Your SlideShare is downloading. ×
0
An overview of phononic crystals
An overview of phononic crystals
An overview of phononic crystals
An overview of phononic crystals
An overview of phononic crystals
An overview of phononic crystals
An overview of phononic crystals
An overview of phononic crystals
An overview of phononic crystals
An overview of phononic crystals
An overview of phononic crystals
An overview of phononic crystals
An overview of phononic crystals
An overview of phononic crystals
An overview of phononic crystals
An overview of phononic crystals
An overview of phononic crystals
An overview of phononic crystals
An overview of phononic crystals
An overview of phononic crystals
An overview of phononic crystals
An overview of phononic crystals
An overview of phononic crystals
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

An overview of phononic crystals

3,277

Published on

These slides are intended to present an overview of research on phononic crystals.

These slides are intended to present an overview of research on phononic crystals.

0 Comments
3 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
3,277
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
0
Comments
0
Likes
3
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Phononic crystals Acoustic waves trapped inside matter Vincent Laude Institut FEMTO-ST CNRS UMR 6174 Besançon, France
  • 2. Agenda
    • Principles of phononic crystals
      • Acoustic waves in fluids (sound in air, acoustic waves in water)
      • Elastic waves in solids
    • Ultrasonic phononic crystals
    • Phononic lenses and negative refraction
    • Surface acoustic waves
    • Applications?
    • Acousto-optical interactions
  • 3. Principles of phononic crystals
    • A periodic structuration of matter induces band foldings and thus band gaps
    M.S. Kushvaha et al. , Phys. Rev. Lett. 71 , 2022 (1993) First complete phononic band gap: aluminum cylinders in nickel In comparison to photonic crystals, contrasts between elastic material constants can be quite strong
  • 4. Principles of phononic crystals
    • A sculpture that can filter sound…
    R. Martinez-Sala et al. , Nature 378 , 241 (1995)
  • 5. Principles of phononic crystals
    • Some phononic bands do not transmit plane waves: deaf bands
    J.V. Sanchez-Perez et al. , Phys. Rev. Lett. 80 , 5325 (1998)
  • 6. Ultrasonic phononic crystals Emitting transducer Receiving transducer  X  M Theory gap A. Khelif et al. , Phys. Rev. B 68 , 214301 (2003)  X  M Cristal acier / eau 2D Experiment
  • 7. Ultrasonic phononic crystals
    • The existence of complete band gaps with very high impedance contrasts enables highly confined acoustic wave guides
    A. Khelif et al. , Appl. Phys. Lett. 84 , 4400 (2004)
  • 8. Ultrasonic phononic crystals
    • The evanescent character of transmission inside a band gap is analogous to the tunnel effect
    S. Yang et al. , Phys. Rev. Lett. 88 , 104301 (2002) 3D steel/water crystal
  • 9. Ultrasonic phononic crystals
    • Steel /epoxy 3D phononic crystal
    A. Khelif et al. (submitted) The coupling of shear and longitudinalpolarizations enlarges complete band gaps (positive effect ofanisotropy)
  • 10. Phononic lenses and negative refraction
    • Phononic lens for sound (1700 Hz)
    F. Cervera et al. , Phys. Rev. Lett. 88 , 023902 (2002) Refraction is here positive (normal): the dispersion is that of a homogenized medium (small wave vectors limit)
  • 11. Phononic lenses and negative refraction
    • Demonstration of negative refraction (using a phononic band with a negative curvature)
    S. Yang et al. , Phys. Rev. Lett. 93 , 024301 (2004) Exp. Th. Ref.
  • 12. Surface waves
    • Band gaps for surface waves on water
    T.S. Jeong et al. , App. Phys. Lett. 85 , 1645 (2004)
  • 13. Surface waves
    • Negative refraction for surface waves on water
    X. Hu et al. , Phys. Rev. E 69 , 030201 (2004)
  • 14. Surface waves
    • Phononic crystals engraved in marble…
    F. Meseguer et al. , Phys. Rev. B 59 , 12169 (1999)
  • 15. Surface waves
    • Microsonic phononic crystal etched in lithium niobate
    S. Benchabane et al. , Phys. Rev. E 73 065601(R)(2006)
  • 16. Applications and extensions
    • Sound shield: a centimeter-size arrangement stops audible sound!
    Z.Y. Liu et al. , Science 289 , 1735 (2000) A “soft” silicone coating over a rigid lead sphere creates localized modes (Fano resonances). Wavelength = 85 cm @ 400 MHz Silicone L ongitudinal velocity = 23 m/s Shear velocity = 5.5 m/s
  • 17. Applications and extensions
    • Can thermal properties be managed at the nanoscale by tailoring phononic properties?
    A.N. Cleland et al. , Phys. Rev. B 64 , 172301 (2001)
  • 18. Acousto-optical interactions
    • Brillouin scattering reveals the phononic band structure
    T. Gorishnyy et al. , Phys. Rev. Lett. 94 , 115501 (2004)
  • 19. Acousto-optical interactions
    • Surface acoustic phonons can be excited and detected by ultrashort laser pulses
    Y. Sugawara et al. , Phys. Rev. Lett. 88 , 185504 (2002)
  • 20. Acousto-optical interactions
    • Photonic lattice induced by surface acoustic phonons
    M.M. de Lima, Jr. et al. , Phys. Rev. Lett. 94 , 126805 (2005)
  • 21. Acousto-optical interactions
    • Confinement of phonons inside a planar 1D GaAs/AlAs cavity
    M. Trigo et al. , Phys. Rev. Lett. 89 , 227402 (2002)
  • 22. Acousto-optical interactions
    • Micro-structured photonic fiber is also an excellent acoustic wave guide
    a=85 µm r=36 µm Elastic wave transducer P.St.J. Russell et al. , Optics Express 21 , 27682 (2003) elasto-optical phase modulation
  • 23. Acousto-optical interactions
    • Phononic band gap guidance inside the core of a micro-structured fiber
    V. Laude et al. , Phys. Rev. B 71 , 045107 (2005) D E F

×