Mrs 2008 Fall Walker

583 views
515 views

Published on

Presentation in MRS Fall Meeting 2008 in Boston

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
583
On SlideShare
0
From Embeds
0
Number of Embeds
6
Actions
Shares
0
Downloads
0
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Mrs 2008 Fall Walker

  1. 1. The Application of Titanium Oxide on Organic Optoelectronic Devices by Sol-Gel Process Juo-hao Li, MiHyae Park and Yang Yang Department of Materials Science and Engineering University of California – Los Angeles, California MRS. 2008, Fall. Boston
  2. 2. Outline <ul><ul><li>Introduction / Motivation </li></ul></ul><ul><ul><ul><li>Printed electronics & solution process </li></ul></ul></ul><ul><ul><li>Amorphous titanium oxide </li></ul></ul><ul><ul><ul><li>Solution processed electron injection layer </li></ul></ul></ul><ul><ul><ul><li>PLEDs using TiO X as the ETL </li></ul></ul></ul><ul><ul><li>Nano-crystalline titanium oxide </li></ul></ul><ul><ul><ul><li>Sol-gel processed Nano-crystalline TiO 2 </li></ul></ul></ul><ul><ul><ul><li>The application on PLEDs & Organic Solar Cell </li></ul></ul></ul><ul><ul><li>Summary </li></ul></ul>MRS. 2008, Fall. Boston
  3. 3. Organic & Polymer Light Emitting Diodes Source:http://electronics.howstuffworks.com/oled1.htm Reflective Metal: Aluminum, Silver tris(quinolinolate) Al (Alq 3 ) poly( p -phenylene vinylene) (PPV) PSS: poly(styrenesulfonic acid) PEDOT: poly(3,4 ethyenedioxythiophene) Transparent Conductive Oxide (ITO) MRS. 2008, Fall. Boston
  4. 4. Polymer Solar Cell <ul><li>Structure & Operation </li></ul>Al 4.3 eV RR-P3HT PCBM MRS. 2008, Fall. Boston
  5. 5. <ul><li>Roll to Roll process </li></ul><ul><li>Printing Process </li></ul><ul><ul><li>Inkjej printing </li></ul></ul><ul><ul><li>Ink-transfer </li></ul></ul>Printed electronics & solution process Franky So, Junji Kido, and Paul Burrows, MRS BULLETIN • VOLUME 33 • JULY 2008 Low cost High throughput Flexible M. BERGGREN, D. NILSSON AND N. D. ROBINSON, nature materials, 6, p1-5, 2007 MRS. 2008, Fall. Boston
  6. 6. Solution processed interfacial layer <ul><li>OLEDs architecture & charge injection layer </li></ul>Cathode HIL/HTL Anode/ Substrate Emissive layer - + EIL/ETL - + - - + + <ul><li>Increase injection and luminance efficiency </li></ul><ul><ul><li>Reduce the barrier energy </li></ul></ul><ul><ul><li>Help charge transport </li></ul></ul><ul><ul><li>Avoid the quenching effect </li></ul></ul><ul><ul><li>Quantum confinement </li></ul></ul>Charge injection & Charge balance MRS. 2008, Fall. Boston + -
  7. 7. Challenges of solution processed interfacial layer <ul><li>Thin film deposition </li></ul><ul><ul><li>Easy processing & comparability with other organic layer </li></ul></ul><ul><li>Energy level alignment </li></ul><ul><ul><li>Quantum confinement </li></ul></ul><ul><li>Thickness control </li></ul><ul><ul><li>Charge balance </li></ul></ul><ul><li>Interface morphology </li></ul><ul><li>Stability </li></ul><ul><ul><li>Thermal stability & degradation </li></ul></ul>MRS. 2008, Fall. Boston
  8. 8. <ul><li>Spin-coated Cs 2 CO 3 as EIL </li></ul><ul><ul><li>ITO/PEDOT/LEP/ Cs 2 CO 3 /Al </li></ul></ul>ITO PEDOT LEP Al Cs 2 CO 3 + - The solvent used to dissolve Cs 2 CO 3 would not wash out the underneath LEP layer all solution process J. Huang et al. Adv. Funct. Mater. 2007, 17, 1966–1973 <ul><li>Cs 2 CO 3 (Sol.) </li></ul><ul><li>Cs 2 CO 3 (Evap.) </li></ul><ul><li>Cs/Al </li></ul>Solution Processed Cs 2 CO 3 layer MRS. 2008, Fall. Boston
  9. 9. <ul><li>Spin-coated TiO x as EIL </li></ul><ul><ul><li>ITO/PEDOT/LEP/ TiO x /Al </li></ul></ul>Sol-gel metal-oxide as an EIL ITO PEDOT LEP Al TiO x + - Current Density and Luminance increase compared with solution processed TiO x EIL A clear solution containing TiO X is synthesized by sol-gel process and spin coated on top of LEP surface J. Li and Yang Yang et al. SPIE Optics & Photonics, San Diego 2008 MRS. 2008, Fall. Boston
  10. 10. Charge injection ability <ul><li>Photovoltaic measurement – Built-in potential </li></ul>Devices with TiO x EIL have similar built-in potential compared with the devices with Ca & Cs 2 CO 3 layer Low injection barrier High current density MRS. 2008, Fall. Boston
  11. 11. Concentration dependence 2.97 6.04 17.3 6.4 1.0 mg/ml * Measured at the brightness of 1000 cd/m 2 13.52 18.98 3.67 Power Efficiency* [lm/W] 14.21 7.76 3.3 0.5 mg/ml 16.92 6.27 2.8 0.2 mg/ml 5.84 16.67 5.0 0.1 mg/ml Current* efficiency [cd/A] J* [mA/cm 2 ] Volt* [V] TiO X Conc.
  12. 12. <ul><li>Interface electronic structure analysis- UPS </li></ul>TiO X interface layer provide a good coverage and low work function surface 0 mg/ml 1.0 mg/ml TiOx feature peak Polymer peak MRS. 2008, Fall. Boston
  13. 13. <ul><li>Solution processed amorphous Metal-Oxide as EIL </li></ul>GPF TiOx J(h) J(e) PEDOT Al ● ○ ○ ○ ● ● Current flow For Green PLEDs, Efficiency increases 27% (15  19 lm/W), 1000 cd/m 2 @ 2.8 V Hole blocking Charge balance Quenching prevention J. Li and Yang Yang et al. SPIE Optics & Photonics, San Diego 2008 Energy alignment & Hole blocking MRS. 2008, Fall. Boston Device performances are better than the ones with Cs 2 CO 3 EIL
  14. 14. Nano - crystalline TiO 2 J. Wang et al, J. Phys. Chem. C (2007) 111, 14925 Synthsis: Nonhydrolytic sol-gel route <ul><li>Low temperature </li></ul><ul><li>Alcohol solvent </li></ul>Anatase Nano-crystalline TiO 2 suspension solution MRS. 2008, Fall. Boston
  15. 15. Structure : ITO / PEDOT / LEP / EIL / Al LEP : 1% Green PF in p-xylene EIL : Modified TiO 2 Application of nano-crystalline TiO 2 on PLEDs Device efficiency are comparable with devices with Cs 2 CO 3 EIL Power efficiency 14 lm/W @ 1000 cd/m 2, ,2.8V MRS. 2008, Fall. Boston
  16. 16. Nanocrystalline TiO 2 is a good candidate as the cathode structure Application of nano - crystalline TiO 2 on OPV V oc (V) = 0.58 J sc (mA/cm 2 ) = 10.76 PCE (%) = 4.2 FF(%) = 67 ITO / PEDOT / P3HT:PCBM/n doped TiO 2 / Al MRS. 2008, Fall. Boston Adv. Funt. Mat. submitted
  17. 17. Energy alignment & Hole blocking - - - + + + MRS. 2008, Fall. Boston Energy, eV PCBM 4.9 3.7 6.1 PEDOT ITO 5.2 4.7 n doped TiO 2 3.9 7.6 4.2 Al 4.0 2.0 7.0 6.0 5.0 3.0 P3HT 3.0
  18. 18. Characterization - XRD, TEM <ul><li>n-doped TiO 2 </li></ul><ul><li>Proper energy level </li></ul><ul><li>Stabilizing the TiO 2 nanostructure </li></ul><ul><li>Interface resistance </li></ul><ul><li>Hole blocking </li></ul>TiO 2 n doped TiO 2 50nm 50nm
  19. 19. Summary <ul><li>Solution processed interfacial layer can be applied in the process of printed electronics and act as charge injection layer to improve the interface and device performance </li></ul><ul><li>Sol-gel processed amorphous titanium oxide is demonstrated to be a good electron injection layer used for efficient PLEDs. </li></ul><ul><li>Sol-gel processed nano-crystalline titanium oxide can be employed as the EIL in both OPV and PLEDs </li></ul>MRS. 2008, Fall. Boston
  20. 20. <ul><li>Prof. Yang Yang’s gourp members </li></ul><ul><li>Dr. Jianhui Hou , Solarmer Inc. </li></ul><ul><li>Funding Agencies, CDA, Air Fource, ONR, NSF </li></ul>Acknowledgement Thank you for your attention MRS. 2008, Fall. Boston

×