Do Kyung Kim Department of Materials Science and Engineering KAIST, Korea Nanoindentation Lecture 2 Case Study
Applications of nanoindentation <ul><li>Mechanical characterization of nanostructures </li></ul><ul><li>Pressure-induced p...
Mechanical Characterization  of Nanostructures
Carbon Nanotube (1) <ul><li>Vertically aligned carbon nanotubes were prepared using PECVD method with different nickel cat...
Carbon Nanotube (2) <ul><li>The resistance of a VACNT forest to penetration is due to successive bending of nanotubes as t...
Carbon Nanotube (2) <ul><li>Average f-p curve for the three samples from experiements </li></ul><ul><li>Sample C (high den...
Silver Nanowire (1) <ul><li>Silver nanowire-not single crystal but twinned-prepared from two silver solutions (AgNO3 and N...
Silver Nanowire (2) <ul><li>Hardness 0.87 GPa / Elastic modulus 88 GPa </li></ul><ul><li>In good agreement with the nanoin...
ZnO and SnO2 nanobelt (1) <ul><li>The nanobelts were synthesized by thermal evaporation of oxide powder. </li></ul><ul><li...
ZnO and SnO2 nanobelt (2) <ul><li>ZnO is a little softer than bulk single crystal. </li></ul><ul><li>The crack propagates ...
Pressure-induced Phase Transformation
Silicon (1) <ul><li>Single crystal silicon undergoes phase transformation during indentation </li></ul><ul><li>A sudden di...
Silicon (2) <ul><li>The average pop-in pressure is determined from pure elastic loading assumption. </li></ul>Gogotsi, J M...
Silicon (3) <ul><li>Single and multiple pop-in events occurred during indentation </li></ul><ul><li>These events could be ...
Silicon (4) <ul><li>A great amount of a-Si, Si-III, or Si-XII is at deeper rather than shallower depths for a number of un...
Germanium (1) <ul><li>Nanoindentation experiments were performed using Berkovich and cube-corner indenters </li></ul><ul><...
Germanium (2) <ul><li>SEM observation of the cube corner hardness impressions revealed a thin layer of extruded material. ...
Thin Film and MEMS Structure – Mechanical Properties
MEMS structure (1) <ul><li>Silicon nanobeam fabricated by micromachining process </li></ul><ul><li>Load applied by indenta...
MEMS structure (2) <ul><li>SiO2 microbeam fabrication by micromachining process </li></ul><ul><li>SiO2 strength 68 Gpa (18...
Thin films – Al (1) <ul><li>Aluminum single crystal (111) showing pop-in behavior </li></ul><ul><li>The maximum critical l...
Thin films – Al (2) <ul><li>In situ nanoindentation  </li></ul><ul><li>Approach    Contact    Plastic deformation    Ex...
Thin films – Al (3) Before indentation After indentation  with same direction After indentation  with tilted direction (di...
Residual stress (1) <ul><li>Residual stress from </li></ul><ul><ul><li>non-uniform cooling down from the processing temper...
Residual stress (2) <ul><li>Tensile </li></ul><ul><li>Compressive </li></ul>Suresh, Acta Mater, 1998
Residual stress (3) <ul><li>Implementation with ref. sample </li></ul>Suresh, Acta Mater, 1998
Superlattice (1) <ul><li>Nanscale multilayered coating </li></ul><ul><li>W/ZrN nanolayer </li></ul><ul><li>Superlattice pe...
Superlattice (2) <ul><li>Nanoindentation TiN/TiB2 superlattice </li></ul>Scott, MRS bulletin, 2003
Biomechanics
Dental hard tissue (1) Anisotropic structure of enamel Swain, J Mater Res, 2006
Dental hard tissue (1) <ul><li>Nanoindentation experiments on enamel with different orientation and indenter radius </li><...
Dental hard tissue (3) <ul><li>The bacterial demineralization in enamel known as caries is simply detected through the cha...
Dental hard tissue (4) Weihs, Archives of Oral Biology, 2002 Nanoindentation mapping of enamel tooth structure Lingual Buc...
Human bone (1) <ul><li>Human Femur – cortical and trabecula bone lamellae </li></ul>Goldstein, J Biomech, 1999
Human bone (2) <ul><li>The mean elastic modulus was found to be significantly influenced by the type of lamella and by don...
Biocomposite (1) <ul><li>Hydroxyapatite (HA) + polymethylmethacrylate (PMMA) + co-polymer coupling agent </li></ul><ul><li...
Biocomposite (2) <ul><li>Human bone </li></ul><ul><ul><li>45-60% mineral: HA </li></ul></ul><ul><ul><li>20-30% matrix: col...
Biocomposite (3) <ul><li>To determine the local  mechanical properties of a bioactive composite a function of immersion pe...
Biocomposite (4) <ul><li>The “in vitro” local mechanical properties of the bioactive composite as a function of surface bi...
Newly Developed Technique
Cross-section of indentation damage(1)  Indentation Pt Fast mill Tilt Markers Slow mill Lift-off Bradby, 2004 <ul><li>Focu...
Cross-section of indentation damage(2)  Fast unloading Slow unloading Slip line Misc. defect Extended defect Bradby, 2004 ...
Cross-section of indentation damage(3) GaAs InP Bradby, 2004
Cross-section of indentation damage(4) GaN ZnO Bradby, 2004
In-situ nanoindentation in SEM (1) Utke, 2006
In-situ nanoindentation in SEM (2) <ul><li>Vitreloy 105 (Zr 52.5 Cu 17.9 Ni 14.6 Al 10 Ti 5 ) </li></ul>Partial correlatio...
In-situ nanoindentation in SEM (3) <ul><li>FEB deposited reference pattern for in situ measure of contact area </li></ul>U...
In-situ nanoindentation in SEM (4) Silicon pillar Median crack Basal crack Buckling Utke, 2006
In-situ nanoindentation in TEM (1) Minor, 2002
In-situ nanoindentation in TEM (2) Minor, 2002
In-situ nanoindentation in TEM (3) Before After Minor, 2002
Concluding remarks <ul><li>Broad applications of Nanoindentation to investigate the mechanical properties!!! </li></ul>
Upcoming SlideShare
Loading in...5
×

Nano Indentation Lecture2

9,831

Published on

web.kaist.ac.kr/~nano

Published in: Technology, Business
3 Comments
2 Likes
Statistics
Notes
No Downloads
Views
Total Views
9,831
On Slideshare
0
From Embeds
0
Number of Embeds
5
Actions
Shares
0
Downloads
1,118
Comments
3
Likes
2
Embeds 0
No embeds

No notes for slide

Nano Indentation Lecture2

  1. 1. Do Kyung Kim Department of Materials Science and Engineering KAIST, Korea Nanoindentation Lecture 2 Case Study
  2. 2. Applications of nanoindentation <ul><li>Mechanical characterization of nanostructures </li></ul><ul><li>Pressure-induced phase transformation </li></ul><ul><li>Thin film and MEMS structure – mechanical properties </li></ul><ul><li>Biomechanics </li></ul><ul><li>Newly Developed Technique </li></ul>
  3. 3. Mechanical Characterization of Nanostructures
  4. 4. Carbon Nanotube (1) <ul><li>Vertically aligned carbon nanotubes were prepared using PECVD method with different nickel catalyst thickness. </li></ul><ul><li>The nanoindentation on a VACNT forest consecutively bends nanotubes during the penetration of the indenter. </li></ul>Sample A Sample B Sample C Gleason, J Mech Phys Solids, 2003
  5. 5. Carbon Nanotube (2) <ul><li>The resistance of a VACNT forest to penetration is due to successive bending of nanotubes as the indenter encounters nanotubes </li></ul><ul><li>Superposition of interaction between the indenter and nanotubes encountered by the indenter during nanoindentation gives the total penetration resistance. </li></ul>Gleason, J Mech Phys Solids, 2003
  6. 6. Carbon Nanotube (2) <ul><li>Average f-p curve for the three samples from experiements </li></ul><ul><li>Sample C (high density, small length) Sample A, B (Same density) Sample A (Larger diameter and smaller length) </li></ul>Gleason, J Mech Phys Solids, 2003
  7. 7. Silver Nanowire (1) <ul><li>Silver nanowire-not single crystal but twinned-prepared from two silver solutions (AgNO3 and NaOH) and adhered onto glass slide. </li></ul><ul><li>Nanoindentation and imaging with same Berkovich indenter. </li></ul><ul><li>Penetration depth as low as 15 nm. (30 % of diameter) </li></ul>Caswell, Nano Letters, 2003
  8. 8. Silver Nanowire (2) <ul><li>Hardness 0.87 GPa / Elastic modulus 88 GPa </li></ul><ul><li>In good agreement with the nanoindentation value of bulk single crystal, 2 times higher than macroscale indentation results (indentation size effect) </li></ul><ul><li>This approach permits the direct machining of nanowires. </li></ul>Caswell, Nano Letters, 2003
  9. 9. ZnO and SnO2 nanobelt (1) <ul><li>The nanobelts were synthesized by thermal evaporation of oxide powder. </li></ul><ul><li>Indentation with maximum 300  N with loading rate 10  N/s </li></ul>Wang, APL, 2003
  10. 10. ZnO and SnO2 nanobelt (2) <ul><li>ZnO is a little softer than bulk single crystal. </li></ul><ul><li>The crack propagates along [101] and cleavage surface is (010). </li></ul>Wang, APL, 2003
  11. 11. Pressure-induced Phase Transformation
  12. 12. Silicon (1) <ul><li>Single crystal silicon undergoes phase transformation during indentation </li></ul><ul><li>A sudden displacement discontinuity referred to as a pop-in </li></ul><ul><li>Upon unloading, pop-out or kink pop-out happen, resulting from a sudden material expansion </li></ul>Gogotsi, J Mater Res, 2004
  13. 13. Silicon (2) <ul><li>The average pop-in pressure is determined from pure elastic loading assumption. </li></ul>Gogotsi, J Mater Res, 2004
  14. 14. Silicon (3) <ul><li>Single and multiple pop-in events occurred during indentation </li></ul><ul><li>These events could be due to either subsurface cracking, squeezing out of ductile materials or sudden dislocation burtst </li></ul>1 mN/s 5 mN/s Gogotsi, J Mater Res, 2004
  15. 15. Silicon (4) <ul><li>A great amount of a-Si, Si-III, or Si-XII is at deeper rather than shallower depths for a number of unloading conditions. </li></ul><ul><li>The results from different wavelength spectrum show a-Si, Si-III, or Si-XII exist below the surface. </li></ul><ul><li>Pop-in, out  Si-III or Si-XII and No pop-in, out  a-Si </li></ul>Gogotsi, J Mater Res, 2004
  16. 16. Germanium (1) <ul><li>Nanoindentation experiments were performed using Berkovich and cube-corner indenters </li></ul><ul><li>The unloading pop-out or elbow phenomena was not observed in loading curve. </li></ul><ul><li>A number of displacement discontinuities in the loading curve are caused by discontinuous crack extension and chipping. </li></ul>Pharr, APL, 2005
  17. 17. Germanium (2) <ul><li>SEM observation of the cube corner hardness impressions revealed a thin layer of extruded material. </li></ul><ul><li>The micro-Raman spectra for cube-corner indentation exhibits distinct narrow Ge-IV and a-Ge peaks. </li></ul><ul><li>Ge-IV phased vanishes within 20 hours of removing pressure. </li></ul>Pharr, APL, 2005
  18. 18. Thin Film and MEMS Structure – Mechanical Properties
  19. 19. MEMS structure (1) <ul><li>Silicon nanobeam fabricated by micromachining process </li></ul><ul><li>Load applied by indentation loading machine </li></ul><ul><li>Si strength-17.6 GPa (bulk single crystal strength 6 GPa) </li></ul><ul><li>Similar elastic modulus </li></ul>Li, Ultramicroscopy, 2003
  20. 20. MEMS structure (2) <ul><li>SiO2 microbeam fabrication by micromachining process </li></ul><ul><li>SiO2 strength 68 Gpa (18.5  m sample) / 2.5 Gpa (58.5  m sample) </li></ul>Lee, J Kor Ceram Soc, 2003
  21. 21. Thin films – Al (1) <ul><li>Aluminum single crystal (111) showing pop-in behavior </li></ul><ul><li>The maximum critical load 22  N  a mean pressure 14.7 GPa which is equivalent to a simplified estimate of the theoritical shear stress. </li></ul><ul><li>Dislocation is responsible for pop-in events. </li></ul>Moris Jr, J Mater Res, 2004
  22. 22. Thin films – Al (2) <ul><li>In situ nanoindentation </li></ul><ul><li>Approach  Contact  Plastic deformation  Extensive dislocation activity </li></ul>Moris Jr, J Mater Res, 2004
  23. 23. Thin films – Al (3) Before indentation After indentation with same direction After indentation with tilted direction (dislocation in entire grain) Moris Jr, J Mater Res, 2004
  24. 24. Residual stress (1) <ul><li>Residual stress from </li></ul><ul><ul><li>non-uniform cooling down from the processing temperature </li></ul></ul><ul><ul><li>deposition of a surface coating or a thin film on a substrate </li></ul></ul><ul><li>Equal biaxial state of residual stress (tensile or compressive) </li></ul>Suresh, Acta Mater, 1998
  25. 25. Residual stress (2) <ul><li>Tensile </li></ul><ul><li>Compressive </li></ul>Suresh, Acta Mater, 1998
  26. 26. Residual stress (3) <ul><li>Implementation with ref. sample </li></ul>Suresh, Acta Mater, 1998
  27. 27. Superlattice (1) <ul><li>Nanscale multilayered coating </li></ul><ul><li>W/ZrN nanolayer </li></ul><ul><li>Superlattice period: 2.1 nm </li></ul><ul><li>Annealed at 1000  C for 1hr </li></ul><ul><li>AlN/VN nanolayer </li></ul><ul><li>Epitaxial stabilization of B1-AlN </li></ul><ul><li>Transformation to wurtzite </li></ul>Scott, MRS bulletin, 2003
  28. 28. Superlattice (2) <ul><li>Nanoindentation TiN/TiB2 superlattice </li></ul>Scott, MRS bulletin, 2003
  29. 29. Biomechanics
  30. 30. Dental hard tissue (1) Anisotropic structure of enamel Swain, J Mater Res, 2006
  31. 31. Dental hard tissue (1) <ul><li>Nanoindentation experiments on enamel with different orientation and indenter radius </li></ul><ul><li>Parallel to enamel rods, the hardness and modulus are 3.9 Gpa and 87.5 GPa, respectively , whereas perpendicular to enamel rods, they are 3.3 GPa and 72.2 GPa. </li></ul>
  32. 32. Dental hard tissue (3) <ul><li>The bacterial demineralization in enamel known as caries is simply detected through the changes in its mechanical properties. </li></ul>
  33. 33. Dental hard tissue (4) Weihs, Archives of Oral Biology, 2002 Nanoindentation mapping of enamel tooth structure Lingual Buccal Pulp Dentin Hardness (GPa) 2.5 3 3.5 4.0 4.5 5 5.5 6 Lingual Buccal Pulp Dentin Elastic Modulus (GPa) 110 100 90 80 70 60 50 120
  34. 34. Human bone (1) <ul><li>Human Femur – cortical and trabecula bone lamellae </li></ul>Goldstein, J Biomech, 1999
  35. 35. Human bone (2) <ul><li>The mean elastic modulus was found to be significantly influenced by the type of lamella and by donor. </li></ul><ul><li>Hardness followed a similar distribution as elastic modulus among types of lamellae and donor. </li></ul>Goldstein, J Biomech, 1999
  36. 36. Biocomposite (1) <ul><li>Hydroxyapatite (HA) + polymethylmethacrylate (PMMA) + co-polymer coupling agent </li></ul><ul><li>In vitro interfacial mechanics of HA and PMMA cross section of the composite </li></ul><ul><li>Microscopic analysis </li></ul><ul><li>Indentation analysis (load-displacement curve)  more comprehensive local analysis </li></ul><ul><li>In vitro testing – a reduction of bulk bending, local elastic modulus, local hardness with increase of immersion time </li></ul><ul><li>The effect of coupling agent  improvement of the interfacial mechanics </li></ul>Marcolongo, IEEE Bioeng, 2004
  37. 37. Biocomposite (2) <ul><li>Human bone </li></ul><ul><ul><li>45-60% mineral: HA </li></ul></ul><ul><ul><li>20-30% matrix: collagen </li></ul></ul><ul><ul><li>10-20% water </li></ul></ul>Marcolongo, IEEE Bioeng, 2004
  38. 38. Biocomposite (3) <ul><li>To determine the local mechanical properties of a bioactive composite a function of immersion period in simulated body fluid (SBF)  in vitro testing </li></ul>Marcolongo, IEEE Bioeng, 2004
  39. 39. Biocomposite (4) <ul><li>The “in vitro” local mechanical properties of the bioactive composite as a function of surface bioactivity </li></ul>Marcolongo, IEEE Bioeng, 2004
  40. 40. Newly Developed Technique
  41. 41. Cross-section of indentation damage(1) Indentation Pt Fast mill Tilt Markers Slow mill Lift-off Bradby, 2004 <ul><li>Focused ion beam TEM sample preparation </li></ul>
  42. 42. Cross-section of indentation damage(2) Fast unloading Slow unloading Slip line Misc. defect Extended defect Bradby, 2004 Silicon
  43. 43. Cross-section of indentation damage(3) GaAs InP Bradby, 2004
  44. 44. Cross-section of indentation damage(4) GaN ZnO Bradby, 2004
  45. 45. In-situ nanoindentation in SEM (1) Utke, 2006
  46. 46. In-situ nanoindentation in SEM (2) <ul><li>Vitreloy 105 (Zr 52.5 Cu 17.9 Ni 14.6 Al 10 Ti 5 ) </li></ul>Partial correlation between shear band formation and displacement burst in P-h curve. Utke, 2006
  47. 47. In-situ nanoindentation in SEM (3) <ul><li>FEB deposited reference pattern for in situ measure of contact area </li></ul>Utke, 2006
  48. 48. In-situ nanoindentation in SEM (4) Silicon pillar Median crack Basal crack Buckling Utke, 2006
  49. 49. In-situ nanoindentation in TEM (1) Minor, 2002
  50. 50. In-situ nanoindentation in TEM (2) Minor, 2002
  51. 51. In-situ nanoindentation in TEM (3) Before After Minor, 2002
  52. 52. Concluding remarks <ul><li>Broad applications of Nanoindentation to investigate the mechanical properties!!! </li></ul>
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×