Matematika - Identitas Trigonometri
Upcoming SlideShare
Loading in...5
×
 

Matematika - Identitas Trigonometri

on

  • 1,548 views

 

Statistics

Views

Total Views
1,548
Views on SlideShare
1,548
Embed Views
0

Actions

Likes
1
Downloads
25
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Matematika - Identitas Trigonometri Matematika - Identitas Trigonometri Presentation Transcript

  • y Consider the figure beside r y  sin   yO x x r y  r sin  1 x cos   r x  r cos  2 and : x 2  y 2  r 2 r cos  2  r sin  2  r 2 r 2 cos 2   r 2 sin   r 2 : r2 cos 2   sin 2   1
  • cos 2   sin 2   1cos 2   1  sin 2  The formula sin 2   1  cos 2  ytan   x r sin tan   r cos  sin tan   cos 
  • From the formula cos 2   sin 2   1 dividing by sin 2  cos 2  1 1  sin 2  sin 2  cot an2  1  cos ec 2 cos 2   sin 2   1 dividing by cos 2  sin 2  1 1  cos  cos 2  2 1  tan2   sec2 
  • Examples: 1. Show that cos x  2 sin x   2 cos x  sin x   5 2 2 Solution: cos x  2 sin x2  2 cos x  sin x2  5cos 2 x  4 sin x cos x  4 sin 2 x  4 cos 2 x  4 sin x cos x  sin 2 x  5 5 cos 2 x  5 sin 2 x  5   5 cos 2 x  sin 2 x  5 55
  • 2. Pr ove that : sin 4 x  cos 4 x  1  2 sin 2 x cos 2 xSolution: sin 4 x  cos 4 x  1  2 sin 2 x cos 2 x sin 2  2 x  cos x  2 sin 2 x cos 2 x  1  2 sin 2 x cos 2 x 2 1  2 sin 2 x cos 2 x  1  2 sin 2 x cos 2 x
  • Activity classProve the following identities sec x. cos x 1. cot x  tan x 2. 3 cos x  4 sin x 2  4 cos x  3 sin x 2  25 3. a cos x  b sin x 2  b cos x  a sin x 2  a 2  b 2 4. tan x  cot anx  cos ecx. sec x cos x sin x 1 5.   cos x  sin x cos x  sin x 1  tan 2 x 6. cot B  tan B  cos ecB sec B