Uploaded on

Presentation about semantic search technologies in a search application

Presentation about semantic search technologies in a search application

More in: Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
996
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
0
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide
  • By adding metadata, we can search for “raid” and get a pointer to this video.
  • But in a video this is not enough. What is depicted within video changes throughout time. The first minute might contain the actual raid on a shop, the next 5 mins might contain shots from the investigation and so on. So we need to timebox the descriptions, which we call time-coded metadata.
  • But in a video this is not enough. What is depicted within video changes throughout time. The first minute might contain the actual raid on a shop, the next 5 mins might contain shots from the investigation and so on. So we need to timebox the descriptions, which we call time-coded metadata.

Transcript

  • 1. Slimmer zoeken in media dankzij Linked Open Data
    Future Internet Technologies Workshop
    23/03/2011
    Vrt-medialab
    1
    Vrt-Medialab
  • 2. Vrt-Medialab
    2
    MediaLoep
    • Introducing media search
    • 3. The MediaLoep project
    • 4. Reusing production documents
    • 5. Linking to the semantic web
  • Searching Media: Media ≠ Text!
    Not self-descriptive -> we need metadata
    Video / Audio are continuous media with a time-dimension
    Series: Flikken
    Keywords: violence, robbery
    Description: Robbery on shop. Attacker hits shop owner with gun.
    3
    VRT-medialab
  • 6. Not self-descriptive
    Video / Audio are continuous media with a time-dimension -> we prefer time-coded metadata
    Searching Media: Media ≠ Text!
    35’00”>36’33”
    Observation by police
    01’43”>04’20”
    Police agent looks worried
    00’00”>01’43”Robbery on shop
    4
  • 7. Searching Media: Media ≠ Text!
    35’00”>36’33”
    Observation by police
    5
  • 8. Searching the media archive
    Basis
    6
    Vrt-Medialab
  • 9. Searching the media archive
    Ardome
    7
    Vrt-Medialab
  • 10. Not enough detailed annotations available
    “X spits on the ground after Y makes a goal”
    The entire dialogue so we can search for quotes
    Labels, locations, links, maps, photographs, …
    as the creation of these annotations is very time consuming.
    Vrt-Medialab
    8
    Search is a problem
  • 11. Vrt-Medialab
    9
    MediaLoep
    • Introducing media search
    • 12. The MediaLoep project
    • 13. Reusing production documents
    • 14. Linking to the semantic web
  • Gather existing information
    In-house (subtitles, news preparation, EPG, …)
    Semantic web (DBpedia, Geonames, IMDB, …)
    Combine, Link & Index this information
    Use it for search
    Vrt-Medialab
    10
    MediaLoep
  • 15.
  • 16. Vrt-Medialab
    12
    MediaLoep
    • Introducing media search
    • 17. The MediaLoep project
    • 18. Reusing production documents
    • 19. Linking to the semantic web
  • News Rundown with auto-cue texts, overlay labels, …
    EPG data contains a summary of the programme, the broadcast dates, …
    A drama script contains dialogues and actions, …
    Subtitles ~ transcript of spoken text
    Promotional Images can be linked
    The information is out there!
    13
    Vrt-Medialab
  • 20. Vrt-Medialab
    14
    An Archived News Clip
    Manual Annotations
    keywords
    textual description
    other fields
  • 21. Vrt-Medialab
    15
    An Archived News Clip
    Information added by the news preparation:
    overlay captions
    autocue text
    links to other items inthis news broadcast
  • 22. Vrt-Medialab
    16
    An Archived News Clip
    Information added by the subtitles:
    time-coded transcriptof the dialogue
  • 23. Vrt-Medialab
    17
    Subtitles are used as a transcript
  • 24. Vrt-Medialab
    18
    An example MediaLoep result
  • 25. Vrt-Medialab
    19
    Linking to Promotional Images
  • 26. Vrt-Medialab
    20
    MediaLoep
    • Introducing media search
    • 27. The MediaLoep project
    • 28. Reusing production documents
    • 29. Linking to the semantic web
  • Vrt-Medialab
    21
    The Linked Open Data Cloud
    Public knowledge bases provide information about resources using ‘triples’.
    country
    Geneva
    Switzerland
    area
    15.86 km2
  • 30. Vrt-Medialab
    22
    The Linked Open Data Cloud
    Linksto the same resource in other knowledge bases can be created.
    country
    Geneva
    Switzerland
    sameAs
    area
    15.86 km2
    Geneva
    latitude
    46° 12' 0" N
    GeoNames
  • 31. Vrt-Medialab
    23
    The Linked Open Data Cloud
    A network of linked knowledge is created.
  • 32. Vrt-Medialab
    24
    The Linked Open Data Cloud
    We can leverage this knowledge by linking our metadata to the Linked Open Data Cloud.
    MediaLoep
  • 33. Archivistsadd thesaurus keywords to clips
    Bylinking these keywords to the LOD cloud, we canmake the search system smarter
    Vrt-Medialab
    25
    Enhancing the thesaurus
    Gent
    Devolder, Stijn
    Europe

    Gent -> coordinateson a map?
    Devolder, Stijn -> a picture?

  • 34. Example “Gent”
    label @EN
    “Ghent”
    Ghent
    label @NL
    “Gent”
    sameAs
    2797656
    longitude
    E 3° 43' 0''
    latitude
    N 51° 3' 0''
    GeoNames
    population
    231493
    Vrt-Medialab
    26
  • 35. Example “Devolder, Stijn”
    Kortrijk
    Stijn_Devolder
    birthPlace
    label @NL
    “Kortrijk”
    label @NL
    “StijnDevolder”
    a
    Person, Athlete, Cyclist, …
    depiction
    abstract
    Stijn Devolder is een Belgische wielrenner. Devolder begon zijn wielercarrière bij de KortrijkseGroeninge Spurters. Na een stage bij de Mapei-wielerploeg, belandde…
  • 36. Vrt-Medialab
    28
    How we linked automatically
    Boonen, Tom
  • 37. Vrt-Medialab
    29
    How we linked automatically
    Boonen, Tom appears often together with “Wielrennen” & “Cancellara, Fabian”
  • 38. Information pop-ups
    Visual search result summaries
    Structured filters
    Smart suggestions
    Multilingual search
    Vrt-Medialab
    30
    Features
  • 39. Vrt-Medialab
    31
    Information Pop-ups
  • 40. Previously: limited structure (exception: locations)
    Now: each keyword has several types, which can be used to create smart filters:Concept > Person > Athlete > Cyclist
    Vrt-Medialab
    32
    Structured Thesaurus
  • 41. Vrt-Medialab
    33
    Visual Search Result Summaries
  • 42. Vrt-Medialab
    34
    Smart Suggestions
    yvesLeterme
    opvolger
    successor
    -> Ga op zoek naar triples met resource label “Yves Leterme” en property label “successor”
  • 43. Vrt-Medialab
    35
    Smart Suggestions
    label @NL
    “Yves Leterme”
    Yves_Leterme
    successor

  • 44. Multilingual Search
    label @EN
    “Antwerp”
    Antwerp
    label @NL
    “Antwerpen”
    label @FR
    “Anvers”
  • 45. Vrt-Medialab
    37
    Multilingual Search
  • 46. Material in the demo
    All video material produced in 2010
    Promotional images 2010
    Metadata based on fixed dumps of subtitles, news production system, EPG, …
    Vrt-Medialab
    38
    MediaLoep Demo
  • 47. Vrt-Medialab
    39
    MediaLoep Demo
  • 48. http://medialoep.vrtmedialab.be
    karel.braeckman@vrtmedialab.be
    Vrt-Medialab
    40
    Vragen?