Upcoming SlideShare
×

# Column Analysis and Design

3,214 views
2,724 views

Published on

Column Analysis and design work

Published in: Education, Technology
5 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

Views
Total views
3,214
On SlideShare
0
From Embeds
0
Number of Embeds
6
Actions
Shares
0
299
0
Likes
5
Embeds 0
No embeds

No notes for slide
• PvB
• Leonhard Euler portrait by Emanuel Handmann, 1753
http://commons.wikimedia.org/wiki/File:Leonhard_Euler_by_Handmann_.png
Public domain
http://en.wikipedia.org/wiki/Emanuel_Handmann
• PvB
• PvB
• PvB
• PvB
• PvB
• PvB
• PvB
• PvB
• This is the steel code
[2] Manual of steel construction.
Author American Institute of Steel Construction.
Edition 8th ed.
Published Chicago, Ill. : American Institute of Steel Construction, c1980.
p. 3-5
• PvB
• [2] p.3-16
• [2] p. 3-32
• ### Column Analysis and Design

2. 2. Architecture 324 Structures II Column Analysis and Design • • • • • • Failure Modes End Conditions and Lateral Bracing Analysis of Wood Columns Design of Wood Columns Analysis of Steel Columns Design of Steel Columns University of Michigan, TCAUP Structures II Slide 2/19
3. 3. Leonhard Euler (1707 – 1783) Euler Buckling (elastic buckling) Pcr = – – – – – π 2 AE  KL     r  2 r= I A A = Cross sectional area (in2) E = Modulus of elasticity of the material (lb/in2) K = Stiffness (curvature mode) factor L = Column length between pinned ends (in.) r = radius of gyration (in.) f cr = π 2E  KL     r  University of Michigan, TCAUP 2 Source: Emanuel Handmann (wikimedia commons) ≤ Fcr Structures II Slide 3/19
4. 4. Failure Modes • Short Columns – fail by crushing (“compression blocks or piers” Engel) fc = – – – – • P ≤ Fc A fc = Actual compressive stress A = Cross-sectional area of column (in2) P = Load on the column Fc = Allowable compressive stress per codes Intermediate Columns – crush and buckle (“columns” Engel) • Long Columns – fail by buckling (“long columns” Engel) f cr = – – – – π 2E  KL     r  2 ≤ Fcr E = Modulus of elasticity of the column material K = Stiffness (curvature mode) factor L = Column length between pinned ends (in.) r = radius of gyration = (I/A)1/2 University of Michigan, TCAUP Structures II Slide 4/19
5. 5. Slenderness Ratio • Radius of Gyration: a geometric property of a cross section r= – – – • I A I = Ar 2 r = Radius of Gyration I = Moment of Inertia A = Cross-sectional Area rx = 0.999 Slenderness Ratios: Lx rx Ly ry The larger ratio will govern. Try to balance for efficiency University of Michigan, TCAUP ry = 0.433 Structures II Slide 5/19
6. 6. End Support Conditions K= 1.0 K is a constant based on the end conditions l is the actual length Both ends pinned. l e is the effective length l e = Kl K= 0.7 One end free, one end fixed. K= 2.0 K= 0.5 Both ends fixed. One end pinned, one end fixed. University of Michigan, TCAUP Structures II Slide 6/19
7. 7. Analysis of Wood Columns Data: • • • Column – size, length Support conditions Material properties – Fc , E Required: • Pcrit for buckling and crushing • Calculate slenderness ratio; largest ratio governs. Check slenderness against upper limit. Calculate Pcrit for buckling using Euler’s equation: Calculate Pmax for crushing: Pmax = Fc A Smaller of Pcrit or Pmax will fail first. • • • • University of Michigan, TCAUP Structures II Slide 7/19
8. 8. Example Problem : Analysis Data: section 3”x7” Full Dimension Fc = 1000 psi E = 1,400,000 psi Find: Pcritical for buckling and crushing. Determine the mode of failure for the wood column. University of Michigan, TCAUP Structures II Slide 8/19
9. 9. Example Problem : Analysis (cont.) 1. Calculate slenderness ratios for each axis. The larger (more slender) controls. 2. Upper limits are usually given by codes. University of Michigan, TCAUP Structures II Slide 9/19
10. 10. Example Problem : Analysis (cont.) 3. Calculate critical Euler buckling load. 4. Calculate crushing load. 5. Smaller of the two will fail first and control. University of Michigan, TCAUP Structures II Slide 10/19
11. 11. Analysis of Steel Columns by Engel Data: • • • • Column – size, length Support conditions Material properties – Fy Applied load - Pactual Required: • Pactual < Pallowable • Calculate slenderness ratios. The largest ratio governs. • Check slenderness ratio against upper limit of 200 • Use the controlling slenderness ratio to find the critical Euler buckling stress, fcr. • Apply some Factor of Safety (like 3) to fcr. • Determine yield stress limit, Fy. • Fallowable is the lesser stress: (fcr / F.S.) or Fy • Compute allowable capacity: Pallowable = Fallow A. • Check column adequacy: Pactual < Pallowable University of Michigan, TCAUP Structures II π 2E f cr = 2  KL     r  Slide 11/19
12. 12. Design of Steel Columns by Engel Data: • • • • Column – length Support conditions Material properties – Fy Applied load - Pactual Required: • Column – section • Use the Euler equation to solve for Ar2 which is equal to I for both x and y axis. • Enter the section tables and find the least weight section that satisfies BOTH Ix and Iy. • Check the slenderness ratios are both < 200. • Calculate the actual Euler stress fcr for the final section. • Fallowable is the lesser stress: fcr / F.S. or Fy • Compute allowable capacity: Pallowable = Fallow A. University of Michigan, TCAUP Structures II P( K xl x ) 2 Ix = × F .S . 2 π E Iy = P( K y l y ) 2 π E 2 × F .S . Slide 12/19
13. 13. Example Problem : Design Select a steel section that can carry the given load. University of Michigan, TCAUP Structures II Slide 13/19
14. 14. Example Problem : Design (cont.) University of Michigan, TCAUP Structures II Slide 14/19
15. 15. Example Problem : Design (cont.) • Determine the controlling slenderness (larger controls) • Find the actual buckling stress, fcr • Compare to allowable stress, Fallowable is lesser of : fcr/F.S. or Fy • Determine safe allowable load, Pallowable = Fallowable A University of Michigan, TCAUP Structures II Slide 15/19
16. 16. Determining K factors by AISC Sidesway Inhibited: Braced frame 1.0 > K > 0.5 Sidesway Uninhibited: Un-braced frame unstable > K > 1.0 If Ic/Lc is large and Ig/Lg is small The connection is more pinned If Ic/Lc is small and Ig/Lg is large The connection is more fixed Source: American Institute of Steel Construction, Manual of Steel Construction, AISC 1980 University of Michigan, TCAUP Structures II Slide 16/19
17. 17. Steel Frame Construction University of Michigan, TCAUP Structures II Slide 17/19
18. 18. Analysis of Steel Columns by AISC-ASD Data: • • • • Column – size, length Support conditions Material properties – Fy Applied load - Pactual Required: • Pactual < Pallowable • Calculate slenderness ratios. largest ratio governs. In AISC Table look up Fa for given slenderness ratio. Compute: Pallowable = Fa A. Check column adequacy: Pactual < Pallowable • • • Source: American Institute of Steel Construction, Manual of Steel Construction, AISC 1980 University of Michigan, TCAUP Structures II Slide 18/19
19. 19. Design of Steel Columns with AISC-ASD Tables Data: • • • • Column – length Support conditions Material properties – Fy Applied load - Pactual Required: • Column Size 1. 2. Enter table with height. Read allowable load for each section to find the smallest adequate size. Tables assume weak axis buckling. If the strong axis controls the length must be divide by the ratio rx/ry Values stop in table (black line) at slenderness limit, KL/r = 200 3. 4. University of Michigan, TCAUP Source: American Institute of Steel Construction, Manual of Steel Construction, AISC 1980 Structures II Slide 19/19