• Save
Andy Kirk Malofiej 20 Presentation
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
No Downloads

Views

Total Views
8,805
On Slideshare
3,151
From Embeds
5,654
Number of Embeds
15

Actions

Shares
Downloads
0
Comments
1
Likes
13

Embeds 5,654

http://www.visualisingdata.com 3,032
http://visualoop.com 2,374
http://visualisingdata.com 176
http://feeds.feedburner.com 28
http://us-w1.rockmelt.com 10
http://vizdat.collected.info 9
http://www.seeingdata.co.uk 7
http://translate.googleusercontent.com 4
http://www.netvibes.com 3
http://feedproxy.google.com 3
http://xianguo.com 3
http://www.newsblur.com 2
http://www.visualisingdata.co.uk 1
http://bit.ly 1
http://beta.visualisingdata.com 1

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. My name is Andy Kirk
  • 2. Visualisation Consultanthttp://www.quoteaustininsurance.com/images/Consultant.jpg
  • 3. Visualisation Designerhttp://gizmodo.com/5792960/paul-allen-dishes-out-gossip-on-bill-gates-and-his-yacht-on-60-minutes
  • 4. Visualisation Trainerhttp://cathybretag.blogspot.com/2010/10/first-time-out-reflection-on-my-first.html
  • 5. Hebden Bridge London2.5 hours
  • 6. Hebden Bridge2.5 mins London
  • 7. Curse of KnowledgeAbsence of Knowledge
  • 8. Surprise the novice,get the expert to nod Mirko Lorenz
  • 9. Showcase of data visualisationtechniques for thriving in the age of big data
  • 10. Showcase of data visualisation techniques for thriving in the age of data that has thousands ofrecords and is quite complex and makes life difficult
  • 11. It’s not a technology problem; it’s a people problem. Aron Pilhofer (on data journalism) Editor of Interactive News, New York Times
  • 12. What is Big Data?Why does it matter to you?
  • 13. Context Google Insights: “Infographic”http://www.google.com/insights/search/#q=%22Big%20Data%22%2CInfographics&date=6%2F2007%2058m&cmpt=q
  • 14. Context Google Insights: “Big Data”http://www.google.com/insights/search/#q=%22Big%20Data%22%2CInfographics&date=6%2F2007%2058m&cmpt=q
  • 15. Context Google Insights: “Big Data”http://www.google.com/insights/search/#q=%22Big%20Data%22%2CInfographics&date=6%2F2007%2058m&cmpt=q
  • 16. We are capturing, creating and mobilisingunbelievable amounts of data at an unbelievable rate. And it is increasing.
  • 17. Volume Variety Velocityhttp://radar.oreilly.com/2012/01/what-is-big-data.html
  • 18. Yahoo! C.O.R.E. Data Visualization | Periscopic http://www.flickr.com/photos/visualizeyahoo/sets/72157629000570607/
  • 19. http://www.zimbio.com/Ted+Danson/articles/13/TV+DVD+Cheers+Final+Season+4+DVD+Set
  • 20. Running the Numbers II: Portraits of global mass culture | Chris Jordan http://www.chrisjordan.com/gallery/rtn2/#gyre2
  • 21. Running the Numbers II: Portraits of global mass culture | Chris Jordan http://www.chrisjordan.com/gallery/rtn2/#gyre2
  • 22. Visualisation should berecognised as a discovery tool. Manuel Lima http://www.visualcomplexity.com/vc/blog/?p=644
  • 23. Peer review wars | Nigel Hawtinhttp://www.flickr.com/photos/nhawtin/5243787538/in/photostream/lightbox/
  • 24. http://starwarsaficionado.blogspot.com/2011/12/classic-image-its-worse.html
  • 25. http://v2.centralstory.com/about/squiggle/
  • 26. 1. Be clear about the visualisation’s purpose and parameters
  • 27. EXPLORE: facilitate reasoning of data EXPLAIN: convey information to others Analysis Monitor/Signals Familiarise with data Answer questions/Inform Support graphical calculation Learn/Increase knowledge Find patterns/Find no patterns Contextualise data Discover questions Present arguments Interact Assist with decisions Shape opinion/Persuade Emphasize issues Tell a story Inspire Shock/Make an impact Enlighten Change behaviour Entertain/fun Art/Aesthetic pleasure
  • 28. Jet Tracker | Wall Street Journal http://projects.wsj.com/jettracker/
  • 29. Jet Tracker | Wall Street Journal http://projects.wsj.com/jettracker/
  • 30. Jet Tracker | Wall Street Journal http://projects.wsj.com/jettracker/
  • 31. So many parameters!
  • 32. Brief? Open, strict, helpful, unhelpfulFormat? Static, interactive, videoPressures? Timescales, editorialAudience size? One, group, wwwAudience type? Domain experts, generalResolution? Headlines, clusters, look-upRules? Structure, layout, style, colourCapabilities? Design, technical, technologyPeople? Individual, team, collaboration
  • 33. Analyst Politician Computer scientist Journalist Researcher Designer Cognitive scientist http://www.jasonnazar.com/2008/09/23/10-lessons-startups-can-learn-from-superheros/
  • 34. 2. Identify and develop questions about the problem context
  • 35. What questions are you hoping toanswer through this visualisation?What stories should users/readers be able to derive from this visualisation?
  • 36. Just Landed | Jer Thorphttp://blog.blprnt.com/blog/blprnt/just-landed-processing-twitter-metacarta-hidden-data
  • 37. 3. Acquire, prepare and exploreyour data to begin familiarisation
  • 38. Transforming Transforming Pre-prod.Acquisition Examination Consolidating for quality for purpose visualisation System download API Web scrape Scanned documents
  • 39. Transforming Transforming Pre-prod.Acquisition Examination Consolidating for quality for purpose visualisation Is it fit for purpose? Is it complete? Identify data types
  • 40. Transforming Transforming Pre-prod.Acquisition Examination Consolidating for quality for purpose visualisation Missing values Erroneous values Duplicates Uncommon characters Freak outliers?
  • 41. Transforming Transforming Pre-prod.Acquisition Examination Consolidating for quality for purpose visualisation Parsing Merging Normalisation Conversion eg. Codify free-text Inspired by Kim Rees’ talk at 2011 Wolfram Summit - http://www.wolframdatasummit.org/2011/attendee/presentations/Rees.pptx
  • 42. Transforming Transforming Pre-prod.Acquisition Examination Consolidating for quality for purpose visualisation Full resolution Filter/Exclude (records & variables) Aggregate/Roll-up Sample Statistics Inspired by Kim Rees’ talk at 2011 Wolfram Summit - http://www.wolframdatasummit.org/2011/attendee/presentations/Rees.pptx
  • 43. Yahoo! Mail Data Visualization | Periscopichttp://www.flickr.com/photos/visualizeyahoo/sets/72157627722660160/with/6235510547/
  • 44. Transforming Transforming Pre-prod.Acquisition Examination Consolidating for quality for purpose visualisation What other data do I need?
  • 45. The United States of 2012 for Esquire Magazine | Stamen http://content.stamen.com/united_states_of_2012
  • 46. Transforming Transforming Pre-prod.Acquisition Examination Consolidating for quality for purpose visualisation Patterns Relationships Range and distribution Outliers
  • 47. World Nuclear Reactor Sites | Nigel Hawtin/Peter Aldhoushttp://public.tableausoftware.com/views/WorldNuclearReactorSites2/NorthAmerica?:embed=y
  • 48. 4. Conceive your visualisation design solution
  • 49. The 5 layers of a visualisation...Data representationColour and backgroundAnimation and interactionLayout, placement and apparatusThe annotation layer
  • 50. http://www.informationisbeautifulawards.com/2011/10/napkin-shortlist-for-the-1st-challenge/
  • 51. 138 years of popular science | Jer Thorp and Mark Hansen http://www.flickr.com/photos/blprnt/6281316931/sizes/o/in/photostream/
  • 52. My working process is riddledwith dead-ends, messy errors and bad decisions JerThorp
  • 53. 138 years of popular science | Jer Thorp and Mark Hansen http://blog.blprnt.com/blog/blprnt/138-years-of-popular-science
  • 54. 138 years of popular science | Jer Thorp and Mark Hansen http://blog.blprnt.com/blog/blprnt/138-years-of-popular-science
  • 55. Space Junk | Jen Christiansen and Jan Willem Tulp Scientific American, April 2012
  • 56. Space Junk | Jen Christiansen and Jan Willem Tulp Scientific American, April 2012
  • 57. Space Junk | Jen Christiansen and Jan Willem Tulp Scientific American, April 2012
  • 58. The 5 layers of a visualisation...Data representationColour and backgroundAnimation and interactionLayout, placement and apparatusThe annotation layer
  • 59. http://projects.nytimes.com/census/2010/explorer
  • 60. The 5 layers of a visualisation...Data representationColour and backgroundAnimation and interactionLayout, placement and apparatusThe annotation layer
  • 61. Posted: Visualizing US expansion through post offices | Derek Watkins http://derekwatkins.wordpress.com/2011/08/06/posted/
  • 62. Posted: Visualizing US expansion through post offices | Derek Watkins http://derekwatkins.wordpress.com/2011/08/06/posted/
  • 63. Posted: Visualizing US expansion through post offices | Derek Watkins http://derekwatkins.wordpress.com/2011/08/06/posted/
  • 64. Max Planck Research Networks | Moritz Stefaner and Christopher Warnow http://max-planck-research-networks.net/
  • 65. Max Planck Research Networks | Moritz Stefaner and Christopher Warnow http://max-planck-research-networks.net/
  • 66. The 5 layers of a visualisation...Data representationColour and backgroundAnimation and interactionLayout, placement and apparatusThe annotation layer
  • 67. Data Theft | Jen Christiansen Scientific American, October 2011
  • 68. The 5 layers of a visualisation...Data representationColour and backgroundAnimation and interactionLayout, placement and apparatusThe annotation layer
  • 69. The annotation layer is themost important thing we do... Otherwise it’s a case of here it is, you go figure it out. Amanda Cox Graphics Editor, New York Times http://eyeofestival.com/speaker/amanda-cox/
  • 70. http://www.stanford.edu/group/ruralwest/cgi-bin/drupal/visualizations/us_newspapers
  • 71. http://www.stanford.edu/group/ruralwest/cgi-bin/drupal/visualizations/us_newspapers
  • 72. 5. Construct, launch and evaluate your visualisation solution
  • 73. ...you’ve started playing with thevisualization instead of debugging ... you hit some level of engagement and it becomes really interesting Martin Wattenberg, "Big Picture" data visualization group, Google http://queue.acm.org/detail.cfm?id=1744741
  • 74. You know you’ve achievedperfection in design, not when you have nothing more to add, but when you have nothing more to take away Antoine de Saint-Exupery
  • 75. Sense of Patterns | Mahir M. Yavuz http://casualdata.com/senseofpatterns/
  • 76. Sense of Patterns | Mahir M. Yavuzhttp://www.visualizing.org/full-screen/32596/embedlaunch
  • 77. Sense of Patterns | Mahir M. Yavuzhttp://www.visualizing.org/full-screen/32596/embedlaunch
  • 78. Thank you to… Nigel Hawtin Jen Christiansen Moritz Stefaner Alberto Cairo Sarah Slobin Derek Watkins Kim Rees Mahir M Yavuz Jer Thorp Stamen
  • 79. www.visualisingdata.comandy@visualisingdata.com @visualisingdata