Your SlideShare is downloading. ×
0
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Photovoltaic Energy
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Photovoltaic Energy

1,107

Published on

Published in: Technology, Business
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,107
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
2
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Photovoltaic Energy Wali Memon1 Wali Memon
  • 2. Trend Analysis & ExtrapolationA Method Everyone UsesTrend analysis involves the use of any of a variety of techniques based onhistorical data.Trend analysis involves several processes. One process is spotting anemerging trend, that is, identifying a change in the world around us.Now you need to do some analysis to see what the nature of the trend isand what its implications might be.You could first look at historical data2 Wali Memon
  • 3. Trend Analysis & Extrapolation3 Wali Memon
  • 4. Trend Analysis & Extrapolation Trend analysis requires that you do more than simply extrapolate the trend forward. You have to ask, what is causing this trend, and will those causes continue indefinitely? Are there upper limits to the trend? What other forces may affect the trend? At this point trend analysis relies more on subjective judgment rather than objective extrapolation of historical data. Assuming that the future will be like the past or that past changes will continue in the same direction and rate is a perfectly sensible way to begin trying to understand the future. 4 It can Wali Memon not, however, be the end of our endeavors, or we would end up with absurd results.http://crab.rutgers.edu/~goertzel/futuristmethods.htm
  • 5. Trends to Analyze in This Talk Solar Cells Market size Market share Sales Units Power produced Cost per power delivered5 Wali Memon
  • 6. Agenda The Sun Solar Cells Background How they work Types Markets Costs Countries Companies Questions6 Wali Memon
  • 7. Now on with the show7 Wali Memon
  • 8. Energy from the Sun About half the incoming solar energy reaches the Earths surface. The Earth receives 174 petawatts (PW) (1015 watts) of incoming solar radiation at the upper atmosphere. Approximately 30% is reflected back to space while the rest is absorbed by clouds, oceans and land masses. Earths land surface, oceans and atmosphere absorb solar radiation, and this raises their temperature. Sunlight absorbed by the oceans and land masses keeps the surface at an average temperature of 14 °C. By photosynthesis green plants convert solar energy into chemical energy, which produces food, wood and the biomass from which fossil fuels are derived. 8 Wali Memonhttp://en.wikipedia.org/wiki/Solar_energy
  • 9. Breakdown of incoming solar energy 9 Wali Memonhttp://en.wikipedia.org/wiki/File:Breakdown_of_the_incoming_solar_energy.svg
  • 10. Energy from the SunYearly Solar fluxes & Human Energy Consumption The total solar energy absorbed by Earths atmosphere, oceans and land masses is approximately 3,850,000 exajoules (EJ) (1018 joules) per year. (70% of incoming sunlight) (1 Joule = energy required to heat one gram of dry, cool air by 1˚ C) Primary energy use (2005) 487 EJ (0.0126%) Electricity (2005) 56.7 EJ (0.0015%) Therefore a good target 2002, more energy in one hour than the world used in the year. Photosynthesis captures approximately 3,000 EJ per year in biomass. The amount of solar energy reaching the surface of the planet is so vast that in one year it is about twice as much as will ever be obtained from all of the Earths non-renewable resources of coal, oil, natural gas, and mined uranium combined. 10 As intermittent resources, solar and wind raise issues. Wali Memonhttp://en.wikipedia.org/wiki/Solar_energy
  • 11. Solar Cells Background 1839 - French physicist A. E. Becquerel first recognized the photovoltaic effect. Photo+voltaic = convert light to electricity 1883 - first solar cell built, by Charles Fritts, coated semiconductor selenium with an extremely thin layer of gold to form the junctions. 1954 - Bell Laboratories, experimenting with semiconductors, accidentally found that silicon doped with certain impurities was very sensitive to light. Daryl Chapin, Calvin Fuller and Gerald Pearson, invented the first practical device for converting sunlight into useful electrical power. Resulted in the production of the first practical solar cells with a sunlight energy conversion efficiency of around 6%. 11 Wali Memon 1958 - First spacecraft to use solar panels was US satellite Vanguard 1http://en.wikipedia.org/wiki/Solar_cell
  • 12. PV Solar for ElectricityPhotovoltaics For the 2 billion people without access to electricity, it would be cheaper to install solar panels than to extend the electrical grid. (The Fund for Renewable Energy Everywhere) Providing power for villages in developing countries is a fast-growing market for photovoltaics. The United Nations estimates that more than 2 million villages worldwide are without electric power for water supply, refrigeration, lighting, and other basic needs, and the cost of extending the utility grids is prohibitive, $23,000 to $46,000 per kilometer in 1988. A one kilowatt PV system* each month: prevents 150 lbs. of coal from being mined prevents 300 lbs. of CO2 from entering the atmosphere keeps 105 gallons of water from being consumed keeps NO and SO2 from being released into the environment * in Colorado, or an equivalent system that produces 150 kWh per month 12 Wali Memon http://www.solarenergy.org/resources/energyfacts.html
  • 13. How Solar Cells Work1. Photons in sunlight hit the solar panel and are absorbed by semiconducting materials, such as silicon.2. Electrons (negatively charged) are knocked loose from their atoms, allowing them to flow through the material to produce electricity.3. An array of solar cells converts solar energy into a usable amount of direct current (DC) electricity. 13 Wali Memon http://en.wikipedia.org/wiki/File:Silicon_Solar_cell_structure_and_mechanism.svg
  • 14. Solar Cells Background Three generations of solar cells Solar Cells are classified into three generations which indicates the order of which each became important. At present there is concurrent research into all three generations while the first generation technologies are most highly represented in commercial production, accounting for 89.6% of 2007 production. 14 Wali Memonhttp://en.wikipedia.org/wiki/Solar_cell
  • 15. Solar Cells BackgroundFirst Generation – Single Junction Silicon Cells89.6% of 2007 Production 45.2% Single Crystal Si Silicon Cell Average Efficiency 42.2% Multi-crystal SI Large-area, high quality and single junction devices. High energy and labor inputs which limit significant progress in reducing production costs. Single junction silicon devices are approaching theoretical limit efficiency of 33%. Achieve cost parity with fossil fuel energy generation after a payback period of 5–7 years. (3.5 yr in Europe) Single crystal silicon - 16-19% efficiency Multi-crystal silicon - 14-15% efficiency 15 Wali Memonhttp://en.wikipedia.org/wiki/Solar_cell and www.epia.org Solar Generation V Report Sept 08
  • 16. Solar Cells Background Second Generation – Thin Film Cells CdTe 4.7% & CIGS 0.5% of 2007 Production New materials and processes to improve efficiency and reduce cost. As manufacturing techniques evolve, production costs will be dominated by constituent material requirements, whether this be a silicon substrate, or glass cover. Thin film cells use about 1% of the expensive semiconductors compared to First Generation cells. The most successful second generation materials have been cadmium telluride (CdTe), copper indium gallium selenide (CIGS), amorphous silicon and micromorphous silicon. Trend toward second gen., but commercialization has proven difficult. 2007 - First Solar produced 200 MW of CdTe solar cells, 5th largest producer in 2007 and the first to reach top 10 from of second generation technologies alone. 2007 - Wurth Solar commercialized its CIGS technology producing 15 MW. 2007 - Nanosolar commercialized its CIGS technology in 2007 with a production . capacity of 430 MW for 2008 in the USA and Germany. 2008 - Honda began to commercialize their CIGS base solar panel. CdTe – 8 – 11% efficiency (18% demonstrated) CIGS – 7-11% efficiency (20% demonstrated) Payback time < 1 year in Europe 16 Wali Memonhttp://en.wikipedia.org/wiki/Solar_cell and www.epia.org Solar Generation V Report Sept 08
  • 17. Solar Cells Background Third Generation – Multi-junction Cells Third generation technologies aim to enhance poor electrical performance of second generation (thin-film technologies) while maintaining very low production costs. Current research is targeting conversion efficiencies of 30-60% while retaining low cost materials and manufacturing techniques. They can exceed the theoretical solar conversion efficiency limit for a single energy threshold material, 31% under 1 sun illumination and 40.8% under the maximal artificial concentration of sunlight (46,200 suns). Approaches to achieving these high efficiencies including the use of multijunction photovoltaic cells, concentration of the incident spectrum, the use of thermal generation by UV light to enhance voltage or carrier collection, or the use of the infrared spectrum for night-time operation. Typically use fresnel lens (3M) or other concentrators, but cannot use diffuse sunlight and require sun tracking hardware 17 Wali Memon Multi-junction cells – 30% efficiency (40-43% demonstrated)http://en.wikipedia.org/wiki/Solar_cell and www.epia.org Solar Generation V Report Sept 08
  • 18. Global Cumulative PV Power 18 Wali Memonhttp://www.epia.org/fileadmin/EPIA_docs/publications/epia/Global_Market_Outlook_Until_2013.pdf
  • 19. Global Annual PV Market 19 Wali Memonhttp://www.epia.org/fileadmin/EPIA_docs/publications/epia/Global_Market_Outlook_Until_2013.pdf
  • 20. Solar Cell Market Estimate Solar Cells 2010 Market Share Estimate 50% 40%Market Share 30% 20% 10% 0% Type20 -- First Generation -- Wali Memon -- Second Generation -- - Third Gen -
  • 21. Global Annual PV Market Outlook 21 Wali Memonhttp://www.epia.org/fileadmin/EPIA_docs/publications/epia/Global_Market_Outlook_Until_2013.pdf
  • 22. Solar PV Market Outlook Annual PV Market Outlook $700 Rest of World $600 South Asia Sales in Billions $500 China $400 Central + South $300 America North America $200 Europe $100 $- 2007 2010 2015 2020 2025 2030by 2030 8.9%MemonGlobal Energy, 1,864 GW Production Capacity, 2,646 TWh Electricity 22 Wali ofSEMI PV Group March 2009 from source EPIA Solar Generation V Sept 08 www.epia.org
  • 23. Cost Projections $/kWh “Grid parity’ where PV cost $1.35 are equal to residential electricity costs is $1.07 expected to be achieved first in southern European $0.81 countries and then to move north $0.54 $0.27 $0.13 --- 23 Wali Memonwww.epia.org EPIA Solar Generation V Report Sept 08
  • 24. Cumulative installed solar electric power by 2007 1st Germany 3.8 GW 2nd Japan 1.9 GW 3rd US 814 MW 4th Spain 632 MW24 Wali Memon
  • 25. Worlds largest photovoltaic (PV) power plants (12 MW or larger) Name of PV power plant Country DC GW·h Notes Peak /year Power (MW) Olmedilla Photovoltaic Park Spain 60 85 Completed September 2008 Puertollano Photovoltaic Park Spain 50 2008 Moura photovoltaic power station Portugal 46 93 Completed December 2008 Waldpolenz Solar Park Germany 40 40 550,000 First Solar thin-film CdTe modules. Completed Dec 2008 Arnedo Solar Plant Spain 34 Completed October 2008 Merida/Don Alvaro Solar Park Spain 30 Completed September 2008 17 more Spain Avg 20 2 more Korea Avg 20 Koethen Germany 14.75 13 200,000 First Solar thin-film CdTe modules. Completed Dec 2008 Nellis Solar Power Plant USA 14.02 30 70,000 solar panels Planta Solar de Salamanca 25 Wali Memon Spain 13.8 n.a. 70,000 Kyocera panels 6 more Spain, 1 US, 1 Germany Avg 12http://en.wikipedia.org/wiki/Photovoltaic_power_stations
  • 26. Large systems in planning or under construction Name of Plant Country DC GW·h Notes Peak /year Power (MW) Rancho Cielo Solar Farm USA 600 Thin film silicon from Signet Solar** Topaz Solar Farm USA 550 1,100 Thin film silicon from OptiSolar ** High Plains Ranch USA 250 550 Monocrystaline silicon from SunPower with tracking ** Mildura Solar concentrator power Australia 154 270 Heliostat concentrator using GaAs cells from station Spectrolab** KCRD Solar Farm USA 80 Scheduled to be completed in 2012 ** DeSoto County, Florida USA 25 To be constructed by SunPower for FPL Energy, completion date 2009.* Davidson County solar farm USA 21.5 36 individual structures** Cádiz solar power plant Spain 20.1 36 * Kennedy Space Center, Florida USA 10 To be constructed by SunPower for FPL Energy, completion date 2010.** 26 Wali Memon * Under construction; ** Proposedhttp://en.wikipedia.org/wiki/Photovoltaic_power_stations
  • 27. Spain Blessed with almost year-round sunshine, Spains socialist government is trying to capitalize on this natural resource. In an effort to encourage private individuals and companies to install solar power, Spain introduced subsidies of €0.42 per kilowatt per hour ($0.57/KWhr) (‘feed-in’ tariff and off-grid subsidies) But the Spanish government is considering reducing this subsidy in September, a move which is likely to face opposition from within the solar energy industry. 2007: 26,800 employees in Spanish solar companies 27 Wali Memonhttp://www.guardian.co.uk/environment/2008/jul/09/solarpower.renewableenergy 9 July 2008www.epia.org Solar Generation V Report Sep 2008
  • 28. Olmedilla Solar Park28 Wali Memon 60 MWp photovoltaic park installed by Nobesol with modules from Silikin
  • 29. Germany 10,000 companies, including installers work in solar PV 80 companies are cell and module makers 42,000 employees Sales were $5.7 B including $2.5 B in exports The ‘feed-in’ tariff 2008 German utilities pay $0.47 to $0.68/kWh depending on type and size of system for new solar systems Utilities pass cost to consumers – Germany average is $1.65/month 29 Wali Memonwww.epia.org Solar Generation V Report Sep 2008
  • 30. Waldpolenz Solar Park The Waldpolenz Solar Park is built on a surface area equivalent to 200 soccer fields, the solar park will be capable of feeding 40 megawatts into the power grid when fully operational in 2009. In the start-up phase, the 130-million-euro ($201 million) plant it will have a capacity of 24 megawatts, according to the Juwi group, which operates the installation. The facility, located east of Leipzig, uses state-of-the-art, thin-film technology. Some 550,000 thin-film modules will be used, of which 350,000 have already been installed. The direct current produced in the PV solar modules will be converted into alternating current and fed completely into the power grid. After just a year the solar power station will have produced the energy needed to build it, according to the Juwi group. 30 Wali Memonhttp://www.dw-world.de/dw/article/0,2144,3430319,00.html
  • 31. Waldpolenz Solar Park 31 Wali Memonhttp://www.dw-world.de/dw/article/0,2144,3430319,00.html
  • 32. Waldpolenz Solar Park 32 Wali Memonhttp://lumbergusa.com/main/Bild/sp_pv_07/Brandis-Waldpolenz-Fotomont.jpg
  • 33. United States 2007 - PV production grew in all areas of US market US leads development of thin-film technology accounting for nearly half the global production 2007 – about 50,000 employees CA dominates with 60% of installed capacity Various state Renewable Portfolio Standards (RPS) and Federal Investment Tax Credits (ITC) are incentives. Solar America Initiative making progress on goal to bring PV costs to grid parity by 2015 33 Wali Memonwww.epia.org Solar Generation V Report Sep 2008
  • 34. Renewable Energy Consumptionin the US Energy Supply, 2007 34 Wali Memon http://www.eia.doe.gov/cneaf/solar.renewables/page/trends/highlight1.html
  • 35. Chart Data Figure 1.1 The Role of Renewable Energy Consumption in the Nations Energy Supply, 2007 (Quadrillion Btu) Consumption Share Total US 101.545 Coal 22.776 22% Natural Gas 23.637 23% Petroleum 39.773 39% Nuclear Electric Power 8.415 8% Renewable Energy: 6.813 7% Of which: Hydroelectric 2.446 36% Geothermal Energy 0.349 5% Biomass 3.596 53% Solar Energy 0.081 1% Wind Energy 0.341 5% Wali Memon 35http://www.eia.doe.gov/cneaf/solar.renewables/page/trends/figure1_1.xls
  • 36. US Solar Industry DataSolar energy represents less than 1% of the U.S. energy mix. However, as a result ofgrowing awareness about reliable, off-the-shelf technology, concerns about rising costs,energy security and supplies, and new state and federal incentives, deployment of solarenergy has exploded since 2005. Size of U.S. Market 2008 - U.S. had about 8,800 megawatts (MW) of installed solar capacity. 1,100 MW of photovoltaics (PV), 418 MW of utility-scale concentrating solar power, 485 MWTh (megawatts thermal equivalent) of solar water heating systems 7,000 MWTh of solar pool heating systems. Ranking of U.S. Market: Cumulative installed solar electric power by 2007. 1st Germany 3.8 GW, 2nd Japan 1.9 GW, 3rd US 814 MW, 4th Spain 632 MW Growth of U.S. Market 2008 - more than 18,000 individual PV systems were installed. Totaled 342 MW: 292 MW was grid-connected. 36 Wali Memon Growth of U.S. Manufacturing 2008 domestic PV cell manufacturing capacity grew www.seia.org/cs/about_solar_energy/industry_data and www.epia.org Solar Generation V Report Sep 2008 65 percent to 685 MW and production grew 53 percent to 414 MW. (Results preliminary) (Source: Greentech Media Research and the Prometheus Institute)
  • 37. Nellis AFB Solar panels 37 Wali Memonhttp://en.wikipedia.org/wiki/File:Nellis_AFB_Solar_panels.jpg
  • 38. GM installs worlds biggest rooftop solar panels The largest rooftop solar power station in the world is being built in Spain. With a capacity of 12 MW of power, the station is made up of 85,000 lightweight panels covering an area of two million SqFt. Manufactured in rolls, rather like carpet, the photovoltaic panels are to be installed on the roof of a General Motors car factory in Zaragoza, Spain. General Motors, which plans to install solar panels at another 11 plants across Europe, unveiled the €50M ($68M) project yesterday. The power station should be producing energy by September. The panels will produce an expected annual output of 15.1 million kilowatt hours (kWh) - enough to meet the needs of 4,600 households with an average consumption of 3,300kWh, or power a third of the GM factory. The solar energy produced should cut CO2 emissions by 6,700 tons a year. Energy Conversion Devices who makes the panels, said it would be the largest 38 Wali Memon rooftop solar array in the world.http://www.guardian.co.uk/environment/2008/jul/09/solarpower.renewableenergy 9 July 2008
  • 39. GM installs worlds biggest rooftop solar panels 39 Wali Memonhttp://www.guardian.co.uk/environment/2008/jul/09/solarpower.renewableenergy 9 July 2008
  • 40. Japan 2002 - Basic Act on Energy Policy to secure stable energy supply, environmental suitability and use of market mechanisms By 2006, installed 1.2 GW for 350,000 homes 2008 – New research initiative to improve yields from 10- 15% to 40% and reduce cost from $0.48/kWh to $0.073/kWh 40 Wali Memonwww.epia.org Solar Generation V Report Sep 2008
  • 41. China 2007 National Renewable Energy targets 10% by 2010 (300 MW) 15% by 2020 (1.8 GW) Supplies 1,130 tons of polysilicon from 6 companies Supplies 21,400 tons of silicon ingot from 70 companies Number 1 PV panel producer – 1.1 GW 50 PV panel companies including Suntech, Yingli, Hebei Jingao, Jiansu Linyang, and Nangjing CEEG 82,800 employees (6 times that of 2005) 41 Wali Memonwww.epia.org Solar Generation V Report Sep 2008
  • 42. Top 10 PV Cell ProducersUntil recently BP Solar wasdominant supplier.New Top 10 produce53% of world totalQ-Cells, SolarWorld - GermanySharp, Kyocera, Sharp, Sanyo –JapanSuntech, Yingli, JA Solar – ChinaMotech - Taiwan 42 Wali Memon
  • 43. BP Solar BP Solar to supply PV power systems for Wal-Mart in CA 22 April 2009 Under a power purchase agreement (PPA), BP will finance, install and maintain the systems and Wal-Mart will have immediate access to clean electricity with no up front capital cost to the retailer. Will initially build 10 to 20 rooftop systems at Wal-Mart locations in California, and would work with the retailer to evaluate the potential for additional projects. Expects to complete the first set, 10 MW of installed solar power, within about 18 months. 2008 BP completed 4.1 MW solar systems for 7 Wal-Marts & Sam’s Clubs in CA. Since 1998, BP guarantees its modules for 25 years. BP Solar, part of BP Alternative Energy, is a global company with about 2000 employees. With over 35 years of experience and installations in most countries, BP Solar is one of the worlds leading solar companies. BP is one of the world’s largest energy companies, in more than 100 countries and over 96,000 employees. 43 Wali Memonhttp://www.bp.com/sectiongenericarticle.do?categoryId=9025044&contentId=7046577
  • 44. BP axes 620 jobs from solar business 01 April, 2009 - BP to axe 620 jobs from its solar power business – more than a quarter of that workforce – in a move it said was part of the long-term strategy to "reduce the cost of solar power to that of conventional electricity.“ Two cell manufacture and module assembly plants near Madrid, will be shut with the loss of 480 posts while module assembly will also be phased out at its Frederick facility in Maryland, US, with a further 140 redundancies. BP blamed the cutbacks on the credit crunch and lower-cost competition saying its global manufacturing capacity would still increase during this year and next via a series of strategic alliances with other companies. 44 Wali Memonhttp://www.guardian.co.uk/environment/2009/apr/01/bp-solar
  • 45. Q Cells SE 1999 founded, 2001 began with the production of silicon solar cells with 19 employees. By 2009, 2,600 employees (2007, 1700 employees) Now the largest solar cell manufacturer in the world. (since 2007) Continue to expand production in Bitterfeld-Wolfen, Germany and start construction of new Malaysian production facility. Alongside the monocrystalline and polycrystalline (90% of business) core business, we use a wide range of technologies to develop and produce thin- film modules. (thin-film - 25% share of smaller market) 2008 Sales $1.69 B 2007 Sales $1.16 B profitable QCE: Frankfurt exchange 45 Wali Memonhttp://www.q-cells.com/en and http://www.google.com/finance?q=FRA%3AQCE
  • 46. Sharp Solar Subsidiary of Sharp Electronics, Osaka, Japan Produces silicon solar cells and thin film, leveraging silicon knowledge from LCD manufacturing 2008, capacity will reach 1.6 million square meters of thin-film modules, as we simultaneously build the worlds largest thin film manufacturing complex, capable of 10 million square meters per year. And this gigawatt-scale factory is only the first to come. Katsuga City, Nara and Sakai City, Osaka, Japan Thin film efficiency 9%, expecting 10% from GW factory line. Sharp powers more homes and businesses than any other solar mfg in the world. First mfgr to reach 2 GW cumulative production since mass production start in 1963 Memphis, TN – 100 MW manufacturing facility 46 Wali Memonhttp://solar.sharpusa.com/solar/solar_thin_film/1,,3-6,00.html and http://www.sharpusa.com/files/sol_dow_ThinFilm_101408.pdf
  • 47. SunTech Power BEIJING, Jan 12, 2009 (Xinhua via COMTEX) China’s solar product maker SunTech Power Holdings Co., Ltd. (STP.NYSE) recently laid off 800 workers or 10 percent of its total employees and postponed its previous plan on recruiting 2,000 people, said Shi Zhengrong, chairman and CEO. SunTech delayed plan to expand production capacity to 1.5 GW in 2009, which requires 2,000 more employees. Plants in Wuxi and other areas are in normal operation with more than 50% capacity running, compared with 85% prior to financial meltdown. SunTech has received more than 800 MW of orders in 2009 including 650 MW from Europe. 2008 overall orders of 500 MW. 47 Wali Memonhttp://www.tradingmarkets.com/.site/news/Stock%20News/2119252/
  • 48. SunTech Power Sales $1.9B 2008, 1.3B 2007 profitable Employees: 6784 STP:NYSE Wuxi, China Worlds largest silicon cell maker Average conversion efficiency rates of their monocrystalline and multicrystalline silicon PV cells 16.4% and 14.9% respectively 10 May 2009 announces plan to build manufacturing plant in US, now shopping states for incentives 48 Wali Memonhttp://www.google.com/finance?q=NYSE:STP
  • 49. Kyocera Solar US Solar Division – Scottsdale, AZ Subsidiary of Kyocera, Kyoto, Japan (KYO:NYSE) $13B 2008 2008 broke ground for new plant in Tianjin City, China to expand there from 60 MW to 240 MW by 2011. First one in China ‘03 2012 total production capacity to be 650 MW from Japan, Mexico, the Czech Republic and Tianjin. Technology built on knowledge of fine ceramics, with metals, plastics, and electronics developed for copiers and printers 49 Wali Memonhttp://www.kyocerasolar.com/about/
  • 50. First Solar TEMPE, Ariz.--(BUSINESS WIRE)--Feb. 24, 2009-- First Solar, Inc. (Nasdaq: FSLR) today announced it reduced its manufacturing cost for solar modules in the fourth quarter to 98 cents per watt, breaking the $1 per watt price barrier. 2004 Began full commercial operation. Manufacturing capacity has grown to more than 500 MW in 2008 and will double in 2009 to more than 1 GW, the equivalent of an average-sized nuclear power plant. Escalating volumes accompanied by a rapid reduction in manufacturing costs. Manufacturing costs have declined from over $3 per watt to less than $1 per watt. Further significant cost reductions are possible. First Solar has industry’s first and only comprehensive pre-funded, end-of-life module collection and recycling program, recycling more than 90% of each collected module into new products. (A serious issue due to Cadmium- Telluride) High throughput, automated lines that integrate each production step, from CdTe semiconductor deposition to final assembly and test, in one continuous process. This advanced manufacturing process transforms a piece of glass into a complete solar module in less than 2.5 hours. 50 Wali Memonwww.firstsolar.com/
  • 51. First Solar Sales $1.2B 2008, $504M 2007, profitable Employees: 3524 Tempe, AZ FSLR:NASDAQ 51 Wali Memonfinance.google.com
  • 52. Motech Industries Modern Technology for a Sustainable World Founded 1981, Motech Solar started 1997 2003 Publicly trades 6244: Taiwan Exchange 2008 8th largest manufacturer 272 MW crystalline and multi-crystal silicon solar cells Plants in Tianan,Taiwan and Kunshan, China 2008 Sales $691M, profitable 1,331 employees 52 Wali Memonwww.motech.com.tw
  • 53. Shell dumps wind, solar and hydro power in favor of biofuels Shell will no longer invest in renewable technologies such as wind, solar and hydro power because they are not economic, the Anglo-Dutch oil company said today. 17 Mar 09 Sold US operations to SolarWorld - Germany 53 Wali Memonhttp://www.guardian.co.uk/business/2009/mar/17/royaldutchshell-energy
  • 54. SolarWorld AG SWV: Frankfurt exchange 1,825 employees Bonn, Germany with production in Freiborg and Sweden 2006 acquired assets from Shell Solar which had been largest US solar products maker (fka Arco Solar and Siemens Solar) Camarillo, CA and Vancouver, WA 2007 acquired Komatsu silicon wafer production facility Hillsboro, OR Single and multi-crystalline silicon cells 54 Wali Memonhttp://www.google.com/finance?q=FRA:SWV
  • 55. Sun Power Founded 1985, purchased by Cypress Semiconductor in 2004, spun out in 2008. SPWRA and SPWRB NASDAQ HQs in San Jose and Geneva, Switzerland 12 polysilicon solar cell line in Philippines with capacity 314 MW/yr Expansion plan for 1 GW capacity by 2010 High efficiency cells: 21-23% PG&E plans 250 MW facility in CA by 2012 FPL DeSoto Cty 35 MW facility due to open 2009 Nellis 14 MW facility on line Sales: $1.4B for 2008, $775M for 2007 profitable 55Employees: 5,400 Wali Memonhttp://us.sunpowercorp.com/utility/
  • 56. SunPower Solar Cell 56 Wali Memonhttp://us.sunpowercorp.com/utility/why-sunpower/best-technology/
  • 57. Energy Conversion Devices / United Solar Ovonics ENER:NASDAQ Rochester Hills, MI Amorphous silicon thin film process on stainless steel Over 20 years, manufacturing capacity increased from 500 KW to 25 MW/yr Now 3 miles/day Sales $255M for 2008, $114M for 2007, slight profit 2008 57 Wali Memon Employees: 1090http://www.uni-solar.com
  • 58. Ovonics Roll-roll Process 58 Wali Memonhttp://www.uni-solar.com/uploadedFiles/Uni-SolarTechnologyandManufacturingProcessAppendix.pdf
  • 59. Silikin Since 2001, SILIKEN has obtained a significant share on the Spanish PV market and has installed more than 160 MW of solar PV energy, = 240 GWh, the electricity consumption of more than 63,595 homes. Number of employees: Currently 700 people. Valencia, Tenerife and Albacete, Spain and San Diego, CA Sales: €152 million ($207 million) in 2007. Peak power manufactured: has become one of the main manufacturers of PV modules, supplying 92 MW to the market in ‘08. 59 Wali Memonhttp://www.siliken.com/quienes/historia?languageId=1
  • 60. Some Questions Will ‘peak minerals’ (rising cost due to limits in availability) limit growth of thin film and third generation solar cells? Will demand growth in China and India limit growth in US? How about the impact of other national / regional subsidies? How will financial meltdown impact solar cell business? What competing technologies would upset the solar industry? How will cost and efficiency of 2nd and 3rd generation solar cells impact the businesses built on 1st generation technology?60 Wali Memon

×