SlideShare a Scribd company logo
1 of 39
DielectricsDielectrics
Dielectrics are the materials having electric dipole moment permantly.Dielectrics are the materials having electric dipole moment permantly.
Dipole:Dipole: A dipole is an entity in which equal positive and negativeA dipole is an entity in which equal positive and negative
charges are separated by a small distance..charges are separated by a small distance..
DIPOLE moment (µele ):The product of magnitude of either of the
charges and separation distance b/w them is called Dipole moment.
µe = q . x  coul – m
All dielectrics are electrical insulators and they are mainly used to storeAll dielectrics are electrical insulators and they are mainly used to store
electrical energy.electrical energy.
Ex: Mica, glass, plastic, water & polar molecules…Ex: Mica, glass, plastic, water & polar molecules…
X
q -q
Introduction
+
Electric field
Dielectric atom
+
+
+
+
+
+
+
+
_
_
_
_
_
_
_
__
dipole
Dielectric ConstantDielectric Constant
Dielectric Constant is the ratio between theDielectric Constant is the ratio between the
permittivity of the medium to the permittivity ofpermittivity of the medium to the permittivity of
free space.free space.
The characteristics of a dielectric material areThe characteristics of a dielectric material are
determined by the dielectric constant and it has nodetermined by the dielectric constant and it has no
units.units.
0ε
ε
ε =r
Electric PolarizationElectric Polarization
The process of producing electric dipoles by an electric field isThe process of producing electric dipoles by an electric field is
called polarization in dielectrics.called polarization in dielectrics.
Polarizability:Polarizability:
The induced dipole moment per unit electric field is calledThe induced dipole moment per unit electric field is called
Polarizability.Polarizability.
The induced dipole moment is proportional to the intensity of theThe induced dipole moment is proportional to the intensity of the
electric field.electric field.
Is a Polarizability constantIs a Polarizability constant
constantlitypolarizabi→
=
∝
α
αµ
µ
E
E
Polarization vector:Polarization vector:
The dipole moment per unit volume of the dielectricThe dipole moment per unit volume of the dielectric
material is called polarization vector.material is called polarization vector.
V
xq
P
n
i
ii∑=
= 1
Electric flux Density (D):
Electric flux density is defined as charge per unit area and it has same
units of dielectric polarization.
Electric flux density D at a point in a free space or air in terms of Electric
field strength is
At the same point in a medium is given by
As the polarization measures the additional flux density arising from the
presence of material as compared to free space
(1)--ED 00 >= ε
(3)--PEDi.e, 0 >+= ε
(2)--ED >= ε
P.)1(
PE)-.((or)
PE)-(
PEE
0
00r
0
0
=−
=
=
+=
Er εε
εεε
εε
εε
Using equations 2 & 3 we get
Electric susceptibility:Electric susceptibility:
The polarization vector P is proportional to theThe polarization vector P is proportional to the
total electric flux density and direction of electrictotal electric flux density and direction of electric
field.field.
Therefore the polarization vector can be writtenTherefore the polarization vector can be written
1
)1(
0
0
0
0
−=
−
=
=
=
re
r
e
e
E
E
E
P
EP
εχ
ε
εε
ε
χ
χε
Various polarization processes:Various polarization processes:
When the specimen is placed inside a d.c.When the specimen is placed inside a d.c.
electric field, polarization is due to four typeselectric field, polarization is due to four types
of processes….of processes….
1.Electronic polarization1.Electronic polarization
2.Ionic polarization2.Ionic polarization
3.Orientation polarization3.Orientation polarization
4.Space charge polarization4.Space charge polarization
Electronic Polarization
When an EF is applied to an atom, +vely charged nucleus
displaces in the direction of field and ẽ could in opposite direction.
This kind of displacement will produce an electric dipole with in the
atom.
i.e, dipole moment is proportional to the magnitude of field strength
and is given by
E
E
e
e
e
or
αµ
µ
=
∞
where ‘αe’ is called electronic Polarizability constant
It increases with increase of volume of the atom.
This kind of polarization is mostly exhibited in Monatomic
gases.
10____ 2-40
mFe −×=α
HeHe NeNe ArAr KrKr XeXe
0.180.18 0.350.35 1.461.46 2.182.18 3.543.54
It occurs only at optical frequencies (1015
Hz)
It is independent of temperature.
Expression for Electronic Polarization
Consider a atom in an EF of intensity ‘E’ since the nucleus
(+Ze) and electron cloud (-ze) of the atom have opposite
charges and acted upon by Lorentz force (FL).
Subsequently nucleus moves in the direction of field and
electron cloud in opposite direction.
When electron cloud and nucleus get shifted from their normal
positions, an attractive force b/w them is created and the
seperation continuous until columbic force FC is balanced with
Lorentz force FL, Finally a new equilibriums state is
established.
fig(2) represents displacement of nucleus and electron
cloud and we assume that the –ve charge in the cloud
uniformly distributed over a sphere of radius R and the
spherical shape does not change for convenience.
+Ze
R
No field fig(1)
x
R
In the presence of field fig (2)
E
Let σ be the charge density of the sphere
sphere.in thechargetotaltherepresentsZe-
3
4 3
R
Ze
π
σ
−
=
( )
(1)-----
..
.
.
3
4
.q
isx''radiusofspherein thechargeve-theThus
3
3
3
3
4
3
3
4
3
e
x
R
ze
x
R
ze
x
−
=
−
⇒
⇒
π
π
πσ
( ) (2)-----
4
.
4
1.
.
4
1
FNow 3
0
22
3
3
2
0
2
0
c
R
xez
ze
R
xze
xx
qq pe
πεπεπε
−
=




 −
==
Force experienced by displaced nucleus in EF of Strength E
is FL = Eq = ZeE -----(3)
ee
cL
zex
R
zex
E
R
zex
R
xez
FF
ααπε
πε
πε
momentdipole
E
4
4
(4)-----ZeE
4
3
0
3
0
3
0
22
=
−
=
−
=
−
=
−
=

3
04 Re πεα =∴
Hence electronic Polaris ability is directly proportional to cube of the
radius of the atom.
Ionic polarizationIonic polarization
 The ionic polarization occurs, when atoms formThe ionic polarization occurs, when atoms form
molecules and it is mainly due to a relative displacementmolecules and it is mainly due to a relative displacement
of the atomic components of the molecule in theof the atomic components of the molecule in the
presence of an electric field.presence of an electric field.
 When a EF is applied to the molecule, the positive ionsWhen a EF is applied to the molecule, the positive ions
displaced by Xdisplaced by X11 to the negative side electric field andto the negative side electric field and
negative ions displaced by Xnegative ions displaced by X22 to the positive side of field.to the positive side of field.
 The resultant dipole momentThe resultant dipole moment µ = q ( Xµ = q ( X11 + X+ X22)..)..
Electric field
+
+
+
+
+
+
+
+
_
_
_
_
_
_
_
_
1x 2x
anioncat ion
Restoring force constant depend upon the mass of the ion and
natural frequency and is given by
[ ]Mm
w
eE
xx
wm
eE
x
xwmeEF
11
2
0
21
2
0
2
0
.
or
.
+=+∴
=
==
Where ‘M’ mass of anion and ‘m’ is mass of cat ion
[ ]
[ ]Mm
ionic
ionic
Mmionic
w
e
E
w
Ee
xx
11
2
0
2
11
2
0
2
21
or
)e(
+⇒=
+=+=∴
µ
α
µ
This polarization occurs at frequency 1013
Hz (IR).
It is a slower process compared to electronic polarization.
It is independent of temperature.
Orientational Polarization
It is also called dipolar or molecular polarization. The
molecules such as H2 , N2,O2,Cl2 ,CH4,CCl4 etc., does not carry
any dipole because centre of positive charge and centre of
negative charge coincides. On the other hand molecules like
CH3Cl, H2O,HCl, ethyl acetate ( polar molecules) carries
dipoles even in the absence of electric field.
How ever the net dipole moment is negligibly small since all
the molecular dipoles are oriented randomly when there is no
EF. In the presence of the electric field these all dipoles orient
them selves in the direction of field as a result the net dipole
moment becomes enormous.
 It occurs at a frequency 106
Hz to 1010
Hz.
 It is slow process compare to ionic
polarization.
 It greatly depends on temperature.
[ ] kTw
e
R
kT
EN
kT
EN
NP
ori
mMooriionicelec
orie
o
o
orie
orieo
3
4
3
..
3
..
.
2
11
2
0
2
3
2
2
µ
πεαααα
µ
α
α
µ
µ
+++=++=∴
=
=⇒=

Expression for orientation polarization
This is called Langevin – Debye equation for total Polaris ability in
dielectrics.
Internal fields or local fieldsInternal fields or local fields
Local field or internal field in a dielectric is theLocal field or internal field in a dielectric is the
space and time average of the electric fieldspace and time average of the electric field
intensity acting on a particular molecule in theintensity acting on a particular molecule in the
dielectric material.dielectric material.
Evaluation of internal fieldEvaluation of internal field
Consider a dielectric be placed between theConsider a dielectric be placed between the
plates of a parallel plate capacitor and let thereplates of a parallel plate capacitor and let there
be an imaginary spherical cavity around thebe an imaginary spherical cavity around the
atom A inside the dielectric.atom A inside the dielectric.
The internal field at the atom site ‘A’ can beThe internal field at the atom site ‘A’ can be
made up of four components Emade up of four components E11 ,E,E22, E, E33 & E& E44..
+ ++ ++ + + + + ++
_ _ _ _ _ _ _ __
E
Dielectric
material
Spherical
Cavity
A
__
_
__ ___
+ + + + + ++
+
+ +
+
+ +
+
+
_
_
__
_
__
_
Field EField E11::
EE11 is the field intensity at A due to the charge densityis the field intensity at A due to the charge density
on the plateson the plates
)1(..........
0
1
0
0
1
0
0
1
ε
ε
ε
ε
ε
P
EE
PE
E
PED
D
E
+=
+
=
+=
=
Field EField E22::
EE22 is the field intensity at A due to the chargeis the field intensity at A due to the charge
density induced on the two sides of the dielectric.density induced on the two sides of the dielectric.
)2.(..........
0
2
ε
P
E
−
=
Field EField E33::
EE33 is the field intensity at A due to the atomsis the field intensity at A due to the atoms
contained in the cavity, we are assuming a cubiccontained in the cavity, we are assuming a cubic
structure, so Estructure, so E33 = 0.= 0.
+ +
E
θ θd r
p q
R
dA
r
A
+
+
+
+ +
+
+
+
++
_
_
_
_
_
_
_
_ _
_
_
_
Field EField E44::
1.This is due to polarized charges on the surface of1.This is due to polarized charges on the surface of
the spherical cavity.the spherical cavity.
Where dA is Surface area betweenWhere dA is Surface area between θθ && θθ+d+dθθ……
θθπ
θθπ
π
drdA
rdrdA
qRpqdA
sin.2
.sin.2
..2
2
=
=
=
2.The total charge present on the surface area dA is…2.The total charge present on the surface area dA is…
dq = ( normal component of polarization ) X ( surfacedq = ( normal component of polarization ) X ( surface
area )area )
θθθπ
θ
dprdq
dApdq
.sin.cos2
cos
2
=
×=
3.The field due to this charge at A, denoted by dE3.The field due to this charge at A, denoted by dE44 is given byis given by
2
0
4
4
1
r
dq
dE
πε
=
The field inThe field in θθ = 0= 0 directiondirection 2
0
4
cos
4
1
r
dq
dE
θ
πε
=
θθθ
ε
θθθθπ
πε
d
P
dE
dpr
r
dE
.sin.cos
2
cos).sin.cos2(
4
1
2
0
4
2
2
0
4
=
=
4.Thus the total field E4.Thus the total field E44
due to the charges on thedue to the charges on the
surface of the entiresurface of the entire
cavity iscavity is
0
4
0
1
1
3
0
1
1
2
0
0
2
0
0
2
0
0
44
3
)
3
11
(
2
)
3
(
2
.
2
sincos..
.sin.cos
2
.sin.cos
2
ε
εε
ε
θθθ
θθθ
ε
θθθ
ε
π
π
π
P
E
PxP
dxx
P
ddxxlet
d
P
d
P
dEE
=
−−−
⇒
−
=
=
−=→=
=
=
=
−
−
∫
∫
∫
∫
The internal field or Lorentz field can be written asThe internal field or Lorentz field can be written as
o
i
ooo
i
i
p
EE
ppp
EE
EEEEE
ε
εεε
3
3
0)(
4321
+=
++−+=
+++=
Classius – Mosotti relation:Classius – Mosotti relation:
Consider a dielectric material having cubicConsider a dielectric material having cubic
structure , and assume ionic Polarizability &structure , and assume ionic Polarizability &
Orientational polarizability are zero..Orientational polarizability are zero..
0
0
3
.,
.,......
..
0
ε
αµα
µ
αα
P
EEwhere
EwhereENP
NPonpolarizati
i
ieie
i
+=
==
=
==
)1.........(..........
)
3
1(
)
3
1(
3
3
)
3
(
0
0
0
0
0
ε
α
α
α
ε
α
α
ε
α
ε
αα
ε
α
α
e
e
e
e
ee
ee
e
ie
N
EN
P
EN
N
P
EN
P
NP
P
NENP
P
ENP
ENP
−
=
=−
=−
+=
+=
=
relationMosottiClassius......
2
1
3
)
1
3
1(
1
3
)
1
3
1(
3
1
)1(3
1
)1(3
1
)1(3
1
)1(
)
3
1(
)2(&)1(eqfrom
)2...().........1(
on vectorpolarizatitheknown thatWe
0
0
0
00
00
00
0
0
n
0
→
+
−
=
−
+
=
−
+=
−
+=
−
+=
−
=−
−=
−
−=
r
re
r
e
r
e
r
ee
r
ee
r
ee
r
e
e
r
N
N
N
NN
E
ENN
E
ENN
E
N
EN
s
EP
ε
ε
ε
α
ε
ε
α
εε
α
εε
α
ε
α
εε
α
ε
α
εε
α
ε
α
εε
ε
α
α
εε
Ferro electric materials or Ferro electricityFerro electric materials or Ferro electricity
 Ferro electric crystals exhibit spontaneousFerro electric crystals exhibit spontaneous
polarization I.e. electric polarization with outpolarization I.e. electric polarization with out
electric field.electric field.
 Ferro electric crystals possess high dielectricFerro electric crystals possess high dielectric
constant.constant.
 each unit cell of a Ferro electric crystal carrieseach unit cell of a Ferro electric crystal carries
a reversible electric dipole moment.a reversible electric dipole moment.
Examples: Barium Titanate (BaTiOExamples: Barium Titanate (BaTiO33) , Sodium) , Sodium
nitrate (NaNOnitrate (NaNO33) ,Rochelle salt etc..) ,Rochelle salt etc..
Piezo- electricityPiezo- electricity
The process of creating electric polarization by mechanicalThe process of creating electric polarization by mechanical
stress is called as piezo electric effect.stress is called as piezo electric effect.
This process is used in conversion of mechanical energy intoThis process is used in conversion of mechanical energy into
electrical energy and also electrical energy into mechanicalelectrical energy and also electrical energy into mechanical
energy.energy.
According to inverse piezo electric effect, when an electricAccording to inverse piezo electric effect, when an electric
stress is applied, the material becomes strained. This strain isstress is applied, the material becomes strained. This strain is
directly proportional to the applied field.directly proportional to the applied field.
Examples: quartz crystal , Rochelle salt etc.,Examples: quartz crystal , Rochelle salt etc.,
Piezo electric materials or peizo electric semiconductors suchPiezo electric materials or peizo electric semiconductors such
as Gas, Zno and CdS are finding applications in ultrasonicas Gas, Zno and CdS are finding applications in ultrasonic
amplifiers.amplifiers.

More Related Content

What's hot

Dielectric properties -final-converted-1
Dielectric properties -final-converted-1Dielectric properties -final-converted-1
Dielectric properties -final-converted-1tathagatanaha3
 
Dielectric and Magnetic Properties of materials,Polarizability,Dielectic loss...
Dielectric and Magnetic Properties of materials,Polarizability,Dielectic loss...Dielectric and Magnetic Properties of materials,Polarizability,Dielectic loss...
Dielectric and Magnetic Properties of materials,Polarizability,Dielectic loss...A K Mishra
 
Langevin theory of Paramagnetism
Langevin theory of ParamagnetismLangevin theory of Paramagnetism
Langevin theory of ParamagnetismDr. HAROON
 
Ch.4, The Semiconductor in Equilibrium
Ch.4, The Semiconductor in Equilibrium Ch.4, The Semiconductor in Equilibrium
Ch.4, The Semiconductor in Equilibrium Mazin A. Al-alousi
 
nuclear shell model.pptx
nuclear shell model.pptxnuclear shell model.pptx
nuclear shell model.pptxHassan Yousaf
 
Magnetic susceptibility of magnetic materials
Magnetic susceptibility of magnetic materialsMagnetic susceptibility of magnetic materials
Magnetic susceptibility of magnetic materialssamiaalotaibi1412
 
Conductor semiconductor insulator
Conductor semiconductor insulatorConductor semiconductor insulator
Conductor semiconductor insulatorravikumar s
 
Dielectric Material and properties
Dielectric Material and propertiesDielectric Material and properties
Dielectric Material and propertiesMayank Pandey
 
Chapter3 introduction to the quantum theory of solids
Chapter3 introduction to the quantum theory of solidsChapter3 introduction to the quantum theory of solids
Chapter3 introduction to the quantum theory of solidsK. M.
 
nuclear physics,unit 6
nuclear physics,unit 6nuclear physics,unit 6
nuclear physics,unit 6Kumar
 
Dielectric materials
Dielectric materialsDielectric materials
Dielectric materialsRUSHIT PATEL
 
Brillouin zone and wigner seitz cell
Brillouin zone and wigner  seitz cellBrillouin zone and wigner  seitz cell
Brillouin zone and wigner seitz cellPeter Believe Jr
 

What's hot (20)

Dielectric properties -final-converted-1
Dielectric properties -final-converted-1Dielectric properties -final-converted-1
Dielectric properties -final-converted-1
 
Dielectric and Magnetic Properties of materials,Polarizability,Dielectic loss...
Dielectric and Magnetic Properties of materials,Polarizability,Dielectic loss...Dielectric and Magnetic Properties of materials,Polarizability,Dielectic loss...
Dielectric and Magnetic Properties of materials,Polarizability,Dielectic loss...
 
Langevin theory of Paramagnetism
Langevin theory of ParamagnetismLangevin theory of Paramagnetism
Langevin theory of Paramagnetism
 
Ch.4, The Semiconductor in Equilibrium
Ch.4, The Semiconductor in Equilibrium Ch.4, The Semiconductor in Equilibrium
Ch.4, The Semiconductor in Equilibrium
 
Density of states of bulk semiconductor
Density of states of bulk semiconductorDensity of states of bulk semiconductor
Density of states of bulk semiconductor
 
nuclear shell model.pptx
nuclear shell model.pptxnuclear shell model.pptx
nuclear shell model.pptx
 
Bonding in solids
Bonding in solidsBonding in solids
Bonding in solids
 
Magnetic susceptibility of magnetic materials
Magnetic susceptibility of magnetic materialsMagnetic susceptibility of magnetic materials
Magnetic susceptibility of magnetic materials
 
Conductor semiconductor insulator
Conductor semiconductor insulatorConductor semiconductor insulator
Conductor semiconductor insulator
 
Unit 3
Unit 3Unit 3
Unit 3
 
domain theroy
domain theroydomain theroy
domain theroy
 
Dielectric Material and properties
Dielectric Material and propertiesDielectric Material and properties
Dielectric Material and properties
 
Chapter3 introduction to the quantum theory of solids
Chapter3 introduction to the quantum theory of solidsChapter3 introduction to the quantum theory of solids
Chapter3 introduction to the quantum theory of solids
 
nuclear physics,unit 6
nuclear physics,unit 6nuclear physics,unit 6
nuclear physics,unit 6
 
Dielectric materials
Dielectric materialsDielectric materials
Dielectric materials
 
BCS THEORY NEW
BCS THEORY NEWBCS THEORY NEW
BCS THEORY NEW
 
Brillouin zone and wigner seitz cell
Brillouin zone and wigner  seitz cellBrillouin zone and wigner  seitz cell
Brillouin zone and wigner seitz cell
 
Dielectrics_1
Dielectrics_1Dielectrics_1
Dielectrics_1
 
Band theory of semiconductor
Band theory of semiconductorBand theory of semiconductor
Band theory of semiconductor
 
Semiconductor
SemiconductorSemiconductor
Semiconductor
 

Viewers also liked

Viewers also liked (7)

Electrical polarization mechanisms
Electrical polarization mechanismsElectrical polarization mechanisms
Electrical polarization mechanisms
 
Polarisation
PolarisationPolarisation
Polarisation
 
Ece5318 ch3
Ece5318 ch3Ece5318 ch3
Ece5318 ch3
 
Polarization
PolarizationPolarization
Polarization
 
POLARIZATION
POLARIZATIONPOLARIZATION
POLARIZATION
 
Polarization
PolarizationPolarization
Polarization
 
Polarization of Light and its Application (healthkura.com)
Polarization of Light and its Application (healthkura.com)Polarization of Light and its Application (healthkura.com)
Polarization of Light and its Application (healthkura.com)
 

Similar to Dielectrics

Electric field in material space 2nd 2
Electric field in material space 2nd 2Electric field in material space 2nd 2
Electric field in material space 2nd 2HIMANSHU DIWAKAR
 
DielectricsDielectricsDielectricsDielectricsDielectrics
DielectricsDielectricsDielectricsDielectricsDielectricsDielectricsDielectricsDielectricsDielectricsDielectrics
DielectricsDielectricsDielectricsDielectricsDielectricsmonishasarai25
 
EMWT_UNIT 1_DIELECTRICS.pptx
EMWT_UNIT 1_DIELECTRICS.pptxEMWT_UNIT 1_DIELECTRICS.pptx
EMWT_UNIT 1_DIELECTRICS.pptxssuserbdc8671
 
Dielectric properties[read only]
Dielectric properties[read only]Dielectric properties[read only]
Dielectric properties[read only]kveerabhadrarao1
 
B.tech sem i engineering physics u i chapter 2-dielectrics
B.tech sem i engineering physics u i chapter 2-dielectricsB.tech sem i engineering physics u i chapter 2-dielectrics
B.tech sem i engineering physics u i chapter 2-dielectricsRai University
 
Energy bands and electrical properties of metals new
Energy bands and electrical properties of metals newEnergy bands and electrical properties of metals new
Energy bands and electrical properties of metals newPraveen Vaidya
 
B.Tech sem I Engineering Physics U-I Chapter 2-Dielectrics
B.Tech sem I Engineering Physics U-I Chapter 2-DielectricsB.Tech sem I Engineering Physics U-I Chapter 2-Dielectrics
B.Tech sem I Engineering Physics U-I Chapter 2-DielectricsAbhi Hirpara
 
4661898.ppt
4661898.ppt4661898.ppt
4661898.pptkhoi0209
 
diel_lecture_1.ppt
diel_lecture_1.pptdiel_lecture_1.ppt
diel_lecture_1.pptRajesh748812
 
Lecture2 basic dielectric tm
Lecture2 basic dielectric tmLecture2 basic dielectric tm
Lecture2 basic dielectric tmRanjeet kumar
 
7. CAPACITOR & DIELECTRICS.pptx follow this
7. CAPACITOR & DIELECTRICS.pptx follow this7. CAPACITOR & DIELECTRICS.pptx follow this
7. CAPACITOR & DIELECTRICS.pptx follow thisashokranjitha2006
 
Dielectric Materials.ppt
Dielectric Materials.pptDielectric Materials.ppt
Dielectric Materials.pptRajesh748812
 
Dielectric Materials (2).ppt
Dielectric Materials (2).pptDielectric Materials (2).ppt
Dielectric Materials (2).pptBhagyarajKosamia
 
Dielectric Materials (1).ppt
Dielectric Materials (1).pptDielectric Materials (1).ppt
Dielectric Materials (1).pptTrilokiKumar12
 
Dielectric Materials.ppt
Dielectric Materials.pptDielectric Materials.ppt
Dielectric Materials.pptEpicHero1
 
01 Electric Fieeld and charges Notes.pdf
01 Electric Fieeld and charges Notes.pdf01 Electric Fieeld and charges Notes.pdf
01 Electric Fieeld and charges Notes.pdfstudy material
 
electrostatics 2.ppt
electrostatics 2.pptelectrostatics 2.ppt
electrostatics 2.pptArsh Kumar
 

Similar to Dielectrics (20)

Electric field in material space 2nd 2
Electric field in material space 2nd 2Electric field in material space 2nd 2
Electric field in material space 2nd 2
 
DielectricsDielectricsDielectricsDielectricsDielectrics
DielectricsDielectricsDielectricsDielectricsDielectricsDielectricsDielectricsDielectricsDielectricsDielectrics
DielectricsDielectricsDielectricsDielectricsDielectrics
 
EMWT_UNIT 1_DIELECTRICS.pptx
EMWT_UNIT 1_DIELECTRICS.pptxEMWT_UNIT 1_DIELECTRICS.pptx
EMWT_UNIT 1_DIELECTRICS.pptx
 
Dielectric properties[read only]
Dielectric properties[read only]Dielectric properties[read only]
Dielectric properties[read only]
 
Unit 4
Unit 4Unit 4
Unit 4
 
Physics Dielectric
Physics DielectricPhysics Dielectric
Physics Dielectric
 
B.tech sem i engineering physics u i chapter 2-dielectrics
B.tech sem i engineering physics u i chapter 2-dielectricsB.tech sem i engineering physics u i chapter 2-dielectrics
B.tech sem i engineering physics u i chapter 2-dielectrics
 
Energy bands and electrical properties of metals new
Energy bands and electrical properties of metals newEnergy bands and electrical properties of metals new
Energy bands and electrical properties of metals new
 
B.Tech sem I Engineering Physics U-I Chapter 2-Dielectrics
B.Tech sem I Engineering Physics U-I Chapter 2-DielectricsB.Tech sem I Engineering Physics U-I Chapter 2-Dielectrics
B.Tech sem I Engineering Physics U-I Chapter 2-Dielectrics
 
Dielectrics_2
Dielectrics_2Dielectrics_2
Dielectrics_2
 
4661898.ppt
4661898.ppt4661898.ppt
4661898.ppt
 
diel_lecture_1.ppt
diel_lecture_1.pptdiel_lecture_1.ppt
diel_lecture_1.ppt
 
Lecture2 basic dielectric tm
Lecture2 basic dielectric tmLecture2 basic dielectric tm
Lecture2 basic dielectric tm
 
7. CAPACITOR & DIELECTRICS.pptx follow this
7. CAPACITOR & DIELECTRICS.pptx follow this7. CAPACITOR & DIELECTRICS.pptx follow this
7. CAPACITOR & DIELECTRICS.pptx follow this
 
Dielectric Materials.ppt
Dielectric Materials.pptDielectric Materials.ppt
Dielectric Materials.ppt
 
Dielectric Materials (2).ppt
Dielectric Materials (2).pptDielectric Materials (2).ppt
Dielectric Materials (2).ppt
 
Dielectric Materials (1).ppt
Dielectric Materials (1).pptDielectric Materials (1).ppt
Dielectric Materials (1).ppt
 
Dielectric Materials.ppt
Dielectric Materials.pptDielectric Materials.ppt
Dielectric Materials.ppt
 
01 Electric Fieeld and charges Notes.pdf
01 Electric Fieeld and charges Notes.pdf01 Electric Fieeld and charges Notes.pdf
01 Electric Fieeld and charges Notes.pdf
 
electrostatics 2.ppt
electrostatics 2.pptelectrostatics 2.ppt
electrostatics 2.ppt
 

Recently uploaded

Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptshraddhaparab530
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...JojoEDelaCruz
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
TEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxTEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxruthvilladarez
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmStan Meyer
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operationalssuser3e220a
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxRosabel UA
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxVanesaIglesias10
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 

Recently uploaded (20)

Paradigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTAParadigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTA
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.ppt
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
TEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxTEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docx
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and Film
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operational
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptx
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 

Dielectrics

  • 2. Dielectrics are the materials having electric dipole moment permantly.Dielectrics are the materials having electric dipole moment permantly. Dipole:Dipole: A dipole is an entity in which equal positive and negativeA dipole is an entity in which equal positive and negative charges are separated by a small distance..charges are separated by a small distance.. DIPOLE moment (µele ):The product of magnitude of either of the charges and separation distance b/w them is called Dipole moment. µe = q . x  coul – m All dielectrics are electrical insulators and they are mainly used to storeAll dielectrics are electrical insulators and they are mainly used to store electrical energy.electrical energy. Ex: Mica, glass, plastic, water & polar molecules…Ex: Mica, glass, plastic, water & polar molecules… X q -q Introduction
  • 4. Dielectric ConstantDielectric Constant Dielectric Constant is the ratio between theDielectric Constant is the ratio between the permittivity of the medium to the permittivity ofpermittivity of the medium to the permittivity of free space.free space. The characteristics of a dielectric material areThe characteristics of a dielectric material are determined by the dielectric constant and it has nodetermined by the dielectric constant and it has no units.units. 0ε ε ε =r
  • 5. Electric PolarizationElectric Polarization The process of producing electric dipoles by an electric field isThe process of producing electric dipoles by an electric field is called polarization in dielectrics.called polarization in dielectrics. Polarizability:Polarizability: The induced dipole moment per unit electric field is calledThe induced dipole moment per unit electric field is called Polarizability.Polarizability. The induced dipole moment is proportional to the intensity of theThe induced dipole moment is proportional to the intensity of the electric field.electric field. Is a Polarizability constantIs a Polarizability constant constantlitypolarizabi→ = ∝ α αµ µ E E
  • 6. Polarization vector:Polarization vector: The dipole moment per unit volume of the dielectricThe dipole moment per unit volume of the dielectric material is called polarization vector.material is called polarization vector. V xq P n i ii∑= = 1
  • 7. Electric flux Density (D): Electric flux density is defined as charge per unit area and it has same units of dielectric polarization. Electric flux density D at a point in a free space or air in terms of Electric field strength is At the same point in a medium is given by As the polarization measures the additional flux density arising from the presence of material as compared to free space (1)--ED 00 >= ε (3)--PEDi.e, 0 >+= ε (2)--ED >= ε
  • 9. Electric susceptibility:Electric susceptibility: The polarization vector P is proportional to theThe polarization vector P is proportional to the total electric flux density and direction of electrictotal electric flux density and direction of electric field.field. Therefore the polarization vector can be writtenTherefore the polarization vector can be written 1 )1( 0 0 0 0 −= − = = = re r e e E E E P EP εχ ε εε ε χ χε
  • 10. Various polarization processes:Various polarization processes: When the specimen is placed inside a d.c.When the specimen is placed inside a d.c. electric field, polarization is due to four typeselectric field, polarization is due to four types of processes….of processes…. 1.Electronic polarization1.Electronic polarization 2.Ionic polarization2.Ionic polarization 3.Orientation polarization3.Orientation polarization 4.Space charge polarization4.Space charge polarization
  • 11. Electronic Polarization When an EF is applied to an atom, +vely charged nucleus displaces in the direction of field and ẽ could in opposite direction. This kind of displacement will produce an electric dipole with in the atom. i.e, dipole moment is proportional to the magnitude of field strength and is given by E E e e e or αµ µ = ∞ where ‘αe’ is called electronic Polarizability constant
  • 12. It increases with increase of volume of the atom. This kind of polarization is mostly exhibited in Monatomic gases. 10____ 2-40 mFe −×=α HeHe NeNe ArAr KrKr XeXe 0.180.18 0.350.35 1.461.46 2.182.18 3.543.54 It occurs only at optical frequencies (1015 Hz) It is independent of temperature.
  • 13. Expression for Electronic Polarization Consider a atom in an EF of intensity ‘E’ since the nucleus (+Ze) and electron cloud (-ze) of the atom have opposite charges and acted upon by Lorentz force (FL). Subsequently nucleus moves in the direction of field and electron cloud in opposite direction. When electron cloud and nucleus get shifted from their normal positions, an attractive force b/w them is created and the seperation continuous until columbic force FC is balanced with Lorentz force FL, Finally a new equilibriums state is established.
  • 14. fig(2) represents displacement of nucleus and electron cloud and we assume that the –ve charge in the cloud uniformly distributed over a sphere of radius R and the spherical shape does not change for convenience. +Ze R No field fig(1) x R In the presence of field fig (2) E
  • 15. Let σ be the charge density of the sphere sphere.in thechargetotaltherepresentsZe- 3 4 3 R Ze π σ − = ( ) (1)----- .. . . 3 4 .q isx''radiusofspherein thechargeve-theThus 3 3 3 3 4 3 3 4 3 e x R ze x R ze x − = − ⇒ ⇒ π π πσ ( ) (2)----- 4 . 4 1. . 4 1 FNow 3 0 22 3 3 2 0 2 0 c R xez ze R xze xx qq pe πεπεπε − =      − ==
  • 16. Force experienced by displaced nucleus in EF of Strength E is FL = Eq = ZeE -----(3) ee cL zex R zex E R zex R xez FF ααπε πε πε momentdipole E 4 4 (4)-----ZeE 4 3 0 3 0 3 0 22 = − = − = − = − =  3 04 Re πεα =∴ Hence electronic Polaris ability is directly proportional to cube of the radius of the atom.
  • 17. Ionic polarizationIonic polarization  The ionic polarization occurs, when atoms formThe ionic polarization occurs, when atoms form molecules and it is mainly due to a relative displacementmolecules and it is mainly due to a relative displacement of the atomic components of the molecule in theof the atomic components of the molecule in the presence of an electric field.presence of an electric field.  When a EF is applied to the molecule, the positive ionsWhen a EF is applied to the molecule, the positive ions displaced by Xdisplaced by X11 to the negative side electric field andto the negative side electric field and negative ions displaced by Xnegative ions displaced by X22 to the positive side of field.to the positive side of field.  The resultant dipole momentThe resultant dipole moment µ = q ( Xµ = q ( X11 + X+ X22)..)..
  • 19. Restoring force constant depend upon the mass of the ion and natural frequency and is given by [ ]Mm w eE xx wm eE x xwmeEF 11 2 0 21 2 0 2 0 . or . +=+∴ = ==
  • 20. Where ‘M’ mass of anion and ‘m’ is mass of cat ion [ ] [ ]Mm ionic ionic Mmionic w e E w Ee xx 11 2 0 2 11 2 0 2 21 or )e( +⇒= +=+=∴ µ α µ This polarization occurs at frequency 1013 Hz (IR). It is a slower process compared to electronic polarization. It is independent of temperature.
  • 21. Orientational Polarization It is also called dipolar or molecular polarization. The molecules such as H2 , N2,O2,Cl2 ,CH4,CCl4 etc., does not carry any dipole because centre of positive charge and centre of negative charge coincides. On the other hand molecules like CH3Cl, H2O,HCl, ethyl acetate ( polar molecules) carries dipoles even in the absence of electric field. How ever the net dipole moment is negligibly small since all the molecular dipoles are oriented randomly when there is no EF. In the presence of the electric field these all dipoles orient them selves in the direction of field as a result the net dipole moment becomes enormous.
  • 22.  It occurs at a frequency 106 Hz to 1010 Hz.  It is slow process compare to ionic polarization.  It greatly depends on temperature.
  • 23. [ ] kTw e R kT EN kT EN NP ori mMooriionicelec orie o o orie orieo 3 4 3 .. 3 .. . 2 11 2 0 2 3 2 2 µ πεαααα µ α α µ µ +++=++=∴ = =⇒=  Expression for orientation polarization This is called Langevin – Debye equation for total Polaris ability in dielectrics.
  • 24. Internal fields or local fieldsInternal fields or local fields Local field or internal field in a dielectric is theLocal field or internal field in a dielectric is the space and time average of the electric fieldspace and time average of the electric field intensity acting on a particular molecule in theintensity acting on a particular molecule in the dielectric material.dielectric material.
  • 25. Evaluation of internal fieldEvaluation of internal field Consider a dielectric be placed between theConsider a dielectric be placed between the plates of a parallel plate capacitor and let thereplates of a parallel plate capacitor and let there be an imaginary spherical cavity around thebe an imaginary spherical cavity around the atom A inside the dielectric.atom A inside the dielectric. The internal field at the atom site ‘A’ can beThe internal field at the atom site ‘A’ can be made up of four components Emade up of four components E11 ,E,E22, E, E33 & E& E44..
  • 26. + ++ ++ + + + + ++ _ _ _ _ _ _ _ __ E Dielectric material Spherical Cavity A __ _ __ ___ + + + + + ++ + + + + + + + + _ _ __ _ __ _
  • 27. Field EField E11:: EE11 is the field intensity at A due to the charge densityis the field intensity at A due to the charge density on the plateson the plates )1(.......... 0 1 0 0 1 0 0 1 ε ε ε ε ε P EE PE E PED D E += + = += =
  • 28. Field EField E22:: EE22 is the field intensity at A due to the chargeis the field intensity at A due to the charge density induced on the two sides of the dielectric.density induced on the two sides of the dielectric. )2.(.......... 0 2 ε P E − = Field EField E33:: EE33 is the field intensity at A due to the atomsis the field intensity at A due to the atoms contained in the cavity, we are assuming a cubiccontained in the cavity, we are assuming a cubic structure, so Estructure, so E33 = 0.= 0.
  • 29. + + E θ θd r p q R dA r A + + + + + + + + ++ _ _ _ _ _ _ _ _ _ _ _ _
  • 30. Field EField E44:: 1.This is due to polarized charges on the surface of1.This is due to polarized charges on the surface of the spherical cavity.the spherical cavity. Where dA is Surface area betweenWhere dA is Surface area between θθ && θθ+d+dθθ…… θθπ θθπ π drdA rdrdA qRpqdA sin.2 .sin.2 ..2 2 = = =
  • 31. 2.The total charge present on the surface area dA is…2.The total charge present on the surface area dA is… dq = ( normal component of polarization ) X ( surfacedq = ( normal component of polarization ) X ( surface area )area ) θθθπ θ dprdq dApdq .sin.cos2 cos 2 = ×=
  • 32. 3.The field due to this charge at A, denoted by dE3.The field due to this charge at A, denoted by dE44 is given byis given by 2 0 4 4 1 r dq dE πε = The field inThe field in θθ = 0= 0 directiondirection 2 0 4 cos 4 1 r dq dE θ πε = θθθ ε θθθθπ πε d P dE dpr r dE .sin.cos 2 cos).sin.cos2( 4 1 2 0 4 2 2 0 4 = =
  • 33. 4.Thus the total field E4.Thus the total field E44 due to the charges on thedue to the charges on the surface of the entiresurface of the entire cavity iscavity is 0 4 0 1 1 3 0 1 1 2 0 0 2 0 0 2 0 0 44 3 ) 3 11 ( 2 ) 3 ( 2 . 2 sincos.. .sin.cos 2 .sin.cos 2 ε εε ε θθθ θθθ ε θθθ ε π π π P E PxP dxx P ddxxlet d P d P dEE = −−− ⇒ − = = −=→= = = = − − ∫ ∫ ∫ ∫
  • 34. The internal field or Lorentz field can be written asThe internal field or Lorentz field can be written as o i ooo i i p EE ppp EE EEEEE ε εεε 3 3 0)( 4321 += ++−+= +++=
  • 35. Classius – Mosotti relation:Classius – Mosotti relation: Consider a dielectric material having cubicConsider a dielectric material having cubic structure , and assume ionic Polarizability &structure , and assume ionic Polarizability & Orientational polarizability are zero..Orientational polarizability are zero.. 0 0 3 ., .,...... .. 0 ε αµα µ αα P EEwhere EwhereENP NPonpolarizati i ieie i += == = ==
  • 38. Ferro electric materials or Ferro electricityFerro electric materials or Ferro electricity  Ferro electric crystals exhibit spontaneousFerro electric crystals exhibit spontaneous polarization I.e. electric polarization with outpolarization I.e. electric polarization with out electric field.electric field.  Ferro electric crystals possess high dielectricFerro electric crystals possess high dielectric constant.constant.  each unit cell of a Ferro electric crystal carrieseach unit cell of a Ferro electric crystal carries a reversible electric dipole moment.a reversible electric dipole moment. Examples: Barium Titanate (BaTiOExamples: Barium Titanate (BaTiO33) , Sodium) , Sodium nitrate (NaNOnitrate (NaNO33) ,Rochelle salt etc..) ,Rochelle salt etc..
  • 39. Piezo- electricityPiezo- electricity The process of creating electric polarization by mechanicalThe process of creating electric polarization by mechanical stress is called as piezo electric effect.stress is called as piezo electric effect. This process is used in conversion of mechanical energy intoThis process is used in conversion of mechanical energy into electrical energy and also electrical energy into mechanicalelectrical energy and also electrical energy into mechanical energy.energy. According to inverse piezo electric effect, when an electricAccording to inverse piezo electric effect, when an electric stress is applied, the material becomes strained. This strain isstress is applied, the material becomes strained. This strain is directly proportional to the applied field.directly proportional to the applied field. Examples: quartz crystal , Rochelle salt etc.,Examples: quartz crystal , Rochelle salt etc., Piezo electric materials or peizo electric semiconductors suchPiezo electric materials or peizo electric semiconductors such as Gas, Zno and CdS are finding applications in ultrasonicas Gas, Zno and CdS are finding applications in ultrasonic amplifiers.amplifiers.