Dln26

1,609
-1

Published on

Published in: Education
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,609
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
142
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Dln26

  1. 1. Advanced Controls Development Engineering DRY LOW NOX 2.6 Controls Overview John Cole DLN Controls Development Engineering March 1996 © COPYRIGHT 1995 GENERAL ELECTRIC COMPANY PROPRIETARY INFORMATION - THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION OF GENERAL ELECTRIC COMPANY AND MAY NOT BE USED OR DISCLOSED TO OTHERS, EXCEPT WITH THE WRITTEN PERMISSION OF GENERAL ELECTRIC COMPANY
  2. 2. DLN 2.6 Design Intent Higher Firing Temperature Machines ~ 7Fa, 9EC, G, H Evolution of DLN-2 ~ Goal of reaching 9ppm NOx Single Burning Zone, total premix combustor What are we trying to control?... and how... Unit load and fuel split via gas fuel staging ~ four independent gas fuel passages  Techniques: Cascaded Flow & Load Control control valves positioned based upon flow characteristics & critical pressure drop across contol valves to achieve desired flow split & load control combustion reference temperature TTRF1 (model of T4) flow scheduling based upon TTRF1
  3. 3. q q q q q pm3 q pm3 q pm2 pm1 q pm2 (15 pegs) q q PM2 Q q pm3 q q q q PM1 (1 nozzle) (2 nozzles) located at crossfire tubes PM3 (3 nozzles) 6 Premix Burners - 5 radial burners (PM2 & PM3) are identical in design and effective area. The single center burner (PM1) is physically smaller, however the fuel nozzle effective area is identical to the outer five nozzles. Quaternary Pegs are located circumferentially around the forward combustion casing distributing fuel through eight holes per peg. DLN2.6 Fuel nozzle arrangement e Proprietary Information john cole 1996
  4. 4. DLN-2.6 GAS FUEL SYSTEM GCV3 SRV PM3 PM2 GCV4 Q SINGLE PM1 GCV2 GAS SKID GCV1 BURNING ZONE 6 BURNERS TURBINE COMPARTMENT PM3 - 3 NOZ. PRE-MIX ONLY SRV SPEED/RATIO VALVE GCV1 GAS CONTROL PM1 PM2 - 2 NOZ. PRE-MIX ONLY GCV2 GAS CONTROL PM2 PM1 - 1 NOZ. PRE-MIX ONLY GCV3 GAS CONTROL PM3 GCV4 GAS CONTROL Quaternary Q - QUAT MANIFOLD, CASING, PRE-MIX ONLY e Proprietary Information john cole 1996
  5. 5. DLN 2.6 Gas Fuel System 20VG-1 FH8-1 CONTROL OIL 96GC-1,-2 CONTROL OIL TRIP OIL 90SR-1 VH5-1 FH7-1 PC VGC-1 65GC-1 VH5-2 PM 1 GAS MAN. FH8-2 96SR-1,-2 MG1-1 96GC-3,-4 MG2-1 96FF-1,-2,-3 FT-GI-1,-2,-3 FM TRIP OIL VGC-2 FM MG4-1 96FG-5A 96FF-5A 65GC-2 VH5-3 PT Y-STRAINER FH8-3 VGC-3 65GC-3 VH5-4 96FG-1 FM TUNING VALVE TE MG1-2 RT-FG1 PM 2 GAS MAN. 96GC-5,-6 VSR-1 TE MG4-2 96FG-5B 96FF-5B RT-FG2 MG1-3 PM 3 GAS MAN. 96GC-7,-8 TUNING VALVE FH8-4 96FG-2A 96FG-2B PT FM PT VGC-4 96FG-2C 63FG-2,-3 e Proprietary Information 65GC-4 VH5-5 RT-FG3 PT PS MG1-4 TE MG4-3 96FG-5C 96FF-5C MG4-4 96FG-5D FM 96FF-5D GAS PURGE OIL FUEL W/ STEAM INJECTION ONLY QUAT GAS MAN. J. Conchieri TE RT-FG4 10/12/95 Reference Only
  6. 6. P2 pressure tap in nonturbulent flow field GCV3 GCV2 GCV4 SRV GCV1 GCV3 - (PM3) 3.0” Fisher EAB angle body control valve 1.125” stroke, linear trim, 300 lb flange GCV2 - (PM2) 3.0” Fisher EAB angle body control valve 1.125” stroke, linear trim, 300 lb flange GCV4 - (Quat) 2.0” Fisher EAB angle body control valve 0.750” stroke, linear trim, 300 lb flange GCV1 - (PM1) 3.0” Fisher EAB angle body control valve 1.125” stroke, linear trim, 300 lb flange Gas Control Valves ~Control unit load and flow split ~Independent 2-way fisher EAB design ~Hydraulically actuated, spring return closed ~3 coil servo controlled ~Redundant LVDT position feedback ~Trip Oil activated pilot required for actuation ~Class IV shutoff clasification per ANSI B16.104/FCI 70-2 e Proprietary Information john cole 1996
  7. 7. GCV1 SRV GCV4 GCV2 GCV1 GCV4 SRV DLN 2.6 Gas Valve Skid Public Service Company of Colorado Ft. St. Vrain Station GCV2 GCV3 (not shown) GCV3 GCV2 GCV4 SRV GCV1
  8. 8. DLN-2.6 Hardware Spark Plugs retracting unique to DLN 2.6 Flame Detection Standard UV detectors Four per unit not unique to DLN 2.6 CPD Measurement Triple redundant CPD transducers Flow Split Definition Total Flow = (PM3/(PM2+PM3))/(PM2/(PM2+PM3)) + PM1/(PM1+PM2+PM3) + Q/Total example base load fuel split: 60/40 +16.667 + 10 PM3 flow = 60 % of PM2+PM3 flow (45% of total flow) PM2 flow = 40% of PM2+PM3 scheduled flow (30% of total flow) PM1 flow = 16.667% of PM1+PM2+PM3 scheduled flow (15% of total flow) Q flow = 10% of total fuel flow
  9. 9. DLN-2.6 Gas Fuel System Flow Split Scheduling Fuel Split Definition Worksheet Mode 5Q FXKPMMAX = Mode 3 100% PM2+PM3+Q Schedule 1 PM1+PM2 FXKQTF_n 2140>T4>2050 FXKQTS_n FXKPM1F_n FXKPM1S_n n=1-4 1500 25 1550 25 2050 55 2150 55 FXKTS1 1615 FXKTS1DB -60 60 55 50 45 40 35 30 25 20 1500 2120 1600 1700 1800 TTRF1 1900 2000 2100 FXKPM1S_n n=5-8 1800 30 1900 30 2100 40 2150 10 2100 2200 2300 PM1+PM2+PM3+Q Schedule 2 T4>2140 FXKQTS_n Quat Schedule #2 n=5-8 2100 10 2450 35 15 2330 40 15 2280 45 40 Mode 6Q FXKQTF_n 50 PM1/(PM1+PM2+PM3) FXKPM1F_n 15 20 PM1 Schedule #2 PM1+PM3 15 TTRF1 PM1+PM3 Schedule 2 15 5 2000 215 Mode 4 12.5 2180 PM1 Schedule #1 20 12.5 2350 PM1+PM2 PM1/(PM1+PM2+PM3) Schedule 1 Quat Schedule #1 n=1-4 2000 % Quat DLN 2.6 Split Scheduling 15 10 % Quat e Mode 1 PM1 only 10 5 2100 30 25 1800 1850 1900 1950 2000 2050 2100 2150 FXKTS4 FXKTS4DB 2220 -50 2150 2200 2250 2300 2350 2400 2450 TTRF1 TTRF1 2000 -60 Schedule 1 FXKPM1F_n PM2+PM3 FXKPM3F_n FXKPM3S_n 64 2180 64 2230 64 2350 64 FXKTS3 FXKTS1DB 2170 -60 11 2450 11 10 65 60 5 0 2100 2150 2200 2250 55 50 2000 2300 2350 2400 2450 TTRF1 2100 2200 2300 TTRF1 Schedule 2 FXKPM3F_n PM1+PM2+PM3+Q FXKPM3S_n 2100 64 2200 64 2300 64 2400 64 Flow Split Definition Total Flow = (PM3/(PM2+PM3))/(PM2/(PM2+PM3)) + PM1/(PM1+PM2+PM3) + Q/Total example base load fuel split: 60/40 +16.667 + 10 PM3 flow = 60 % of PM2+PM3 flow (45% of total flow) PM2 flow = 40% of PM2+PM3 scheduled flow (30% of total flow) PM1 flow = 16.667% of PM1+PM2+PM3 scheduled flow (15% of total flow) Q flow = 10% of total fuel flow MODE 1, MODE 2, MODE 3, MODE 4, MODE 5, PM1 Schedule #3 20 15 5 2330 70 n=1-4 2000 2250 PM3/2 Schedule #1 PM2+PM3 n=9-12 5 is still for the single burner, PM1 nozzle. for two burners, PM2 nozzles. for one + two burners, or PM1 + PM2 nozzles for one + three burners, or PM1 + PM3 nozzles for two + three burners, or PM2 + PM3, nozzles n=5-8 PM3/2 Schedule #2 PM3/(PM2+PM3) Schedule 1 2100 PM3/(PM2+PM3) Mode 5 PM1+PM2+PM3+Q FXKPM1S_n PM1/(PM1+PM2+PM3) FXKTS2 FXKTS2DB 70 65 60 55 50 2100 2200 2300 TTRF1 2400
  10. 10. DLN-2.6 MODES OF FUEL STAGING  PM1 ~ MODE 1  PM2 ~ MODE 2  PM1+PM2 ~ MODE 3  PM1+PM3 ~ MODE 4  PM2+PM3 ~ MODE 5  PM2+PM3+Q ~ MODE 5Q  PM1+PM2+PM3+Q ~ MODE 6Q
  11. 11. START PM1+PM2 (firing and initial crossfire) PM2 (Complete crossfire to 95 % speed) PM1 (95 % speed to TTRF1 switch #1) PM1+PM2 (TTRF1 switch #1 to #2) PM1+PM3 (TTRF1 switch #2 to #3) PM2+PM3 (TTRF1 switch #3, brief duration) PM2+PM3+Q PM1+PM2+PM3+Q (TTRF1 switch #3 + a time delay to #4) (Above TTRF1 switch #4 to base load) DLN-2.6 TYPICAL LOADING SEQUENCE
  12. 12. Dwatt (MWatt) % valve stroke 140 DLN-2.6 typical valve action ~ auto load to base load   MODES= 120     Q DWATT 100 FSGPM1 80 FSGPM2 60 FSGPM3 FSGQ 40 20 0 23:42.7 26:35.5 29:28.3 32:21.1 35:13.9 38:06.7 time typical gas pressures ~ auto load to base gas pressure (PSI) 400 350 FPGAPM1 300 FPGAPM2 250 FPGAPM3 200 FPG2 150 DWATT 100 50 0 22:33.6 25:26.4 28:19.2 31:12.0 time 34:04.8 36:57.6 39:50.4
  13. 13. DLN-2.6 GAS FUEL SYSTEM GCV3 GCV1 GCV2 SRV PM3 PM1 + PM2 + PM3 + Q PM1 PM2 GCV4 Q GAS SKID TURBINE COMPARTMENT Typical Base load operation for the DLN2.6 Combustion System e Proprietary Information john cole 1996
  14. 14. DLN-2.6 TYPICAL UN-LOADING SEQUENCE STOP PM1+PM2+PM3+Q PM2+PM3+Q PM1+PM3 BREAKER OPEN EVENT PM1+PM2 PM1+PM2 PM1 UNIT FLAME-OUT (FSNL operating mode)
  15. 15. DLN-2.6 typical valve action ~ auto un-load from base load Dwatt (MWatt) % valve stroke 140 120 DWATT 100 FSGPM1 FSGPM2 80 FSGPM3 60 FSGQ 40 20 0 04:19.2 3/7/96 05:45.6 07:12.0 08:38.4 10:04.8 11:31.2 12:57.6 14:24.0 15:50.4 17:16.8 18:43.2 20:09.6 time typical gas pressures ~ auto un-load from base load pressure (psig) 280 230 CPD FPGAPM1 180 FPGAPM2 FPGAPM3 130 80 04:19.2 05:45.6 07:12.0 08:38.4 10:04.8 11:31.2 12:57.6 14:24.0 15:50.4 17:16.8 18:43.2 20:09.6 time ambient pressure = 12.39 psi pressure =350 psig p2
  16. 16. DLN-2.6 Operational Specifics all values are specific MS7FA at PSC, Ft. St. Vrain Optimal Base Load Emissions : 8 ppm NOx 7 ppm CO @15% O2 0 ppm unburned hydrocarbons Dynamics : 1/2 psi pp Loading times : Normal loading : Fast loading : Start Command to FSNL : Start Command to Base load : Start Command to FSNL : Start Command to Base load : Load transients during mode transitions : Maximum loading transient : +-2.99 % rated load 11:18 min 24:26 min 06:29 min 10:53 min
  17. 17. DLN2.6 Control Software Combustion Reference Calculation TTRF1 TTRF1 comparators Quat Flow Split Scheduling Q Output Enable Rate ctrl Unit Load Control PM1 Flow Split Scheduling PM1 Output Enable FSRQT_FR FSRQT X - FSR2 Rate ctrl Q valve flow & load scaling Q prefill Enable Quat servo output GCV4 + FSRPM1_FR X FSRPM FSRPM1 FSRPM PM1 prefill Enable PM1 valve flow & load scaling PM1 servo output GCV1 - + PM3 Flow Split Scheduling PM3 Output Enable Rate ctrl FSRPM3_FR X FSRPM2_3 FSRPM2_3 FSRPM3 - + PM2 Flow Split Scheduling PM2 Output Enable FSRPM2_FR Rate ctrl flow control e Proprietary Information PM3 prefill Enable PM3 valve flow & load scaling PM3 servo output GCV3 FSRPM2_R X FSRPM2 PM2 prefill Enable PM2 valve flow & load scaling PM2 servo output GCV2 flow and load control john cole 1996
  18. 18. TTRF1 ALIP L83PM1E FXKQTF2_1 FSRQTS2 4 FXKQTS2_1 FSRQTS1 TTRF1 ALIP X FSRQTA FSRQTB RATE CTRL FSRQTC MAX QXKMAX QXKMIN FXKQTF1_1 4 FXKQTS1_1 QXKMIN L83QTE 1.0 FSRQT_PCT QXKNR1 QXKNR2 L83QTFZ FSRQT_FR RATE FSRMAX QXKMIN L52GXZ FXKQTSCB L83TVON FQKCG FSRQT_FR X FSRQT FSRQT_PF X FSRQT_T ALIP FSRQT_S FXKQTCG0 FSR2 FSKQTPF L83QTPF e Proprietary Information FXKSHUT 11 FXKQTST0 L3GCVQE FSRGQOUT SERVO OUTPUT GCV4 FSGQ = position feedback john cole 1996
  19. 19. TTRF1 L83PM2E ALIP FXKPM1F3_1 L83PM2E L83PM3E L83PM1E L83PM3E 4 FXKPM1S3_1 FSRPM1S3 TTRF1 ALIP FXKPM1F2_1 FSRPM1S2 4 FXKPM1S2_1 ZERO FSRPM1S1 TTRF1 ALIP A X B C D E MAX FXKPM1MAX ZERO FXKPM1F1_1 FXKPMMAX (100%) 4 FXKPM1S1_1 FXKPM1NR1 FXKPM1NR2 L83PM1FZ FXKPM1F (30%) 1.0 L83PM2E FSRPM1_PCT FSRPM1_FR RATE FSRMAX FSRPM1F L52GXZ L2TVXP FXKPM1SCB L83TVON FSRPM1F RATE CTRL L83PM3E FQKCG FSRPM1_FR FSRPM1 X FSRPM FSRQT FSRPM1_PF + + ZERO FSKPM1PF + FSR2 L83PM1PF FSRPM1PF FSRPM1PFa V PM1PFTC cmp FSRPM1PFa a a>b b t FSRPM1_T ALIP FSRPM1_S FXKSHUT FXKPM1CG0 FSRG1OUT SERVO OUTPUT L3GCV1E 11 FXKPM1ST0 ITC V 1+ts GCV1 FSGPM1 = position feedback reset FSRPM1PFd X Z -1 e Proprietary Information john cole 1996
  20. 20. L83PM2E L83PM1E TTRF1 L83QTE ALIP FXKPM3F2_1 FSRPM3S2 4 FXKPM3S2_1 FSRPM3S1 TTRF1 ALIP CC FXKPM3F1_1 X A B FSRPM3C FSRPM3D MAX FXKPM3MAX ZERO FXKPMMAX (100%) 4 FXKPM3S1_1 RATE CTRL ZERO L83PM3E 1.0 FSRPM3_PCT FXKPM3NR1 FXKPM3NR2 L83PM3FZ FSRPM3_FR RATE FSRMAX ZERO L52GXZ FXKPM3SCB L83TVON FQKCG FSRPM3_FR FSRPM3 X FSRPM2_3 FSRPM1 FSRPM3_PF + + ZERO FSKPM3PF + FSRPM L83PM3PF FSRPM3PFa V PM3PFTC cmp FSRPM3PFa a a>b b t X FSRPM3_T FXKSHUT FXKPM3CG0 FSRPM3PF FSRG3OUT SERVO OUTPUT L3GCV3E 11 FXKPM3ST0 ITC V 1+ts GCV3 FSGPM3 = position feedback reset FSRPM3PFd FSRPM3_S ALIP Z -1 e Proprietary Information john cole 1996
  21. 21. L83PM2E RATE CTRL FSRPM2A ZERO MAX FXKPM2MAX ZERO FXKPMMAX (100%) FSRPM2_PCT FXKPM2NR1 FXKPM2NR2 L83PM2FZ FSRPM2 FSRPM2_FR X RATE FSRMAX FSRPM2A L52GXZ FSRPM2_R FSRPM3 + FSRPM2_3 FQKCG FSRPM2 FSRPM2_PF + + ZERO FSKPM2PF FSRPM2PFa V PM2PFTC cmp FSRPM2PFa a a>b b t FSRPM2PF ITC X FSRPM2_T ALIP FSRPM2_S FXKPM2CG FXKSHUT 11 FXKPM2ST0 FSRG2OUT SERVO OUTPUT L3GCV2E GCV2 V 1+ts reset FSRPM2PFd FSGPM2 = position feedback Z -1 L83PM2PF e Proprietary Information john cole 1996
  22. 22. DLN2.6 Controls Standards  UCRT  T4 Comparators Combustion Reference Calculation TTRF1 flow control  flow and load control TTRF1 comparators Quat Flow Split Scheduling Q Output Enable      Prefills Rate ctrl FSRQT_FR X FSRQT Q prefill - FSR2 DLN 2.6 Overview / Description DLN 2.6 Hardware DLN 2.6 Timers and Counters DLN 2.6 Loading / Start permissives & trips  Valve Scaling ~ Servo Output Q valve flow & load scaling  GCV Fault logic Quat servo output GCV4 + PM1 Flow Split Scheduling PM1 Output Enable Rate ctrl FSRPM1_FR X FSRPM FSRPM1 FSRPM PM1 prefill PM1 valve flow & load scaling PM1 servo output GCV1 - + PM3 Flow Split Scheduling PM3 Output Enable Rate ctrl FSRPM3_FR X FSRPM2_3 FSRPM2_3 FSRPM3 - + PM2 Flow Split Scheduling  Flow Scheduling e Proprietary Information PM2 Output Enable Rate ctrl FSRPM2_FR  Flow Control Reference  Flow Control Logic PM3 prefill PM3 valve flow & load scaling PM3 servo output GCV3 FSRPM2_R X FSRPM2 PM2 prefill PM2 valve flow & load scaling PM2 servo output GCV2  Rate Control john cole 1996

×