

                                     Different conformations of same cyclic structures like chair and
                                     boat forms of Cyclohexane ring systems can be created and
                                     added into the ChemLib in the “TemplateSkeletonFragment”
                                     category for structure construction
Fragment Icon bar:
 To draw single / double / triple
       bond fragments
                                                                    Provides the frequently needed
                                                                    structural fragments for structure
                                                                    drawing




To create one / two / three           To draw skeleton systems
member bridge fragments             representing 3-8 member ring
                                              skeletons


                                                                   To create BenzeneRing and
                                                                     Bicyclo221HeptaneRing
                                                                            templates




     To create Neutral atom
 fragment / to introduce atoms
         in the skeleton
ChemEd – Shows the structure drawn on draw panel. It also detects the functional group and
Displays in the Functional Group Panel
ChemEd – Shows the functional group specific information along with the chemical groups and the
Reactivity information associated with the functional group
ChemEd – outlines the chemical group selected
ChemEd – Shows a reactive site
XML markup generated by ChemEd for the full description of benzaldehyde structure

 ChemFul
             <?xml version="1.0"?>
             <structureGroup id="" title="C:ChemFilbenzaldehyde.xml" type="">
               <structure id="s1" title="structure1" type="" formula="" X="0" Y="0" caption="" captionX="0"
                  captionY="0">
                  <fragment id="s1-0" title="SixMemberRing" type="SkeletonFragment" template="" symbol="C6"
                     linkType="" orientation="270" projection="" x1="329" y1="121" x2="329" y2="121">
                     <atom id="s1-0-a1" title="Carbon" hybridization="sp3" symbol="C" position="1"
                        isotopeLabel="" x="329" y="121">
                        <electronLink id="s1-0-a1e1" title="2sp3" electronStatus="bPair" charge="0"
                           chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="link"
                           target="s1-0-a2e1" orientation="330" projection="" x1="329" y1="121" x2="355"
                           y2="136"/>
                        <electronLink id="s1-0-a1e2" title="2sp3" electronStatus="bPair" charge="0"
                           chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="link"
                           target="s1-0-a6e2" orientation="210" projection="" x1="329" y1="121" x2="303"
                           y2="136"/>
                        <electronLink id="s1-0-a1e3" title="2sp3" electronStatus="bPair" charge="0"
                           chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="linkTarget"
                           target="s1-4-a1e1" orientation="" projection="" x1="329" y1="121" x2="329"
                           y2="121"/>
                                                                                                              12.4 KB
                        <electronLink id="s1-0-a1e4" title="2sp3" electronStatus="bPair" charge="0"
                           chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="linkTarget"
                           target="s1-5-a1e1" orientation="" projection="" x1="329" y1="121" x2="329"
                           y2="121"/>
                     </atom>
                     <atom id="s1-0-a2" title="Carbon" hybridization="sp3" symbol="C" position="2"
                        isotopeLabel="" x="355" y="136">
                        <electronLink id="s1-0-a2e1" title="2sp3" electronStatus="bPair" charge="0"
                           chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="link"
                           target="s1-0-a1e1" orientation="150" projection="" x1="355" y1="136" x2="329"
                           y2="121"/>
                        <electronLink id="s1-0-a2e2" title="2sp3" electronStatus="bPair" charge="0"
                           chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="link"
                           target="s1-0-a3e1" orientation="270" projection="" x1="355" y1="136" x2="355"
                           y2="166"/>
                        <electronLink id="s1-0-a2e3" title="2sp3" electronStatus="bPair" charge="0"
                           chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="linkTarget"
                           target="s1-1-a1e1" orientation="30" projection="" x1="355" y1="136" x2="381"
                           y2="121"/>
XML markup generated by ChemED for the construction of benzaldehyde structure

 ChemFil




<?xml version="1.0"?>
<structureGroup id="" title="C:ChemFilbenzaldehyde" type="">
   <structure id="s1" title="structure1" type="" formula="" X="0" Y="0" caption="" captionX="0”captionY="0">
      <fragment id="s1-0" title="BenzeneRing" type="TemplateFragment" template="BenzeneRing” link="" orientation="270"
                             target1="" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/>
      <fragment id="s1-1" title="Carbon" type="AtomFragment" template="BenzeneRing" link="direct“orientation="30" t
                             arget1="s1-0-a2e3" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/>
      <fragment id="s1-2" title="DoubleBond" type="SkeletonFragment" template="BenzeneRing“link="direct" orientation="90“
                             target1="s1-1-a1e2" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/>
      <fragment id="s1-3" title="Hydrogen" type="AtomFragment" template="BenzeneRing”link="direct" orientation="330“
                             target1="s1-1-a1e4" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/>
      <modification title="Atom" sourceObject="Oxygen" targetObject="Carbon" targetId1="s1-2-a1” targetId2="" x1="0" y1="0"/>
   </structure>
</structureGroup>




                                                       2 KB
Markup for Benzaldehyde construction



<?xml version="1.0"?>

<structureGroup id="" title="C:ChemFilbenzaldehyde" type="">

  <structure id="s1" title="structure1" type="" formula="" X="0" Y="0" caption="" captionX="0”captionY="0">

    <fragment id="s1-0" title="BenzeneRing" type="TemplateFragment" template="BenzeneRing” link="" orientation="270"
                           target1="" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/>

    <fragment id="s1-1" title="Carbon" type="AtomFragment" template="BenzeneRing" link="direct“orientation="30" t
                           arget1="s1-0-a2e3" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/>

    <fragment id="s1-2" title="DoubleBond" type="SkeletonFragment" template="BenzeneRing“link="direct" orientation="90“
                           target1="s1-1-a1e2" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/>

    <fragment id="s1-3" title="Hydrogen" type="AtomFragment" template="BenzeneRing”link="direct" orientation="330“
                           target1="s1-1-a1e4" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/>

    <modification title="Atom" sourceObject="Oxygen" targetObject="Carbon" targetId1="s1-2-a1” targetId2="" x1="0" y1="0"/>

  </structure>

</structureGroup>
Markup for Benzaldehyde construction



<?xml version="1.0"?>

<structureGroup id="" title="C:ChemFilbenzaldehyde" type="">

  <structure id="s1" title="structure1" type="" formula="" X="0" Y="0" caption="" captionX="0”captionY="0">

    <fragment id="s1-0" title="BenzeneRing" type="TemplateFragment" template="BenzeneRing” link="" orientation="270"
                           target1="" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/>

    <fragment id="s1-1" title="Carbon" type="AtomFragment" template="BenzeneRing" link="direct“orientation="30" t
                           arget1="s1-0-a2e3" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/>

    <fragment id="s1-2" title="DoubleBond" type="SkeletonFragment" template="BenzeneRing“link="direct" orientation="90“
                           target1="s1-1-a1e2" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/>

    <fragment id="s1-3" title="Hydrogen" type="AtomFragment" template="BenzeneRing”link="direct" orientation="330“
                           target1="s1-1-a1e4" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/>

    <modification title="Atom" sourceObject="Oxygen" targetObject="Carbon" targetId1="s1-2-a1” targetId2="" x1="0" y1="0"/>

  </structure>

</structureGroup>
Markup for Benzaldehyde construction



<?xml version="1.0"?>

<structureGroup id="" title="C:ChemFilbenzaldehyde" type="">

  <structure id="s1" title="structure1" type="" formula="" X="0" Y="0" caption="" captionX="0”captionY="0">

    <fragment id="s1-0" title="BenzeneRing" type="TemplateFragment" template="BenzeneRing” link="" orientation="270"
                           target1="" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/>

    <fragment id="s1-1" title="Carbon" type="AtomFragment" template="BenzeneRing" link="direct“orientation="30" t
                           arget1="s1-0-a2e3" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/>

    <fragment id="s1-2" title="DoubleBond" type="SkeletonFragment" template="BenzeneRing“link="direct" orientation="90“
                           target1="s1-1-a1e2" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/>

    <fragment id="s1-3" title="Hydrogen" type="AtomFragment" template="BenzeneRing”link="direct" orientation="330“
                           target1="s1-1-a1e4" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/>

    <modification title="Atom" sourceObject="Oxygen" targetObject="Carbon" targetId1="s1-2-a1” targetId2="" x1="0" y1="0"/>

  </structure>

</structureGroup>
Markup for Benzaldehyde construction



<?xml version="1.0"?>

<structureGroup id="" title="C:ChemFilbenzaldehyde" type="">

  <structure id="s1" title="structure1" type="" formula="" X="0" Y="0" caption="" captionX="0”captionY="0">

    <fragment id="s1-0" title="BenzeneRing" type="TemplateFragment" template="BenzeneRing” link="" orientation="270"
                           target1="" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/>

    <fragment id="s1-1" title="Carbon" type="AtomFragment" template="BenzeneRing" link="direct“orientation="30" t
                           arget1="s1-0-a2e3" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/>

    <fragment id="s1-2" title="DoubleBond" type="SkeletonFragment" template="BenzeneRing“link="direct" orientation="90“
                           target1="s1-1-a1e2" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/>

    <fragment id="s1-3" title="Hydrogen" type="AtomFragment" template="BenzeneRing”link="direct" orientation="330“
                           target1="s1-1-a1e4" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/>

    <modification title="Atom" sourceObject="Oxygen" targetObject="Carbon" targetId1="s1-2-a1” targetId2="" x1="0" y1="0"/>

  </structure>

</structureGroup>
Markup for Benzaldehyde construction



<?xml version="1.0"?>

<structureGroup id="" title="C:ChemFilbenzaldehyde" type="">

  <structure id="s1" title="structure1" type="" formula="" X="0" Y="0" caption="" captionX="0”captionY="0">

    <fragment id="s1-0" title="BenzeneRing" type="TemplateFragment" template="BenzeneRing” link="" orientation="270"
                           target1="" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/>

    <fragment id="s1-1" title="Carbon" type="AtomFragment" template="BenzeneRing" link="direct“orientation="30" t
                           arget1="s1-0-a2e3" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/>

    <fragment id="s1-2" title="DoubleBond" type="SkeletonFragment" template="BenzeneRing“link="direct" orientation="90“
                           target1="s1-1-a1e2" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/>

    <fragment id="s1-3" title="Hydrogen" type="AtomFragment" template="BenzeneRing”link="direct" orientation="330“
                           target1="s1-1-a1e4" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/>

    <modification title="Atom" sourceObject="Oxygen" targetObject="Carbon" targetId1="s1-2-a1” targetId2="" x1="0" y1="0"/>

  </structure>

</structureGroup>
Fragment markup – semantics at fragment level

           <fragment id="s1-1" title="Carbon" type="AtomFragment" template="" symbol="C"
                 linkType="direct" orientation="30" projection="" x1="355" y1="136" x2="381" y2="121">

                  <atom id="s1-1-a1" title="Carbon" hybridization="sp2" symbol="C" position=""
                    isotopeLabel="" x="381" y="121">

                    <electronLink id="s1-1-a1e1" title="2sp2" electronStatus="bPair" charge="0"
                      chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="linkSource"
                      target="s1-0-a2e3" orientation="30" projection="" x1="381" y1="121" x2="355"
                      y2="136"/>
    C
                    <electronLink id="s1-1-a1e2" title="2sp2" electronStatus="bPair" charge="0"
                      chargeCount="0" affinity="" bond="sigma" order="double" linkStatus="linkTarget"
                      target="s1-2-a1e1" orientation="90" projection="" x1="381" y1="121" x2="381"
                      y2="91"/>
Fragment
                    <electronLink id="s1-1-a1e3" title="2pz" electronStatus="bPair" charge="0"
                      chargeCount="0" affinity="" bond="pi" order="double" linkStatus="link"
                      target="s1-2-a1e2" orientation="90" projection="" x1="376" y1="121" x2="376"
                      y2="91"/>

                    <electronLink id="s1-1-a1e4" title="2sp2" electronStatus="bPair" charge="0"
                      chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="linkTarget"
                      target="s1-3-a1e1" orientation="330" projection="" x1="381" y1="121" x2="407"
                      y2="136"/>

                  </atom>

               </fragment>
Fragment markup – semantics at atom level

       <fragment id="s1-1" title="Carbon" type="AtomFragment" template="" symbol="C"
             linkType="direct" orientation="30" projection="" x1="355" y1="136" x2="381" y2="121">

              <atom id="s1-1-a1" title="Carbon" hybridization="sp2" symbol="C" position=""
                isotopeLabel="" x="381" y="121">

                <electronLink id="s1-1-a1e1" title="2sp2" electronStatus="bPair" charge="0"
                  chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="linkSource"
                  target="s1-0-a2e3" orientation="30" projection="" x1="381" y1="121" x2="355"
                  y2="136"/>

 C              <electronLink id="s1-1-a1e2" title="2sp2" electronStatus="bPair" charge="0"
                  chargeCount="0" affinity="" bond="sigma" order="double" linkStatus="linkTarget"
                  target="s1-2-a1e1" orientation="90" projection="" x1="381" y1="121" x2="381"
                  y2="91"/>
Atom
                <electronLink id="s1-1-a1e3" title="2pz" electronStatus="bPair" charge="0"
                  chargeCount="0" affinity="" bond="pi" order="double" linkStatus="link"
                  target="s1-2-a1e2" orientation="90" projection="" x1="376" y1="121" x2="376"
                  y2="91"/>

                <electronLink id="s1-1-a1e4" title="2sp2" electronStatus="bPair" charge="0"
                  chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="linkTarget"
                  target="s1-3-a1e1" orientation="330" projection="" x1="381" y1="121" x2="407"
                  y2="136"/>

              </atom>

           </fragment>
Fragment markup – semantics at electronLink level

               <fragment id="s1-1" title="Carbon" type="AtomFragment" template="" symbol="C"
                     linkType="direct" orientation="30" projection="" x1="355" y1="136" x2="381" y2="121">

                      <atom id="s1-1-a1" title="Carbon" hybridization="sp2" symbol="C" position=""
                        isotopeLabel="" x="381" y="121">

                        <electronLink id="s1-1-a1e1" title="2sp2" electronStatus="bPair" charge="0"
                          chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="linkSource"
                          target="s1-0-a2e3" orientation="30" projection="" x1="381" y1="121" x2="355"


   C                      y2="136"/>

                        <electronLink id="s1-1-a1e2" title="2sp2" electronStatus="bPair" charge="0"
                          chargeCount="0" affinity="" bond="sigma" order="double" linkStatus="linkTarget"
                          target="s1-2-a1e1" orientation="90" projection="" x1="381" y1="121" x2="381"
                          y2="91"/>
electronLink
                        <electronLink id="s1-1-a1e3" title="2pz" electronStatus="bPair" charge="0"
                          chargeCount="0" affinity="" bond="pi" order="double" linkStatus="link"
                          target="s1-2-a1e2" orientation="90" projection="" x1="376" y1="121" x2="376"
                          y2="91"/>

                        <electronLink id="s1-1-a1e4" title="2sp2" electronStatus="bPair" charge="0"
                          chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="linkTarget"
                          target="s1-3-a1e1" orientation="330" projection="" x1="381" y1="121" x2="407"
                          y2="136"/>

                      </atom>

                   </fragment>
The basic Semantic Levels in Structure description



      Structure


                         structure
      Fragment
                                  fragment

                                             atom
        Atom                                   electronLink


      Electron
The Semantics at electronLink level

   Descriptor                          Presentational
   attributes                          attributes



  id
  title
                      Specifies the
  electronStatus      unique
  charge
  chargeCount         identification   orientation
                                       X1
  affinity            value            Y1
  bond
                                       X2
  order
                                       y2
  linkStatus          id="s1-1-a1e1"
  Target
  projection
The Semantics at electronLink level

   Descriptor                           Presentational
   attributes                           attributes



  id
                      Presents the
  title               name of the
  electronStatus      orbital /
  charge
                                        orientation
  chargeCount         hybridization     X1
  affinity
                                        Y1
  bond
                                        X2
  order               s, p, sp3, sp2,   y2
  linkStatus
  Target              sp, dsp2
  projection
The Semantics at electronLink level

   Descriptor                             Presentational
   attributes                             attributes



  id                  electronic status
  title
  electronStatus
                      of the
  charge              electronLink        orientation
  chargeCount
                                          X1
  affinity
                      lone pair           Y1
  bond
                      bond pair           X2
  order
                      unpaired            y2
  linkStatus
                      ion pair
  Target
                      empty
  projection
The Semantics at electronLink level
     Descriptor                                                                            Presentational
     attributes                                                                            attributes



     id
     title
     electronStatus
                                        Charge as
     charge                             0 / + / - / δ+ and                                 orientation
     chargeCount
     affinity
                                        δ-                                                 X1
                                                                                           Y1
     bond                                                                                  X2
     order
     linkStatus
                                        chargeCount as                                     y2
     Target                             0,1,2,3…
     projection


Meaningful inferences can be obtained by combining the values of ‘electronStatus’, ‘charge’ and ‘chargeCount’
attributes. For example a value of “empty” for ‘electronStatus’ followed by a “+” in the ‘charge’ and “1” in the
‘charge’ attribute can be inferred as the positive charge is due to the loss of an unpaired electron. Similarly the
values “lPair”, “-” and “1” for ‘electronStatus’, ‘charge’ and ‘chargeCount’ attributes respectively provides the
meaning of acquired negative charge due to the gain of one electron.
The Semantics at electronLink level

   Descriptor                          Presentational
   attributes                          attributes



  id
  title
  electronStatus
  charge
  chargeCount
                      provides the     orientation
  affinity            semantics of     X1
                                       Y1
  bond
  order             chemical bonding   X2
                                       y2
  linkStatus
  Target
  projection
The Semantics at electronLink level

   Descriptor                                             Presentational
   attributes                                             attributes



  id
  title
  electronStatus                  Affinity
  charge
                     indicating the normal tendency of    orientation
  chargeCount       the “electronLink” towards chemical
  affinity                                                X1
                     bonding using the values such as
                                                          Y1
  bond                 “covalent / ionic / coordinate”
                       quoting for covalent-, ionic- or   X2
  order
                                 dative-bond              y2
  linkStatus
  Target
  projection
The Semantics at electronLink level

   Descriptor                                                  Presentational
   attributes                                                  attributes



  id
  title                              Bond
  electronStatus
  charge             type of bond is denoted with values
                    like “sigma / pi-y / pi-z” to separately   orientation
  chargeCount         encode the sigma and pi systems
  affinity                                                     X1
                                                               Y1
  bond                              Order
                                                               X2
  order
                      indicates bond order with values         y2
  linkStatus               “single / double / triple”
  Target
  projection
The Semantics at electronLink level

   Descriptor                                                Presentational
   attributes                                                attributes



  id                               Target
  title
  electronStatus        Target attribute of the source
  charge             “electronLink” is used to hold the
                    unique id-value of the “electronLink”    orientation
  chargeCount       of the targeted atom to represent a
  affinity                                                   X1
                               chemical bond.
                                                             Y1
  bond
                         At the same time the ‘target’       X2
  order
                    attribute of the target “electronLink”   y2
  linkStatus           is filled with the id-value of the
  Target             “electronLink” of the source atom
  projection
The Semantics at electronLink level

   Descriptor                                                       Presentational
   attributes                                                       attributes


                                     linkStatus

  id                 specifies whether the link is between two
  title             “electronLink” belong to same fragment or
                         different fragments. In case of a link
  electronStatus     within the fragment, the linkStatus holds
  charge              the value as “link”. If the link is between   Orientation
  chargeCount              two different fragments, then the
                                                                    X1
                          “electronLink” belong to the target
  affinity                  fragment takes up the value as          Y1
  bond              “linkTarget” and that of source fragment is     X2
  order              filled with the value as “linkSource”. The     y2
                     same attribute is used to hold the bridge
  linkStatus         head positions in bridged structures with
  Target                   the values of “bridgeTarget” and
                                     “bridgeSource”
The Semantics

   Descriptor                                                                   presentational
   attributes                      imaginary                                    attributes

   id                              orientation of                               orientation
   title
   eStatus                         orbitals                                     X1
                                                                                Y1
   link
   linkType                        restricted to two                            X2
                                                                                y2
   bondType
   charge                          dimensional
   chargeCount
   linkTarget                      plane
   linkTargetId




The ‘orientation’ attribute provides the description of imaginary orientation of bond links in a two
dimensional plane. A value from 0 to 360 in anticlockwise direction is suggested as the possible
orientations along which the atoms are oriented with respect to the mapped atom
The Semantics at electronLink level

   Descriptor                                                      Presentational
   attributes                                                      attributes

                          coordinates in pixels

  id                 The exact coordinates in pixel values at
                      which the fragments are placed on the
  title              screen are provided using ‘x1’, ‘y1’, ‘x2’,
  electronStatus         and ‘y2’ for rendering the chemical
  charge            structures on the computer screen as 2D        Orientation
                       graphics. These attributes renders the
  chargeCount       “electronLink” as points with x1 = x2 and
                                                                   x1
  affinity          y1 = y2 indicating unmapped free links or      y1
  bond                 as the mapped bond link to show the         x2
  order             chemical bond with the values as x1 ≠ x2       y2
                       and y1 ≠ y2. Accordingly a point at an
  linkStatus         atom indicates the presence of an open
  Target            “electronLink”. A line connecting between
                      two atoms represents a chemical bond
The Semantics at atom level



 descriptor
 attributes

 Id
 Title
 Hybridization    Title and symbol of atom
 Symbol
 Position
 isotopeLabel     Carbon, hydrogen, nitrogen …

 presentational   C, H, N …
 attributes

 x
 y
The Semantics at atom level



 descriptor
 attributes

 Id
 Title
 Hybridization    Hybridization
 Symbol
 Position
 isotopeLabel     specifies the hybridization status of the atom if any

 presentational   Like sp, sp2, sp3, dsp2 etc
 attributes

 x
 y
The Semantics at atom level
                                                           7               10


                                                               2       8        9
 descriptor                                            1           3
 attributes                                            4       6   5


 Id               Position
 Title            allows the numbering of atoms in a skeleton
 Hybridization
 Symbol
 Position
 isotopeLabel     IsotopeLabel
                  brings the possibility to label the atoms at any stage
 presentational   of structure construction guided by external
 attributes
                  ontology
 x
 y
The Semantics at Fragment level


                                                                Descriptor
                                                                attributes
   Title specifies the fragment name
                                                                Id
   Type is used to indicate the class to which the              Title
                                                                Type
   fragment belongs as defined in the fragment ontology
                                                                Symbol
                                                                linkType
   Symbol denotes the symbol of the fragment like “C /
   H / N / OH / CHO / COOH / etc”                               Presentational
                                                                attributes
   linkType to hold values such as “direct” or “bridge” or      Orientation
   “fuse” or “spiro” to represent the nature of link when the   Projection
   fragment is joined with other fragment during structure      x1
                                                                y1
   construction                                                 x2
                                                                y2
Additional Semantics
                                                 The semantic level can be expanded further to
                                                 accommodate “material” level to markup the
                                                 substance or material


                     material

                                structure

                                             fragment

                                                           atom
 The XML format of ChemFul includes the
 description of individual fragments inside a
                                                                electronLink
 “structure” element and then all the “structure”
 elements into a “material” element. So, the
 ChemEd generates the ChemFul with an
 additional layer of semantics in terms of
 “structure” and “material” along with the details
 of fragments.
Our attempt on encoding Chemical Knowledge




 Conceptual Basis of Encoding Organic Groups and Functional Groups

       Punnaivanam Sankar*, Krief Alain, and Gnanasekaran Aghila

                         To be communicated



Chemical Knowledge Editor for Encoding Organic Groups and Functional
                  Groups and Chemical Reactivity

       Punnaivanam Sankar*, Krief Alain, and Gnanasekaran Aghila

                          To be communicated
ChemGp – Knowledge Editor for Groups, Functional Groups and Chemical Reactivity




                                        To be communicated
ChemEd captures and shows the information defined in ChemGp
Challenges to be solved
A common Vocabulary System
    EnCorE – ChemDic - online free access chemical dictionary

    to collect chemical terms from any part of the world

    to evaluate the terms by expert group online

    to publish in the Internet



Knowledge Integration
                                                     Computer
                                                                                     Chemist
                                                     Scientist
Funding
                                                                  EnCorE




                                                                 Cheminformatician
conclusion

     The generation of reports meaningful for chemists will allow the development
       of interactive applications allowing chemists to encode and process his
               perceptions about the structure in a collaborative manner

      The semantic markup is suitable to develop algorithms for functional group
       interchange, functional group modifications etc. required for a meaningful
                                  reaction description

       The semantics at various levels will allow the possibility to create JAVA
      objects associated with suitable properties representing virtual substances
                  and virtual materials to simulate reactions virtually

     The markup code is suitable for the conversion into the existing formats such
       as the Connection Table, Molfile, CML, SMILES, InChI etc. with suitable
                                      algorithms

     ChemEd can be suitably integrated with other applications to build open and
      shared applications working on common and approved vocabulary making
                             use of chemical ontologies

             The markup system is suitable for the evolving Semantic Web
Thank you




                                          Acknowledgement

The authors acknowledge the support of:

The Department           of Science and Technology (DST), New Delhi, India for a funding
    support

The Belgian Science Foundation              (FNRS) especially for the creation of Fragment Library
(A. Krief) and FUNDP (Namur, Belgium).

Prof. Mark A. Musen, and Dr. Tania Tudorache, Biomedical     Informatic Research Center
(BMIR), Stanford University for their support in learning Protégé and developing OWL
ontologies in Protégé.
BicyclicTemplateFragment




                         hasFragment                            hasFragment


                                         hasRingBridgeNumber
                                                                 hasBridgeSize
                       hasRingSize              value
RingSkeletonFragment                                                             BridgeSkeletonFragment
                                        value           value



     The relationships in a bridged bicyclic ring system




   “Bicyclo221HeptaneRing” associated with “hasRingBridgeNumber” relations
   <DataPropertyAssertion>
   <DataProperty URI="&Fragment ontology;hasRingBridgeNumber"/>
   <Individual URI="&Fragment ontology;Bicyclo221HeptaneRing"/>
   <Constant datatypeURI="&xsd;string">6-1</Constant>
   </DataPropertyAssertion>
   <DataPropertyAssertion>
   <DataProperty URI="&Fragment ontology;hasRingBridgeNumber"/>
   <Individual URI="&Fragment ontology;Bicyclo221HeptaneRing"/>
   <Constant datatypeURI="&xsd;string">5-2</Constant>
   </DataPropertyAssertion>
source electronLink




     ionic               covalent                          dative                    hydrogen




                                                                                                <axiom
                 •   •      •        •              •      •
¨           ¨                                  ¨                    ¨                           bondId="covalent"
    anion        •   •      •        •
                                     neutral        •      •            cation            δ+
                 •   •      •        •              •      •
                                                                                                sEStatus="uPair"
¨           ¨                                  ¨                    ¨
                 •   •      •        •              •      •                                    sChargeType="0"
                                                                                                sBondType="covalent"
                                                                                                tEStatus="uPair"
•                    •      •        •         •                        •        •         •    tChargeType="0"
                                                                                                tBondType="covalent"
                                                                                                rsEStatus="bPair"
•
             ¨   •   •      •        •
                                               •    •
                                                           ¨        ¨
                                                                                 •
                                                                                                rsChargeType="0"
•anion               •      •        •
                                     neutral        •                   cation   •        δ+
                                                                                                rtEStatus="bPair"
•                    •      •        •              •                            •
            ¨    •                             •           ¨        ¨                           rtChargeType="0"/>
•                    •      •        •              •                            •


     ionic               covalent                         dative                     hydrogen




                                    target electronLink
The functionalities of ChemEd is described in the following movies



             Movie 1 : draw Cyclohexane carboxaldehyde

             Movie 2 : draw Norbornanone

             Movie 3 : draw structures with ion-ion interaction

             Movie 4 : draw structures with ion-dipole interaction
             Movie 5 : draw structures showing metal-pi
             interaction
             Movie 6 : creation and use of steroid template

             Movie 7 : detection of isomerism (R/S) (E/Z)

             Movie 8 : isotope labeling, projection labeling
Reaction components


                    +
                                              Equipment
                                              Actions                     Substances
              Substances
                                              Observations



Methylation of norbornanone
    Bridgehead


      H                                                                       H               H
           O                                                                       O                O
          H      Exo (i) 2 eq. NaNH2, ether, 20 °C, 1h, reflux, 1h                     +
                                                                                   H              Me
      H                 (ii) 3 eq. MeI, ether, 20°C, 2h                       Me              H
                                                                           80 %            20 %
    Endo

Bicyclo[2.2.1]heptan-2-one                                     3-methylbicyclo[2.2.1]heptan-2-one
Norbornan-2-one                                                3-methyl-norbornanone

More Related Content

Similar to EnCOrE: Chemistry, Education, Knowledge From the Real to the Virtual Needs, Perceptions, Tools, Concepts - P. Sankar

An Introduction to Chemoinformatics for the postgraduate students of Agriculture
An Introduction to Chemoinformatics for the postgraduate students of AgricultureAn Introduction to Chemoinformatics for the postgraduate students of Agriculture
An Introduction to Chemoinformatics for the postgraduate students of AgricultureDevakumar Jain
 
ChemSpider compound database as one of the pillars of a semantic web for …
ChemSpider compound database as one of the pillars of a semantic web for …ChemSpider compound database as one of the pillars of a semantic web for …
ChemSpider compound database as one of the pillars of a semantic web for …Valery Tkachenko
 
Chemoinformatic File Format.pptx
Chemoinformatic File Format.pptxChemoinformatic File Format.pptx
Chemoinformatic File Format.pptxwadhava gurumeet
 
Online Chemical Database with Modelling Environment
Online Chemical Database with Modelling EnvironmentOnline Chemical Database with Modelling Environment
Online Chemical Database with Modelling EnvironmentSSA KPI
 
II-SDV 2017: The "International Chemical Ontology Network"
II-SDV 2017: The "International Chemical Ontology Network" II-SDV 2017: The "International Chemical Ontology Network"
II-SDV 2017: The "International Chemical Ontology Network" Dr. Haxel Consult
 
kakkar2021.pdf
kakkar2021.pdfkakkar2021.pdf
kakkar2021.pdfkaritoIsa2
 
Continued development of ChEBI towards better usability for the systems biolo...
Continued development of ChEBI towards better usability for the systems biolo...Continued development of ChEBI towards better usability for the systems biolo...
Continued development of ChEBI towards better usability for the systems biolo...Neil Swainston
 
Cheminformatics, concept by kk sahu sir
Cheminformatics, concept by kk sahu sirCheminformatics, concept by kk sahu sir
Cheminformatics, concept by kk sahu sirKAUSHAL SAHU
 
Future Directions in Chemical Engineering and Bioengineering
Future Directions in Chemical Engineering and BioengineeringFuture Directions in Chemical Engineering and Bioengineering
Future Directions in Chemical Engineering and BioengineeringIlya Klabukov
 
MADICES Mungall 2022.pptx
MADICES Mungall 2022.pptxMADICES Mungall 2022.pptx
MADICES Mungall 2022.pptxChris Mungall
 
Bio Nanocomposite Material Presentation
Bio Nanocomposite Material PresentationBio Nanocomposite Material Presentation
Bio Nanocomposite Material PresentationProceng09
 
Introduction to Chemoinfornatics
Introduction to ChemoinfornaticsIntroduction to Chemoinfornatics
Introduction to ChemoinfornaticsSSA KPI
 
Introduction to Ontologies for Environmental Biology
Introduction to Ontologies for Environmental BiologyIntroduction to Ontologies for Environmental Biology
Introduction to Ontologies for Environmental BiologyBarry Smith
 

Similar to EnCOrE: Chemistry, Education, Knowledge From the Real to the Virtual Needs, Perceptions, Tools, Concepts - P. Sankar (20)

An Introduction to Chemoinformatics for the postgraduate students of Agriculture
An Introduction to Chemoinformatics for the postgraduate students of AgricultureAn Introduction to Chemoinformatics for the postgraduate students of Agriculture
An Introduction to Chemoinformatics for the postgraduate students of Agriculture
 
ChemSpider compound database as one of the pillars of a semantic web for …
ChemSpider compound database as one of the pillars of a semantic web for …ChemSpider compound database as one of the pillars of a semantic web for …
ChemSpider compound database as one of the pillars of a semantic web for …
 
Chemoinformatic File Format.pptx
Chemoinformatic File Format.pptxChemoinformatic File Format.pptx
Chemoinformatic File Format.pptx
 
Online Chemical Database with Modelling Environment
Online Chemical Database with Modelling EnvironmentOnline Chemical Database with Modelling Environment
Online Chemical Database with Modelling Environment
 
II-SDV 2017: The "International Chemical Ontology Network"
II-SDV 2017: The "International Chemical Ontology Network" II-SDV 2017: The "International Chemical Ontology Network"
II-SDV 2017: The "International Chemical Ontology Network"
 
kakkar2021.pdf
kakkar2021.pdfkakkar2021.pdf
kakkar2021.pdf
 
BioNLPSADI
BioNLPSADIBioNLPSADI
BioNLPSADI
 
Continued development of ChEBI towards better usability for the systems biolo...
Continued development of ChEBI towards better usability for the systems biolo...Continued development of ChEBI towards better usability for the systems biolo...
Continued development of ChEBI towards better usability for the systems biolo...
 
Collins seattle-2014-final
Collins seattle-2014-finalCollins seattle-2014-final
Collins seattle-2014-final
 
Cheminformatics, concept by kk sahu sir
Cheminformatics, concept by kk sahu sirCheminformatics, concept by kk sahu sir
Cheminformatics, concept by kk sahu sir
 
Future Directions in Chemical Engineering and Bioengineering
Future Directions in Chemical Engineering and BioengineeringFuture Directions in Chemical Engineering and Bioengineering
Future Directions in Chemical Engineering and Bioengineering
 
Automated identification and conversion of chemical names to structure search...
Automated identification and conversion of chemical names to structure search...Automated identification and conversion of chemical names to structure search...
Automated identification and conversion of chemical names to structure search...
 
MADICES Mungall 2022.pptx
MADICES Mungall 2022.pptxMADICES Mungall 2022.pptx
MADICES Mungall 2022.pptx
 
Automated Identification and Conversion of Chemical Names to Structure Search...
Automated Identification and Conversion of Chemical Names to Structure Search...Automated Identification and Conversion of Chemical Names to Structure Search...
Automated Identification and Conversion of Chemical Names to Structure Search...
 
Introduction
IntroductionIntroduction
Introduction
 
Bio Nanocomposite Material Presentation
Bio Nanocomposite Material PresentationBio Nanocomposite Material Presentation
Bio Nanocomposite Material Presentation
 
RSC ChemSpider -- Managing and Integrating Chemistry on the Internet to Build...
RSC ChemSpider -- Managing and Integrating Chemistry on the Internet to Build...RSC ChemSpider -- Managing and Integrating Chemistry on the Internet to Build...
RSC ChemSpider -- Managing and Integrating Chemistry on the Internet to Build...
 
Introduction to Chemoinfornatics
Introduction to ChemoinfornaticsIntroduction to Chemoinfornatics
Introduction to Chemoinfornatics
 
Introduction to Ontologies for Environmental Biology
Introduction to Ontologies for Environmental BiologyIntroduction to Ontologies for Environmental Biology
Introduction to Ontologies for Environmental Biology
 
ChemSpider as a Foundation for Crowdsourcing and Collaborations in Open Chemi...
ChemSpider as a Foundation for Crowdsourcing and Collaborations in Open Chemi...ChemSpider as a Foundation for Crowdsourcing and Collaborations in Open Chemi...
ChemSpider as a Foundation for Crowdsourcing and Collaborations in Open Chemi...
 

More from webscience-montpellier

Datalift: A Catalyser for the Web of Data - Francois Scharffe
Datalift: A Catalyser for the Web of Data - Francois ScharffeDatalift: A Catalyser for the Web of Data - Francois Scharffe
Datalift: A Catalyser for the Web of Data - Francois Scharffewebscience-montpellier
 
The Fundamentals of the Web, the Importance of Web Science - Les Carr
The Fundamentals of the Web, the Importance of Web Science - Les CarrThe Fundamentals of the Web, the Importance of Web Science - Les Carr
The Fundamentals of the Web, the Importance of Web Science - Les Carrwebscience-montpellier
 
Modeling the Web : Paradigm changes and strategic scenarios - Stefano A. Cerri
Modeling the Web : Paradigm changes and strategic scenarios - Stefano A. CerriModeling the Web : Paradigm changes and strategic scenarios - Stefano A. Cerri
Modeling the Web : Paradigm changes and strategic scenarios - Stefano A. Cerriwebscience-montpellier
 
Doing Web Science Subjectivity - Clare J. Hooper
Doing Web Science Subjectivity - Clare J. HooperDoing Web Science Subjectivity - Clare J. Hooper
Doing Web Science Subjectivity - Clare J. Hooperwebscience-montpellier
 
Web Science Curriculum Southampton - Hugh A. Davis
Web Science Curriculum Southampton - Hugh A. Davis Web Science Curriculum Southampton - Hugh A. Davis
Web Science Curriculum Southampton - Hugh A. Davis webscience-montpellier
 
Philosophy of the Web - Alexandre Monnin
Philosophy of the Web - Alexandre MonninPhilosophy of the Web - Alexandre Monnin
Philosophy of the Web - Alexandre Monninwebscience-montpellier
 
University of Montepllier Web Science Master Proposal - Stefano A. Cerri
University of Montepllier Web Science Master Proposal - Stefano A. CerriUniversity of Montepllier Web Science Master Proposal - Stefano A. Cerri
University of Montepllier Web Science Master Proposal - Stefano A. Cerriwebscience-montpellier
 
Web Science at Southampton - Hugh A. Davis
Web Science at Southampton - Hugh A. DavisWeb Science at Southampton - Hugh A. Davis
Web Science at Southampton - Hugh A. Daviswebscience-montpellier
 

More from webscience-montpellier (11)

Datalift: A Catalyser for the Web of Data - Francois Scharffe
Datalift: A Catalyser for the Web of Data - Francois ScharffeDatalift: A Catalyser for the Web of Data - Francois Scharffe
Datalift: A Catalyser for the Web of Data - Francois Scharffe
 
The Fundamentals of the Web, the Importance of Web Science - Les Carr
The Fundamentals of the Web, the Importance of Web Science - Les CarrThe Fundamentals of the Web, the Importance of Web Science - Les Carr
The Fundamentals of the Web, the Importance of Web Science - Les Carr
 
EnCOrE - Alain Krief
EnCOrE - Alain KriefEnCOrE - Alain Krief
EnCOrE - Alain Krief
 
Modeling the Web : Paradigm changes and strategic scenarios - Stefano A. Cerri
Modeling the Web : Paradigm changes and strategic scenarios - Stefano A. CerriModeling the Web : Paradigm changes and strategic scenarios - Stefano A. Cerri
Modeling the Web : Paradigm changes and strategic scenarios - Stefano A. Cerri
 
Doing Web Science Subjectivity - Clare J. Hooper
Doing Web Science Subjectivity - Clare J. HooperDoing Web Science Subjectivity - Clare J. Hooper
Doing Web Science Subjectivity - Clare J. Hooper
 
Web Science Curriculum Southampton - Hugh A. Davis
Web Science Curriculum Southampton - Hugh A. Davis Web Science Curriculum Southampton - Hugh A. Davis
Web Science Curriculum Southampton - Hugh A. Davis
 
Web Science Bachelor at the TUe
Web Science Bachelor at the TUeWeb Science Bachelor at the TUe
Web Science Bachelor at the TUe
 
Philosophy of the Web - Alexandre Monnin
Philosophy of the Web - Alexandre MonninPhilosophy of the Web - Alexandre Monnin
Philosophy of the Web - Alexandre Monnin
 
Attention in Webscience
Attention in WebscienceAttention in Webscience
Attention in Webscience
 
University of Montepllier Web Science Master Proposal - Stefano A. Cerri
University of Montepllier Web Science Master Proposal - Stefano A. CerriUniversity of Montepllier Web Science Master Proposal - Stefano A. Cerri
University of Montepllier Web Science Master Proposal - Stefano A. Cerri
 
Web Science at Southampton - Hugh A. Davis
Web Science at Southampton - Hugh A. DavisWeb Science at Southampton - Hugh A. Davis
Web Science at Southampton - Hugh A. Davis
 

Recently uploaded

Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationdeepaannamalai16
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...JojoEDelaCruz
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataBabyAnnMotar
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
Millenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxMillenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxJanEmmanBrigoli
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmStan Meyer
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
EmpTech Lesson 18 - ICT Project for Website Traffic Statistics and Performanc...
EmpTech Lesson 18 - ICT Project for Website Traffic Statistics and Performanc...EmpTech Lesson 18 - ICT Project for Website Traffic Statistics and Performanc...
EmpTech Lesson 18 - ICT Project for Website Traffic Statistics and Performanc...liera silvan
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxRosabel UA
 
Dust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEDust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEaurabinda banchhor
 

Recently uploaded (20)

Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Paradigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTAParadigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTA
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentation
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped data
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
Millenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxMillenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptx
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and Film
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
EmpTech Lesson 18 - ICT Project for Website Traffic Statistics and Performanc...
EmpTech Lesson 18 - ICT Project for Website Traffic Statistics and Performanc...EmpTech Lesson 18 - ICT Project for Website Traffic Statistics and Performanc...
EmpTech Lesson 18 - ICT Project for Website Traffic Statistics and Performanc...
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptx
 
Dust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEDust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSE
 

EnCOrE: Chemistry, Education, Knowledge From the Real to the Virtual Needs, Perceptions, Tools, Concepts - P. Sankar

  • 1. EnCOrE: Chemistry, Education, Knowledge From the Real to the Virtual Needs, Perceptions, Tools, Concepts Encoding of Chemical Knowledge in the Context of Evolving Semantic Web Consolidating networks of excellence - WebScience Montpellier Meetup International Workshop on Web Science 13th May, 2011 Montpellier, France Dr. P. Sankar Associate Professor & Head Department of Chemistry Pondicherry Engineering College, Puducherry – 605 014 INDIA
  • 2. Simple Text Special Text Images Special Text Simple Text http://en.wikipedia.org/wiki/Acetaldehyde
  • 3. Structure databases Structure representation formats Other structure related data http://en.wikipedia.org/wiki/Acetaldehyde
  • 5. Conceptual Name Formula Structure Properties Reactions Making the chemistry Chemical structure is central domain different from other for all chemical information domains in the context of and related activities storage, retrieval and communication in web media Real substance / material Real time reactions
  • 6. Where we are ? CAS Chemical Abstract 50 million organic and inorganic substances, and Services more than 60 million protein and DNA sequences PubChem NCBI 31 million compounds and 75 substances free eMolecules Commercial Suppliers 7.0 million molecules free ChEMBL EBI 2.97 million bioassay measurements covering free 636,269 compounds ChemSpider Royal Chemical Society 25 million molecules free ChemACX CambridgeSoft 2.5 million products and 727,161 substances At present chemical information is almost fully Structure handled with the support of databases using Database Structure various structure encoding formats Reaction Encoding Database Formats Unfortunately none of these are efficient enough to be interoperable with the web language Property Database There is a serious need for linking the structural information with the text or image or any other appropriate part of the contents in a Web page containing the chemical information
  • 7. Recent predictions on chemical information …the conventional resources of chemical information become incompatible with the requirements of the evolving Web 2.0 Murray-Rust, P. Chemistry for All. Nature. 2008, 451, 648-651 …huge capacity storage device and the revolutionary computer-human interface, will bring a new revolution to the entire human society. For example, the paper notebooks used for centuries by chemists will eventually be replaced with the electronic notebooks armed with the truly advanced technologies of hand-writing recognition and voice recognition. Chemists will become more and more computer dependent, Internet dependent, and chemoinformatics dependent. William Lingran Chen* Chemoinformatics: Past, Present, and Future J. Chem. Inf. Model., Vol. 46, No. 6, 2006
  • 8. Web Scenario The chemical domain has to adopt with the changing scenario of web by considering the followings: encoding of chemical knowledge in semantically rich format development of knowledge based tools and techniques shift from database to knowledge base support making the computer intelligent enough to report like an experience chemist
  • 9. EnCOrE project the only initiative taken to achieve new generation chemical informatics EnCOrE (Web-Based, free access Electronic Encyclopedia of Organic Chemistry) (a multinational collaborative project) Prof. Alain Krief Director (Chief Coordinator cum Advisor) Emeritus Professor FUNDP (Faculté N.-D de la Paix) Chemistry department Laboratoire de Chimie des Matériaux Organiques Supramoléculaires (CMOS) & Laboratoire de Chimie des Matériaux Inorganiques (CMI) 61 rue de Bruxelles, B-5000, Namur, Belgium Director of IOCD (International Organization for Chemical Sciences in Development) Advisory Board Prof. Stefano Cerri University of Montpellier, Laboratoire d’Informatique; de Robotique et de Microelectronique de Montpellier, Montpellier, France Prof, Ian Fleming Cambridge University, Cambridge, United Kingdom Prof. Alain Krief Département de Chimie, Facultés N.-D. de la Paix, Namur, Belgium and Executive Director IOCD (International Organization for Chemical Sciences in Development) Prof. Jean-Marie Lehn Nobel, Strasbourg University, Strasbourg, France and Président of IOCD (International Organization for Chemical Sciences in Development) Prof. Goverdhan Mehta FNA, FRS, CSIR Bhatnagar Fellow, Department of Organic Chemistry, Indian Institute of Science, Bangalore-560 012, India Prof. Ryoji Noyori Nobel, Rikken Institute, Tokyo, Japan EnCOrE attempts to frame an Intelligent Chemical Web for the future
  • 10. A possible attempt to achieve Intelligent Chemical Web ontology supported, text based, semantically rich structure description system Human and Machine understandable Chemist’s Knowledge APIs to encode chemical knowledge through Internet Efficient algorithms Chemical domain ontologies Intelligent inference and reasoning capabilities (in-silico basis) chemical hyper-linking !?
  • 11. ChemEd Model Tool to Describe Chemical Structures in XML Format Utilizing Structural Fragments and Chemical Ontology Developed by Punnaivanam Sankar * Krief Alain and Gnanasekaran Aghila Published in J. Chem. Inf. Model. 2010, 50, 755–770
  • 12. Achieving Human and Machine understandable Chemist’s Knowledge oxygen atom Carbonyl carbon has two lone bonded to Hydrogen pair electrons atom through sigma Carbonyl Group bond Sp2 carbon atom bonded with sp2 oxygen atom through a double bond composed of a sigma bond and a pi bond Carbonyl carbon bonded to a carbon atom This is an alpha The functional group carbon atom and is is aldehyde part of some skeleton Chemical Reactiivity
  • 13. information and knowledge needed Electron acid-catalysed hemiacetal formation movements H H O OH OH O CH3 HO O CH3 H H H3C H H3C H CH3OH hemiacetal Material / Substance acid-catalysed acetal formation from hemiacetal intermediate H H HO O CH3 H2O O CH3 O CH3 H3CO O CH3 H3CO OCH3 species H H H H H H3C H3C H3C H3C H3C hemiacetal CH3OH acetal Structural information Reaction Specific information Chemist knowledge Group Formation of hemiacetal Functional group Hybridization Protonation at carbonyl oxygen atom Alpha carbon geometry Addition of methanol to carbonyl carbon Ring skeleton (bridged, fused, spiro) Charge status Elimination of proton Linear skeleton Electronic environment Bridgehead position Bonding details Formation of acetal Exo / endo orientation of groups Location of the atom on Axial / equatorial orientation of groups specific skeleton structure Protonation of hydroxyl group Reaction sites Presence of lone pair electrons Loss of water by elemination Heat isotope label Addition of methanol to oxonium ion Pressure Isomerism (optical, Breaking of pi bond Light geometrical, etc) Loss of proton Time etc. etc Action, equipments, observation
  • 14. Chemist Computer Structural Reaction Structural Reaction information information information information Chemist Chemist knowledge knowledge Through a proper structure description system rich in semantics Out of experience and expertise gained over the period of years a chemist is capable of Integration of external knowledge resources correlating the structural features with reaction through chemical ontologies specific details Tools to integrate reaction knowledge with structural features
  • 15. An approach available to achieve encoding of chemical knowledge ontology XML Semantics Chemical Ontologies implemented in OWL Java based programs Ontology Editors - Protege XML description to support software agents
  • 16. ChemGp – A Knowledge Editor for Groups, Functional Groups and Chemical Reactivity or transformations To be communicated
  • 17. We believe strongly that we can provide challenging tasks in the following areas to build an Intelligent Chemical Web of Trust Knowledge Representation Visualization Web Technology Techniques Cloud / distributed APIs Computing Robotics Linguistics / Theme Education / Academics We are interested to associate with people / group to achieve our proposed objectives
  • 18. Thank you Acknowledgement The authors acknowledge the support of: The Department of Science and Technology (DST), New Delhi, India for a funding support The Belgian Science Foundation (FNRS) especially for the creation of Fragment Library (A. Krief) and FUNDP (Namur, Belgium). Prof. Mark A. Musen, and Dr. Tania Tudorache, Biomedical Informatic Research Center (BMIR), Stanford University for their support in learning Protégé and developing OWL ontologies in Protégé.
  • 19. Development of a Semantically Rich Structure Representation System Model Tool to Describe Chemical Structures in XML Format Utilizing Structural Fragments and Chemical Ontology Punnaivanam Sankar*, Krief Alain, and Gnanasekaran Aghila J. Chem. Inf. Model. 2010, 50, 755–770
  • 20. Development of Semantically Rich Structure Representation on conceptual basis O O H C Structure H C H H H H C H C O Fragment O Atom H C O H C O H C O H C O Electron
  • 21. Development of Semantically Rich Structure Representation on conceptual basis Structure Fragment has isA Fragment Fragment Fragment has isA Fragment Fragment Atom Fragment has Electron
  • 22. Development of Semantically Rich Structure Representation on conceptual basis O H C Structure C H H H Chemical Ontology H C Fragment O Atom H C O Electron H C O XML
  • 28. Composition of Fragment Fragment has Atom has Atom ElectronLink ElectronLink ElectronLink has ElectronLink ElectronLink ElectronLink Atom has ElectronLink ElectronLink ElectronLink Atom has ElectronLink ElectronLink ElectronLink
  • 29. Composition of Structure in tree view Structure Fragment Atom XML Format ElectronLink <structure > <fragment > ElectronLink <atom > <electronLink /> <electronLink /> Atom </atom> <atom > ElectronLink <electronLink /> <electronLink /> ElectronLink </atom> </fragment> Fragment <fragment > <atom > <electronLink /> Atom <electronLink /> </atom> ElectronLink <atom > <electronLink /> ElectronLink <electronLink /> </atom> Atom </fragment> ElectronLink </structure> ElectronLink
  • 30. Composition of Structure in XML representation <structure id="" title="" type="" formula="" X="" Y="" caption="" captionX="" captionY=""> <fragment id="" title="" type="" symbol="" linkType="" orientation="" projection=“” x1="" y1="" x2="" y2=""> <atom id="" title="" hybridization="" symbol="" position="" isotopeLabel=“” x="" y=""> <electronLink id="" title="" electronStatus="" charge="" chargeCount="" affinity="" bond=“” order="" linkStatus="" target="" orientation="" projection="" x1="" y1="" x2="" y2=""/> </atom> </fragment> </structure>
  • 31. structure construction based on conceptual description advantages the conceptual description of structural components based on fragments, atoms and the electronLinks allows: the structure construction through the selection of fragments represented by text the validation of bonding during the structure construction on screen instantaneously to make the computer to behave intelligently to infer the type of skeleton from the combination of fragments the generation of semantically rich XML representation of chemical structure the computer to understand the meaning of the components of the chemical structure the processing of the structural features in XML document of structure to arrive at useful inference the computer to mimic the Chemist’s view on the chemical structure We need a tool
  • 32. EnCOrE - ChemEd – the Structure Editor developed by us ChemEd Model Tool to Describe Chemical Structures in XML Format Utilizing Structural Fragments and Chemical Ontology Developed by Punnaivanam Sankar *1 jointly with Krief Alain2 and Gnanasekaran Aghila3 1Department of Chemistry, Pondicherry Engineering College, Puducherry - 605 014, India 2Department of Chemistry, Facultés N.–D. de la Paix, Namur, B 5000, Belgium 3Department of Computer Science, Pondicherry University, Puducherry - 605 014, India ChemEd is the first of a series of tools designed in the context of EnCOrE, a project aimed to create a Web-based Encyclopedia of Organic Chemistry built collaboratively but under a strict editorial board policy. We have identified several tools with original features to achieve this objective and have ranked first the design of a tool able to interoperate between structure, and the perception of chemist, which allows among others creativity through chemical synthesis and organization of chemical data ChemEd is an ontology supported Structure Editor to draw/edit and to describe chemical structures
  • 33. About EnCOrE project EnCOrE (Web-Based, free access Electronic Encyclopedia of Organic Chemistry) (a multinational collaborative project) Prof. Alain Krief Director (Chief Coordinator cum Advisor) Emeritus Professor FUNDP (Faculté N.-D de la Paix) Chemistry department Laboratoire de Chimie des Matériaux Organiques Supramoléculaires (CMOS) & Laboratoire de Chimie des Matériaux Inorganiques (CMI) 61 rue de Bruxelles, B-5000, Namur, Belgium Director of IOCD (International Organization for Chemical Sciences in Development) Advisory Board Prof. Stefano Cerri University of Montpellier, Laboratoire d’Informatique; de Robotique et de Microelectronique de Montpellier, Montpellier, France Prof, Ian Fleming Cambridge University, Cambridge, United Kingdom Prof. Alain Krief Département de Chimie, Facultés N.-D. de la Paix, Namur, Belgium and Executive Director IOCD (International Organization for Chemical Sciences in Development) Prof. Jean-Marie Lehn Nobel, Strasbourg University, Strasbourg, France and Président of IOCD (International Organization for Chemical Sciences in Development) Prof. Goverdhan Mehta FNA, FRS, CSIR Bhatnagar Fellow, Department of Organic Chemistry, Indian Institute of Science, Bangalore-560 012, India Prof. Ryoji Noyori Nobel, Rikken Institute, Tokyo, Japan
  • 34. Tool bar ChemEd – Graphical User Interface Contains the icons to modify or to manipulate the structures on screen Fragment Icons bar Menu bar Functional Group Commonly needed Display Panel structural fragments to build structure Reactivity Panel Drawing Panel ChemLib To draw structures Fragment Group Display Instances from Panel Ontology ChemFul display panel Shows the full XML description of structure drawn on the screen
  • 35. tool bar: consists of icons to manipulate the structure drawn on screen and to process the structure description Cursor tool – used to select and create structures on screen Eraser Eraser tool – erase drawings representing a structure Show/Hide Grid tool – used to show or hide the grid guide lines to Cursor align the structures on screen Show/Hide Grid Move Structure Move Atom Group Move Structure Moving the drawings on the screen can be done using these icons. Move Structure Group – moves the whole drawings on the screen Move Structure – to move structures representing individual structures on the screen Move Structure Group – to relocate atoms or points representing atoms on the screen
  • 36. tool bar: consists of icons to manipulate the structure drawn on screen and to process the structure description Projection Labeling Atom Position Change Atom Labeling Coordinates Change Add/Remove Orientation Isotope Electron Labeling Atom Position Labelling : Atom labelling allows official numbering in a skeleton Isotope Labelling : provides the facility to label a selected atom with appropriate isotope label guided by external ontology Projection Labelling : The bonds can be labelled to indicate the three projections, in plane, above plane, and below plane relative to the plane of screen using the “Projection Labeling” icons Add/Remove Electron : ChemEd has the facility to (i) create charge on an atom by adding or removing electron on the “electronLink” of the atom using this tool Change Atom Coordinates : can be used to relocate the atom positions so as to reflect this change in the ChemFil and ChemFul. This facility is particularly needed to create templates like “CyclohexaneChairRing” from a “SixMemberRing” Change Orientation : provides the possibility to edit the orientation of fragment if needed
  • 37. tool bar: consists of icons to manipulate the structure drawn on screen and to process the structure description to display a brief report on the group, functional group and skeleton related information for the Electron Status structure drawn on the Display screen show / hide the lone pair, unpaired and empty electron status of “electronLink” to allow the display of more details Functional group of the atoms on the screen when needed Report Atom Draw Supra- Descriptor Molecular Interaction Display the atom descriptors such as draw and encode supra-molecular interactions such as symbol; name; isotope label; ion-ion, ion-dipole, dipole-dipole, metal-pi, hydrogen hybridization, charge, and electron status, bonding and multi-centre bonding bonding details of any selected atom on the screen
  • 38. Structure drawing The structure drawing in ChemEd starts by bringing with cursor an appropriate fragment available as icons on the Fragment Icons bars or from ChemLib into the screen. The drawing can be pursued and completed by joining other fragments to the existing one through a click or drag event
  • 39. ChemLib: Provides the basic structural fragments organized in Fragment ontology for structure drawing AtomFragment: represents single atom fragment classified as NeutralAtomFragment such as C, H, O, N, Cl, Br, I, S, P, etc. AnionicAtomFragment like C-, H-, F-, Cl-, Br-, I- and CationicAtomFragment such as C+, H+, Cl+, Br+, I+, Na+, K+, Mg2+, Fe2+, Fe3+, etc
  • 40. ChemLib: Provides the basic structural fragments organized in Fragment ontology for structure drawing The “AtomGroupFragment” represents a group of atoms to describe meaningful chemical groups such as carbonyl, formyl, hydroxyl, etc. It is also classified as anionic, cationic, neutral atom groups to represent condensed structures of atom groups such as OH-, COO-, NH2-, CN-; NH4+, OH3+; OH, CHO, CO, COOH, CH3, C2H5, C3H7, etc which can include molecular “AtomGroupFragment” such as BH3, NH3, CH3OH, (C2H5)2O, CH3COCH3 particularly useful for describing complexes.
  • 41. ChemLib: Provides the basic structural fragments organized in Fragment ontology for structure drawing The “SkeletonFragment” represent the structural fragments with more than one atom connected with bonds. The default atom in the SkeletonFragment is carbon and the skeleton includes both acyclic and cyclic systems like single bond, double bond, three member ring, six member ring etc. There are five classes of skeleton fragments identified viz. BondSkeletonFragment RingSkeletonFragment BridgeSkeletonFragment FuseSkeletonFragment SpiroSkeletonFragment
  • 42. ChemLib: Provides the basic structural fragments organized in Fragment ontology for structure drawing The “TemplateFragment” is to describe fragments derived from the first three fragment types. For example, a bicyclic template fragment like “Bicyclo221HeptaneRing” can be constructed with a suitable “RingSkeletonFragment” and one of the “BridgeSkeletonFragment” fragments. Similarly a polyclyclic template fragment representing a steroid skeleton can be constructed by fusing the ring skeleton fragments appropriately. Different conformations of same cyclic structures like chair and boat forms of Cyclohexane ring systems can be created and added into the ChemLib in the “TemplateSkeletonFragment” category for structure construction
  • 43. Fragment Icon bar: To draw single / double / triple bond fragments Provides the frequently needed structural fragments for structure drawing To create one / two / three To draw skeleton systems member bridge fragments representing 3-8 member ring skeletons To create BenzeneRing and Bicyclo221HeptaneRing templates To create Neutral atom fragment / to introduce atoms in the skeleton
  • 44. ChemEd – Shows the structure drawn on draw panel. It also detects the functional group and Displays in the Functional Group Panel
  • 45. ChemEd – Shows the functional group specific information along with the chemical groups and the Reactivity information associated with the functional group
  • 46. ChemEd – outlines the chemical group selected
  • 47. ChemEd – Shows a reactive site
  • 48. XML markup generated by ChemEd for the full description of benzaldehyde structure ChemFul <?xml version="1.0"?> <structureGroup id="" title="C:ChemFilbenzaldehyde.xml" type=""> <structure id="s1" title="structure1" type="" formula="" X="0" Y="0" caption="" captionX="0" captionY="0"> <fragment id="s1-0" title="SixMemberRing" type="SkeletonFragment" template="" symbol="C6" linkType="" orientation="270" projection="" x1="329" y1="121" x2="329" y2="121"> <atom id="s1-0-a1" title="Carbon" hybridization="sp3" symbol="C" position="1" isotopeLabel="" x="329" y="121"> <electronLink id="s1-0-a1e1" title="2sp3" electronStatus="bPair" charge="0" chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="link" target="s1-0-a2e1" orientation="330" projection="" x1="329" y1="121" x2="355" y2="136"/> <electronLink id="s1-0-a1e2" title="2sp3" electronStatus="bPair" charge="0" chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="link" target="s1-0-a6e2" orientation="210" projection="" x1="329" y1="121" x2="303" y2="136"/> <electronLink id="s1-0-a1e3" title="2sp3" electronStatus="bPair" charge="0" chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="linkTarget" target="s1-4-a1e1" orientation="" projection="" x1="329" y1="121" x2="329" y2="121"/> 12.4 KB <electronLink id="s1-0-a1e4" title="2sp3" electronStatus="bPair" charge="0" chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="linkTarget" target="s1-5-a1e1" orientation="" projection="" x1="329" y1="121" x2="329" y2="121"/> </atom> <atom id="s1-0-a2" title="Carbon" hybridization="sp3" symbol="C" position="2" isotopeLabel="" x="355" y="136"> <electronLink id="s1-0-a2e1" title="2sp3" electronStatus="bPair" charge="0" chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="link" target="s1-0-a1e1" orientation="150" projection="" x1="355" y1="136" x2="329" y2="121"/> <electronLink id="s1-0-a2e2" title="2sp3" electronStatus="bPair" charge="0" chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="link" target="s1-0-a3e1" orientation="270" projection="" x1="355" y1="136" x2="355" y2="166"/> <electronLink id="s1-0-a2e3" title="2sp3" electronStatus="bPair" charge="0" chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="linkTarget" target="s1-1-a1e1" orientation="30" projection="" x1="355" y1="136" x2="381" y2="121"/>
  • 49. XML markup generated by ChemED for the construction of benzaldehyde structure ChemFil <?xml version="1.0"?> <structureGroup id="" title="C:ChemFilbenzaldehyde" type=""> <structure id="s1" title="structure1" type="" formula="" X="0" Y="0" caption="" captionX="0”captionY="0"> <fragment id="s1-0" title="BenzeneRing" type="TemplateFragment" template="BenzeneRing” link="" orientation="270" target1="" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/> <fragment id="s1-1" title="Carbon" type="AtomFragment" template="BenzeneRing" link="direct“orientation="30" t arget1="s1-0-a2e3" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/> <fragment id="s1-2" title="DoubleBond" type="SkeletonFragment" template="BenzeneRing“link="direct" orientation="90“ target1="s1-1-a1e2" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/> <fragment id="s1-3" title="Hydrogen" type="AtomFragment" template="BenzeneRing”link="direct" orientation="330“ target1="s1-1-a1e4" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/> <modification title="Atom" sourceObject="Oxygen" targetObject="Carbon" targetId1="s1-2-a1” targetId2="" x1="0" y1="0"/> </structure> </structureGroup> 2 KB
  • 50. Markup for Benzaldehyde construction <?xml version="1.0"?> <structureGroup id="" title="C:ChemFilbenzaldehyde" type=""> <structure id="s1" title="structure1" type="" formula="" X="0" Y="0" caption="" captionX="0”captionY="0"> <fragment id="s1-0" title="BenzeneRing" type="TemplateFragment" template="BenzeneRing” link="" orientation="270" target1="" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/> <fragment id="s1-1" title="Carbon" type="AtomFragment" template="BenzeneRing" link="direct“orientation="30" t arget1="s1-0-a2e3" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/> <fragment id="s1-2" title="DoubleBond" type="SkeletonFragment" template="BenzeneRing“link="direct" orientation="90“ target1="s1-1-a1e2" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/> <fragment id="s1-3" title="Hydrogen" type="AtomFragment" template="BenzeneRing”link="direct" orientation="330“ target1="s1-1-a1e4" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/> <modification title="Atom" sourceObject="Oxygen" targetObject="Carbon" targetId1="s1-2-a1” targetId2="" x1="0" y1="0"/> </structure> </structureGroup>
  • 51. Markup for Benzaldehyde construction <?xml version="1.0"?> <structureGroup id="" title="C:ChemFilbenzaldehyde" type=""> <structure id="s1" title="structure1" type="" formula="" X="0" Y="0" caption="" captionX="0”captionY="0"> <fragment id="s1-0" title="BenzeneRing" type="TemplateFragment" template="BenzeneRing” link="" orientation="270" target1="" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/> <fragment id="s1-1" title="Carbon" type="AtomFragment" template="BenzeneRing" link="direct“orientation="30" t arget1="s1-0-a2e3" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/> <fragment id="s1-2" title="DoubleBond" type="SkeletonFragment" template="BenzeneRing“link="direct" orientation="90“ target1="s1-1-a1e2" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/> <fragment id="s1-3" title="Hydrogen" type="AtomFragment" template="BenzeneRing”link="direct" orientation="330“ target1="s1-1-a1e4" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/> <modification title="Atom" sourceObject="Oxygen" targetObject="Carbon" targetId1="s1-2-a1” targetId2="" x1="0" y1="0"/> </structure> </structureGroup>
  • 52. Markup for Benzaldehyde construction <?xml version="1.0"?> <structureGroup id="" title="C:ChemFilbenzaldehyde" type=""> <structure id="s1" title="structure1" type="" formula="" X="0" Y="0" caption="" captionX="0”captionY="0"> <fragment id="s1-0" title="BenzeneRing" type="TemplateFragment" template="BenzeneRing” link="" orientation="270" target1="" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/> <fragment id="s1-1" title="Carbon" type="AtomFragment" template="BenzeneRing" link="direct“orientation="30" t arget1="s1-0-a2e3" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/> <fragment id="s1-2" title="DoubleBond" type="SkeletonFragment" template="BenzeneRing“link="direct" orientation="90“ target1="s1-1-a1e2" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/> <fragment id="s1-3" title="Hydrogen" type="AtomFragment" template="BenzeneRing”link="direct" orientation="330“ target1="s1-1-a1e4" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/> <modification title="Atom" sourceObject="Oxygen" targetObject="Carbon" targetId1="s1-2-a1” targetId2="" x1="0" y1="0"/> </structure> </structureGroup>
  • 53. Markup for Benzaldehyde construction <?xml version="1.0"?> <structureGroup id="" title="C:ChemFilbenzaldehyde" type=""> <structure id="s1" title="structure1" type="" formula="" X="0" Y="0" caption="" captionX="0”captionY="0"> <fragment id="s1-0" title="BenzeneRing" type="TemplateFragment" template="BenzeneRing” link="" orientation="270" target1="" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/> <fragment id="s1-1" title="Carbon" type="AtomFragment" template="BenzeneRing" link="direct“orientation="30" t arget1="s1-0-a2e3" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/> <fragment id="s1-2" title="DoubleBond" type="SkeletonFragment" template="BenzeneRing“link="direct" orientation="90“ target1="s1-1-a1e2" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/> <fragment id="s1-3" title="Hydrogen" type="AtomFragment" template="BenzeneRing”link="direct" orientation="330“ target1="s1-1-a1e4" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/> <modification title="Atom" sourceObject="Oxygen" targetObject="Carbon" targetId1="s1-2-a1” targetId2="" x1="0" y1="0"/> </structure> </structureGroup>
  • 54. Markup for Benzaldehyde construction <?xml version="1.0"?> <structureGroup id="" title="C:ChemFilbenzaldehyde" type=""> <structure id="s1" title="structure1" type="" formula="" X="0" Y="0" caption="" captionX="0”captionY="0"> <fragment id="s1-0" title="BenzeneRing" type="TemplateFragment" template="BenzeneRing” link="" orientation="270" target1="" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/> <fragment id="s1-1" title="Carbon" type="AtomFragment" template="BenzeneRing" link="direct“orientation="30" t arget1="s1-0-a2e3" target2="" bgX1="" bgY1="" bgX2="" bgY2=""/> <fragment id="s1-2" title="DoubleBond" type="SkeletonFragment" template="BenzeneRing“link="direct" orientation="90“ target1="s1-1-a1e2" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/> <fragment id="s1-3" title="Hydrogen" type="AtomFragment" template="BenzeneRing”link="direct" orientation="330“ target1="s1-1-a1e4" target2="" bgX1="" bgY1="" bgX2=“”bgY2=""/> <modification title="Atom" sourceObject="Oxygen" targetObject="Carbon" targetId1="s1-2-a1” targetId2="" x1="0" y1="0"/> </structure> </structureGroup>
  • 55. Fragment markup – semantics at fragment level <fragment id="s1-1" title="Carbon" type="AtomFragment" template="" symbol="C" linkType="direct" orientation="30" projection="" x1="355" y1="136" x2="381" y2="121"> <atom id="s1-1-a1" title="Carbon" hybridization="sp2" symbol="C" position="" isotopeLabel="" x="381" y="121"> <electronLink id="s1-1-a1e1" title="2sp2" electronStatus="bPair" charge="0" chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="linkSource" target="s1-0-a2e3" orientation="30" projection="" x1="381" y1="121" x2="355" y2="136"/> C <electronLink id="s1-1-a1e2" title="2sp2" electronStatus="bPair" charge="0" chargeCount="0" affinity="" bond="sigma" order="double" linkStatus="linkTarget" target="s1-2-a1e1" orientation="90" projection="" x1="381" y1="121" x2="381" y2="91"/> Fragment <electronLink id="s1-1-a1e3" title="2pz" electronStatus="bPair" charge="0" chargeCount="0" affinity="" bond="pi" order="double" linkStatus="link" target="s1-2-a1e2" orientation="90" projection="" x1="376" y1="121" x2="376" y2="91"/> <electronLink id="s1-1-a1e4" title="2sp2" electronStatus="bPair" charge="0" chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="linkTarget" target="s1-3-a1e1" orientation="330" projection="" x1="381" y1="121" x2="407" y2="136"/> </atom> </fragment>
  • 56. Fragment markup – semantics at atom level <fragment id="s1-1" title="Carbon" type="AtomFragment" template="" symbol="C" linkType="direct" orientation="30" projection="" x1="355" y1="136" x2="381" y2="121"> <atom id="s1-1-a1" title="Carbon" hybridization="sp2" symbol="C" position="" isotopeLabel="" x="381" y="121"> <electronLink id="s1-1-a1e1" title="2sp2" electronStatus="bPair" charge="0" chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="linkSource" target="s1-0-a2e3" orientation="30" projection="" x1="381" y1="121" x2="355" y2="136"/> C <electronLink id="s1-1-a1e2" title="2sp2" electronStatus="bPair" charge="0" chargeCount="0" affinity="" bond="sigma" order="double" linkStatus="linkTarget" target="s1-2-a1e1" orientation="90" projection="" x1="381" y1="121" x2="381" y2="91"/> Atom <electronLink id="s1-1-a1e3" title="2pz" electronStatus="bPair" charge="0" chargeCount="0" affinity="" bond="pi" order="double" linkStatus="link" target="s1-2-a1e2" orientation="90" projection="" x1="376" y1="121" x2="376" y2="91"/> <electronLink id="s1-1-a1e4" title="2sp2" electronStatus="bPair" charge="0" chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="linkTarget" target="s1-3-a1e1" orientation="330" projection="" x1="381" y1="121" x2="407" y2="136"/> </atom> </fragment>
  • 57. Fragment markup – semantics at electronLink level <fragment id="s1-1" title="Carbon" type="AtomFragment" template="" symbol="C" linkType="direct" orientation="30" projection="" x1="355" y1="136" x2="381" y2="121"> <atom id="s1-1-a1" title="Carbon" hybridization="sp2" symbol="C" position="" isotopeLabel="" x="381" y="121"> <electronLink id="s1-1-a1e1" title="2sp2" electronStatus="bPair" charge="0" chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="linkSource" target="s1-0-a2e3" orientation="30" projection="" x1="381" y1="121" x2="355" C y2="136"/> <electronLink id="s1-1-a1e2" title="2sp2" electronStatus="bPair" charge="0" chargeCount="0" affinity="" bond="sigma" order="double" linkStatus="linkTarget" target="s1-2-a1e1" orientation="90" projection="" x1="381" y1="121" x2="381" y2="91"/> electronLink <electronLink id="s1-1-a1e3" title="2pz" electronStatus="bPair" charge="0" chargeCount="0" affinity="" bond="pi" order="double" linkStatus="link" target="s1-2-a1e2" orientation="90" projection="" x1="376" y1="121" x2="376" y2="91"/> <electronLink id="s1-1-a1e4" title="2sp2" electronStatus="bPair" charge="0" chargeCount="0" affinity="" bond="sigma" order="single" linkStatus="linkTarget" target="s1-3-a1e1" orientation="330" projection="" x1="381" y1="121" x2="407" y2="136"/> </atom> </fragment>
  • 58. The basic Semantic Levels in Structure description Structure structure Fragment fragment atom Atom electronLink Electron
  • 59. The Semantics at electronLink level Descriptor Presentational attributes attributes id title Specifies the electronStatus unique charge chargeCount identification orientation X1 affinity value Y1 bond X2 order y2 linkStatus id="s1-1-a1e1" Target projection
  • 60. The Semantics at electronLink level Descriptor Presentational attributes attributes id Presents the title name of the electronStatus orbital / charge orientation chargeCount hybridization X1 affinity Y1 bond X2 order s, p, sp3, sp2, y2 linkStatus Target sp, dsp2 projection
  • 61. The Semantics at electronLink level Descriptor Presentational attributes attributes id electronic status title electronStatus of the charge electronLink orientation chargeCount X1 affinity lone pair Y1 bond bond pair X2 order unpaired y2 linkStatus ion pair Target empty projection
  • 62. The Semantics at electronLink level Descriptor Presentational attributes attributes id title electronStatus Charge as charge 0 / + / - / δ+ and orientation chargeCount affinity δ- X1 Y1 bond X2 order linkStatus chargeCount as y2 Target 0,1,2,3… projection Meaningful inferences can be obtained by combining the values of ‘electronStatus’, ‘charge’ and ‘chargeCount’ attributes. For example a value of “empty” for ‘electronStatus’ followed by a “+” in the ‘charge’ and “1” in the ‘charge’ attribute can be inferred as the positive charge is due to the loss of an unpaired electron. Similarly the values “lPair”, “-” and “1” for ‘electronStatus’, ‘charge’ and ‘chargeCount’ attributes respectively provides the meaning of acquired negative charge due to the gain of one electron.
  • 63. The Semantics at electronLink level Descriptor Presentational attributes attributes id title electronStatus charge chargeCount provides the orientation affinity semantics of X1 Y1 bond order chemical bonding X2 y2 linkStatus Target projection
  • 64. The Semantics at electronLink level Descriptor Presentational attributes attributes id title electronStatus Affinity charge indicating the normal tendency of orientation chargeCount the “electronLink” towards chemical affinity X1 bonding using the values such as Y1 bond “covalent / ionic / coordinate” quoting for covalent-, ionic- or X2 order dative-bond y2 linkStatus Target projection
  • 65. The Semantics at electronLink level Descriptor Presentational attributes attributes id title Bond electronStatus charge type of bond is denoted with values like “sigma / pi-y / pi-z” to separately orientation chargeCount encode the sigma and pi systems affinity X1 Y1 bond Order X2 order indicates bond order with values y2 linkStatus “single / double / triple” Target projection
  • 66. The Semantics at electronLink level Descriptor Presentational attributes attributes id Target title electronStatus Target attribute of the source charge “electronLink” is used to hold the unique id-value of the “electronLink” orientation chargeCount of the targeted atom to represent a affinity X1 chemical bond. Y1 bond At the same time the ‘target’ X2 order attribute of the target “electronLink” y2 linkStatus is filled with the id-value of the Target “electronLink” of the source atom projection
  • 67. The Semantics at electronLink level Descriptor Presentational attributes attributes linkStatus id specifies whether the link is between two title “electronLink” belong to same fragment or different fragments. In case of a link electronStatus within the fragment, the linkStatus holds charge the value as “link”. If the link is between Orientation chargeCount two different fragments, then the X1 “electronLink” belong to the target affinity fragment takes up the value as Y1 bond “linkTarget” and that of source fragment is X2 order filled with the value as “linkSource”. The y2 same attribute is used to hold the bridge linkStatus head positions in bridged structures with Target the values of “bridgeTarget” and “bridgeSource”
  • 68. The Semantics Descriptor presentational attributes imaginary attributes id orientation of orientation title eStatus orbitals X1 Y1 link linkType restricted to two X2 y2 bondType charge dimensional chargeCount linkTarget plane linkTargetId The ‘orientation’ attribute provides the description of imaginary orientation of bond links in a two dimensional plane. A value from 0 to 360 in anticlockwise direction is suggested as the possible orientations along which the atoms are oriented with respect to the mapped atom
  • 69. The Semantics at electronLink level Descriptor Presentational attributes attributes coordinates in pixels id The exact coordinates in pixel values at which the fragments are placed on the title screen are provided using ‘x1’, ‘y1’, ‘x2’, electronStatus and ‘y2’ for rendering the chemical charge structures on the computer screen as 2D Orientation graphics. These attributes renders the chargeCount “electronLink” as points with x1 = x2 and x1 affinity y1 = y2 indicating unmapped free links or y1 bond as the mapped bond link to show the x2 order chemical bond with the values as x1 ≠ x2 y2 and y1 ≠ y2. Accordingly a point at an linkStatus atom indicates the presence of an open Target “electronLink”. A line connecting between two atoms represents a chemical bond
  • 70. The Semantics at atom level descriptor attributes Id Title Hybridization Title and symbol of atom Symbol Position isotopeLabel Carbon, hydrogen, nitrogen … presentational C, H, N … attributes x y
  • 71. The Semantics at atom level descriptor attributes Id Title Hybridization Hybridization Symbol Position isotopeLabel specifies the hybridization status of the atom if any presentational Like sp, sp2, sp3, dsp2 etc attributes x y
  • 72. The Semantics at atom level 7 10 2 8 9 descriptor 1 3 attributes 4 6 5 Id Position Title allows the numbering of atoms in a skeleton Hybridization Symbol Position isotopeLabel IsotopeLabel brings the possibility to label the atoms at any stage presentational of structure construction guided by external attributes ontology x y
  • 73. The Semantics at Fragment level Descriptor attributes Title specifies the fragment name Id Type is used to indicate the class to which the Title Type fragment belongs as defined in the fragment ontology Symbol linkType Symbol denotes the symbol of the fragment like “C / H / N / OH / CHO / COOH / etc” Presentational attributes linkType to hold values such as “direct” or “bridge” or Orientation “fuse” or “spiro” to represent the nature of link when the Projection fragment is joined with other fragment during structure x1 y1 construction x2 y2
  • 74. Additional Semantics The semantic level can be expanded further to accommodate “material” level to markup the substance or material material structure fragment atom The XML format of ChemFul includes the description of individual fragments inside a electronLink “structure” element and then all the “structure” elements into a “material” element. So, the ChemEd generates the ChemFul with an additional layer of semantics in terms of “structure” and “material” along with the details of fragments.
  • 75. Our attempt on encoding Chemical Knowledge Conceptual Basis of Encoding Organic Groups and Functional Groups Punnaivanam Sankar*, Krief Alain, and Gnanasekaran Aghila To be communicated Chemical Knowledge Editor for Encoding Organic Groups and Functional Groups and Chemical Reactivity Punnaivanam Sankar*, Krief Alain, and Gnanasekaran Aghila To be communicated
  • 76. ChemGp – Knowledge Editor for Groups, Functional Groups and Chemical Reactivity To be communicated
  • 77. ChemEd captures and shows the information defined in ChemGp
  • 78. Challenges to be solved A common Vocabulary System EnCorE – ChemDic - online free access chemical dictionary to collect chemical terms from any part of the world to evaluate the terms by expert group online to publish in the Internet Knowledge Integration Computer Chemist Scientist Funding EnCorE Cheminformatician
  • 79. conclusion The generation of reports meaningful for chemists will allow the development of interactive applications allowing chemists to encode and process his perceptions about the structure in a collaborative manner The semantic markup is suitable to develop algorithms for functional group interchange, functional group modifications etc. required for a meaningful reaction description The semantics at various levels will allow the possibility to create JAVA objects associated with suitable properties representing virtual substances and virtual materials to simulate reactions virtually The markup code is suitable for the conversion into the existing formats such as the Connection Table, Molfile, CML, SMILES, InChI etc. with suitable algorithms ChemEd can be suitably integrated with other applications to build open and shared applications working on common and approved vocabulary making use of chemical ontologies The markup system is suitable for the evolving Semantic Web
  • 80. Thank you Acknowledgement The authors acknowledge the support of: The Department of Science and Technology (DST), New Delhi, India for a funding support The Belgian Science Foundation (FNRS) especially for the creation of Fragment Library (A. Krief) and FUNDP (Namur, Belgium). Prof. Mark A. Musen, and Dr. Tania Tudorache, Biomedical Informatic Research Center (BMIR), Stanford University for their support in learning Protégé and developing OWL ontologies in Protégé.
  • 81. BicyclicTemplateFragment hasFragment hasFragment hasRingBridgeNumber hasBridgeSize hasRingSize value RingSkeletonFragment BridgeSkeletonFragment value value The relationships in a bridged bicyclic ring system “Bicyclo221HeptaneRing” associated with “hasRingBridgeNumber” relations <DataPropertyAssertion> <DataProperty URI="&Fragment ontology;hasRingBridgeNumber"/> <Individual URI="&Fragment ontology;Bicyclo221HeptaneRing"/> <Constant datatypeURI="&xsd;string">6-1</Constant> </DataPropertyAssertion> <DataPropertyAssertion> <DataProperty URI="&Fragment ontology;hasRingBridgeNumber"/> <Individual URI="&Fragment ontology;Bicyclo221HeptaneRing"/> <Constant datatypeURI="&xsd;string">5-2</Constant> </DataPropertyAssertion>
  • 82. source electronLink ionic covalent dative hydrogen <axiom • • • • • • ¨ ¨ ¨ ¨ bondId="covalent" anion • • • • neutral • • cation δ+ • • • • • • sEStatus="uPair" ¨ ¨ ¨ ¨ • • • • • • sChargeType="0" sBondType="covalent" tEStatus="uPair" • • • • • • • • tChargeType="0" tBondType="covalent" rsEStatus="bPair" • ¨ • • • • • • ¨ ¨ • rsChargeType="0" •anion • • • neutral • cation • δ+ rtEStatus="bPair" • • • • • • ¨ • • ¨ ¨ rtChargeType="0"/> • • • • • • ionic covalent dative hydrogen target electronLink
  • 83. The functionalities of ChemEd is described in the following movies Movie 1 : draw Cyclohexane carboxaldehyde Movie 2 : draw Norbornanone Movie 3 : draw structures with ion-ion interaction Movie 4 : draw structures with ion-dipole interaction Movie 5 : draw structures showing metal-pi interaction Movie 6 : creation and use of steroid template Movie 7 : detection of isomerism (R/S) (E/Z) Movie 8 : isotope labeling, projection labeling
  • 84. Reaction components + Equipment Actions Substances Substances Observations Methylation of norbornanone Bridgehead H H H O O O H Exo (i) 2 eq. NaNH2, ether, 20 °C, 1h, reflux, 1h + H Me H (ii) 3 eq. MeI, ether, 20°C, 2h Me H 80 % 20 % Endo Bicyclo[2.2.1]heptan-2-one 3-methylbicyclo[2.2.1]heptan-2-one Norbornan-2-one 3-methyl-norbornanone