Industrial digestion & MBT-AD Integration with Gas Engines Renewable Energy Association Bioenergy Conference 8 th  October...
Graveyard slot!
Agenda <ul><li>Clarke Energy introduction </li></ul><ul><li>MBT-AD & industrial digestion </li></ul><ul><li>CHP basics </l...
Locations 9 Territories Globally
Timeline
Clarke Energy MW Installed Bioenergy
MBT-AD and industrial digestion comparison Landfill, RDF To land Digestate utilisation Intensive Light Mechanical pre-trea...
Food Waste & Co-Fermentation Source: Haase Midlum, Sibstin  plants
MBT – AD Source: Haase Goettingen MBT facility
Gas contaminant comparison *Volatile organic silicon compounds Possible Yes Mixed waste  No Yes Food No Yes Maize Yes Yes ...
H 2 S Reduction – Air dosing <ul><li>~1% oxygen dosing </li></ul><ul><li>Biological reduction </li></ul><ul><li>Air alloca...
H 2 S Reduction - Air dosing Biological desulphurisation – the H 2 S will be converted into sulphur Source: MT Energie
H 2 S Reduction – Scrubber tower <ul><li>Biological reduction </li></ul><ul><li>Gas saturated with water </li></ul><ul><li...
H2S Removal – FeCl dosing <ul><li>Iron chloride binds to H 2 S  </li></ul><ul><li>Fast action </li></ul><ul><li>Adjustable...
GE Jenbacher gas module Heat recovery -heat exchanger Engine Engine control panel Generator
Energy balance HE 1 -  Mixture intercooler HE 2 -  Oil exchange heater HE 3 -  Engine jacket water heat exchanger HE 4 -  ...
Typical engine integration
Heat limits & hazards Acid dew point 220 50 Exhaust gas Condensation 80 55 Intercooler Viscosity 90 70 Lube oil Overheatin...
Engine integration Evaluate Evaluate Residential/ Industrial heating Heat sink Yes No Reduce weight Increase CV Digestate ...
Engine integration Exhaust heat Jacket water, oil heat & intercooler ~400 º C 90 º C Drier 2-300 º C Air Heat exchanger Pa...
Pasteurisation unit integration   Pasteurisation Inflow from buffer tank Outflow to digesters Heating water from CHP Fill ...
Biogas utilisation – GHG Savings  Source: Optimierungen fur einen nachhaltigen ausbau der biogaserzeugung und nutzung in D...
Summary <ul><li>Main biogas contaminants – H2S & VOSCs </li></ul><ul><li>H2S treatment – biological or chemical </li></ul>...
Thank you <ul><li>Alex Marshall </li></ul><ul><li>Clarke Energy </li></ul><ul><li>+44 151 546 4446 </li></ul><ul><li>[emai...
Upcoming SlideShare
Loading in …5
×

Industrial Digestion - Integration with Engines

611 views

Published on

Presentation delivered at Renewable Energy Association Bioenergy Conference - 8th October 2009

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
611
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Industrial Digestion - Integration with Engines

  1. 1. Industrial digestion & MBT-AD Integration with Gas Engines Renewable Energy Association Bioenergy Conference 8 th October 2009 Alex Marshall
  2. 2. Graveyard slot!
  3. 3. Agenda <ul><li>Clarke Energy introduction </li></ul><ul><li>MBT-AD & industrial digestion </li></ul><ul><li>CHP basics </li></ul><ul><li>Gas characteristics </li></ul><ul><li>Gas treatment </li></ul><ul><li>Physical integration </li></ul><ul><li>Biogas CHP GHP savings </li></ul><ul><li>Summary </li></ul>
  4. 4. Locations 9 Territories Globally
  5. 5. Timeline
  6. 6. Clarke Energy MW Installed Bioenergy
  7. 7. MBT-AD and industrial digestion comparison Landfill, RDF To land Digestate utilisation Intensive Light Mechanical pre-treatment Highly varied Packaging, sand Contaminants Mixed wastes Food waste, biowaste, slurries, energy crops Input Gate fee, energy, sale of recyclables Gate fee, energy Revenue MBT-AD Industrial AD Factor
  8. 8. Food Waste & Co-Fermentation Source: Haase Midlum, Sibstin plants
  9. 9. MBT – AD Source: Haase Goettingen MBT facility
  10. 10. Gas contaminant comparison *Volatile organic silicon compounds Possible Yes Mixed waste No Yes Food No Yes Maize Yes Yes Sewage Yes Yes Landfill VOSCs* Hydrogen sulphide Biogas type
  11. 11. H 2 S Reduction – Air dosing <ul><li>~1% oxygen dosing </li></ul><ul><li>Biological reduction </li></ul><ul><li>Air allocation important </li></ul><ul><li>Additional air increases corrosion </li></ul><ul><li>Fluctuating efficiency </li></ul><ul><li>Lower capital investment </li></ul>
  12. 12. H 2 S Reduction - Air dosing Biological desulphurisation – the H 2 S will be converted into sulphur Source: MT Energie
  13. 13. H 2 S Reduction – Scrubber tower <ul><li>Biological reduction </li></ul><ul><li>Gas saturated with water </li></ul><ul><li>Additional air increases corrosion </li></ul><ul><li>Stable performance </li></ul><ul><li>Higher investment costs </li></ul>air water biogas
  14. 14. H2S Removal – FeCl dosing <ul><li>Iron chloride binds to H 2 S </li></ul><ul><li>Fast action </li></ul><ul><li>Adjustable to substrate </li></ul><ul><li>Industrial digestion </li></ul><ul><li>Moderate investment costs </li></ul>
  15. 15. GE Jenbacher gas module Heat recovery -heat exchanger Engine Engine control panel Generator
  16. 16. Energy balance HE 1 - Mixture intercooler HE 2 - Oil exchange heater HE 3 - Engine jacket water heat exchanger HE 4 - Exhaust gas heat exchanger
  17. 17. Typical engine integration
  18. 18. Heat limits & hazards Acid dew point 220 50 Exhaust gas Condensation 80 55 Intercooler Viscosity 90 70 Lube oil Overheating 95 57 Jacket water Danger Max. ( o C) Min. ( o C) Heat source
  19. 19. Engine integration Evaluate Evaluate Residential/ Industrial heating Heat sink Yes No Reduce weight Increase CV Digestate drying Evaluate Yes Pathogen kill Pasteurising Evaluate Yes Encourage microbial action Digester heating Exhaust gas Jacket water Purpose Heat use
  20. 20. Engine integration Exhaust heat Jacket water, oil heat & intercooler ~400 º C 90 º C Drier 2-300 º C Air Heat exchanger Pasteuriser External heat sink Digester District heating Industry
  21. 21. Pasteurisation unit integration Pasteurisation Inflow from buffer tank Outflow to digesters Heating water from CHP Fill 70 O C 1hr Purge
  22. 22. Biogas utilisation – GHG Savings Source: Optimierungen fur einen nachhaltigen ausbau der biogaserzeugung und nutzung in Deutschland (Ifeu et al . 2008)
  23. 23. Summary <ul><li>Main biogas contaminants – H2S & VOSCs </li></ul><ul><li>H2S treatment – biological or chemical </li></ul><ul><li>Heat utilised for: </li></ul><ul><ul><li>Digesters </li></ul></ul><ul><ul><li>Pasteurisation </li></ul></ul><ul><ul><li>Drying </li></ul></ul><ul><ul><li>External heating </li></ul></ul><ul><li>Biogas CHP – Significant GHG savings </li></ul>
  24. 24. Thank you <ul><li>Alex Marshall </li></ul><ul><li>Clarke Energy </li></ul><ul><li>+44 151 546 4446 </li></ul><ul><li>[email_address] </li></ul>

×