Systems for Sustainable Energy Supply for Small Villages

7,281
-1

Published on

The main aim of this report is to identify the different sustainable sources and systems of
energy and their technological principle which are under substantial development
replacing the conventional or traditional sources of energy. It is also the objective of this
study to indentify the advantages and disadvantages of each system of energy in their
current application now and in the future. In addition, the report discusses the different
Energy Systems and Efficient Energy Management systems, which are currently in use.
Moreover, the report addresses the environmental, social and economic aspects
sustainable energy in the context of buildings and small villages.

Published in: Technology
0 Comments
5 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
7,281
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
5
Embeds 0
No embeds

No notes for slide

Systems for Sustainable Energy Supply for Small Villages

  1. 1. SYSTEMS FOR SUSTAINABLE ENERGY SUPPLY FOR SMALL VILLAGES Master in European Construction Engineering 2012-2013 Group Project 1
  2. 2. SYSTEMS FOR SUSTAINABLE ENERGY SUPPLY FOR SMALL VILLAGES Master in European Construction Engineering 2012-2013 Group Project 1 Authors: María Alberdi Pagola Laura Álvarez Antón Lulu Andersen Louis Kofi Awugya Valerio De Vivo Guillem Ferrer Ramells Giancarlo Gullotto Marta Hervías Gallardo Ali Kemal Claudie Louet Javier Manjón Herrero Victor Marcos Mesón Antoine Marie Marta Orejas Yáñez Mónica Oveysi Rivas Ismael Ruiz de Temiño Alonso Xavier Sintes Permanyer Keisha Tyrell Alberto Urbina Velasco Francisco Villegas Ruiz Cover photo reference: The President of the European Parliament, 2011. Press Releases [Online] Available at: http://www.europarl.europa.eu
  3. 3. TABLE OF CONTENTSINTRODUCTION.................................................................................................... 7AIM AND STRUCTURE OF THE REPORT .............................................................................................................. 8OVERVIEW OF THE WORLD’S ENERGY CONSUMPTION ................................................................................ 8ENERGY CRISIS BRIEF REVIEW ............................................................................................................................ 9EU 2020 TARGETS, PROTOCOLS AND GLOBAL WARMING ........................................................................ 10RENEWABLE/SUSTAINABLE ENERGY ................................................................................................................ 11GROWTH OF RENEWABLE ENERGY ................................................................................................................ 11WHY RENEWABLE ENERGY ............................................................................................................................... 12ENERGIES ........................................................................................................... 14SOLAR ENERGY ............................................................................................................. 15INTRODUCTION .................................................................................................................................................. 15THERMAL SYSTEMS ....................................................................................................................................... 16LOW THERMAL SYSTEMS ................................................................................................................................... 16 DOMESTIC HOT WATER .................................................................................................................................. 16 HEATING ......................................................................................................................................................... 19 OTHER APLICATIONS ...................................................................................................................................... 19 CURRENT STATUS ............................................................................................................................................ 21 FACTORS ........................................................................................................................................................ 21SWOT ................................................................................................................................................................... 23MEDIUM/HIGH THERMAL SYSTEMS .................................................................................................................. 23 THERMOELECTRIC ENERGY ........................................................................................................................... 23 INDUSTRIAL PROCESSES ................................................................................................................................. 25 CURRENTSTATUS ............................................................................................................................................. 25 FACTORS ........................................................................................................................................................ 25SWOT ................................................................................................................................................................... 26PHOTOVOLTAIC SYSTEMS ........................................................................................................................... 27HOME SUPPLY .................................................................................................................................................... 28HARVESTING SOLAR ENERGY .......................................................................................................................... 29 PHOTOVOLTAIC PLANTS........................................................................................................................................ 29 ELECTRICITY FOR BUILDINGS/COMMUNITIES ............................................................................................................... 29CURRENT STATUS ................................................................................................................................................ 29FACTORS ............................................................................................................................................................. 30 EXTERNAL INPUTS ................................................................................................................................................. 30 ENVIRONMENTAL IMPACTS .................................................................................................................................... 30 ECONOMICAL ASPECTS ........................................................................................................................................ 30 SOCIAL FACTORS ................................................................................................................................................ 31SWOT ................................................................................................................................................................... 31HYBRID SYSTEMS .......................................................................................................................................... 32SOLAR THERMAL-PHOTOVOLTAIC PANELS ................................................................................................... 32WIND-PHOTOVOLTAIC SYSTEMS ..................................................................................................................... 32OTHER HYBRID SYSTEMS .................................................................................................................................... 33INTEGRATED SYSTEMS ................................................................................................................................. 34FUTURE OF SOLAR ENERGY AND ON GOING RESEARCH ......................................................................... 35CONCLUSION .............................................................................................................................................. 36WIND ENERGY ............................................................................................................... 37INTRODUCTION .................................................................................................................................................. 37DESCRIPTION ...................................................................................................................................................... 37 TECHNOLOGY ................................................................................................................................................ 37 APPLICATIONS................................................................................................................................................ 41CURRENT STATUS ................................................................................................................................................ 47 Systems for sustainable energy supply for a small village 1 Master in European Construction Engineering (2012-2013)
  4. 4. WIND POWER CAPACITY .............................................................................................................................. 47 WIND ENERGY INSTALLATIONS ...................................................................................................................... 47 WIND ENERGY INVESTING ............................................................................................................................. 48 WIND FARMS .................................................................................................................................................. 48 WIND ENERGY FUTURE ................................................................................................................................... 48FACTORS ............................................................................................................................................................. 49 EXTERNAL INPUTS ........................................................................................................................................... 49 ENVIRONMENTAL IMPACT ............................................................................................................................ 53ECONOMIC ASPECT ......................................................................................................................................... 55SOCIAL ACCEPTANCE ...................................................................................................................................... 56 EMPLOYMENT ................................................................................................................................................ 58 POLICY ........................................................................................................................................................... 58 LEGISLATION .................................................................................................................................................. 59SWOT ANALYSIS / CONCLUSION..................................................................................................................... 60WATER ............................................................................................................................ 61HYDROPOWER ............................................................................................................................................. 62INTRODUCTION .................................................................................................................................................. 62 CLASSIFICATION, FOLLOWING DIFFERENT CRITERIA.................................................................................... 62DESCRIPTION ...................................................................................................................................................... 64 BASIC CONCEPTS AND TECHNOLOGY ........................................................................................................ 64 CURRENT STATUS ............................................................................................................................................ 68FACTORS ............................................................................................................................................................. 69 EXTERNAL INPUTS ........................................................................................................................................... 69 ENVIRONMENTAL IMPACTS........................................................................................................................... 70 ECONOMIC ASPECTS .................................................................................................................................... 73 SOCIAL FACTORS .......................................................................................................................................... 75CONCLUSION .............................................................................................................................................. 77SWOT .................................................................................................................................................................... 78MARINE ENERGY.......................................................................................................................................... 79INTRODUCTION .................................................................................................................................................. 79DESCRIPTION ...................................................................................................................................................... 80 TECHNOLOGY ............................................................................................................................................... 80 CURRENT STATUS ............................................................................................................................................ 87FACTORS ............................................................................................................................................................. 89 EXTERNAL INPUTS ........................................................................................................................................... 89 ENVIRONMENTAL FACTORS .......................................................................................................................... 90 ECONOMICAL FACTORS .............................................................................................................................. 91 SOCIAL FACTORS .......................................................................................................................................... 92CONCLUSION .............................................................................................................................................. 94SWOT .................................................................................................................................................................... 94 SUITABILITY FOR BUILDINGS ........................................................................................................................... 94 SUITABILITY FOR SMALL VILLAGES ................................................................................................................. 94BIOENERGY .................................................................................................................... 95INTRODUCTION .................................................................................................................................................. 95SOLID BIOMASS ........................................................................................................................................... 96INTRODUCTION .................................................................................................................................................. 96DESCRIPTION ...................................................................................................................................................... 96 TYPOLOGIES ................................................................................................................................................... 96CURRENT STATUS ..............................................................................................................................................103FACTORS ...........................................................................................................................................................103 EXTERNAL INPUTS ......................................................................................................................................... 103 ENVIRONMENTAL IMPACT .......................................................................................................................... 104 ECONOMIC ASPECTS .................................................................................................................................. 104 SOCIAL FACTORS ........................................................................................................................................ 104SWOT ..................................................................................................................................................................105LIQUID BIOFUELS ........................................................................................................................................ 106INTRODUCTION ................................................................................................................................................106DESCRIPTION ....................................................................................................................................................106 TYPOLOGIES ................................................................................................................................................. 1062 Systems for sustainable energy supply for a small village Master in European Construction Engineering (2012-2013)
  5. 5. CURRENT STATUS .............................................................................................................................................. 109FACTORS ........................................................................................................................................................... 110 EXTERNAL INPUTS.......................................................................................................................................... 110 ENVIRONMENTAL IMPACT ........................................................................................................................... 110 ECONOMIC ASPECTS .................................................................................................................................. 111 SOCIAL FACTORS ......................................................................................................................................... 111SWOT ................................................................................................................................................................. 112BIOGAS ...................................................................................................................................................... 113INTRODUCTION ................................................................................................................................................ 113DESCRIPTION .................................................................................................................................................... 113 CURRENT STATUS .......................................................................................................................................... 114FACTORS ........................................................................................................................................................... 115 EXTERNAL INPUTS.......................................................................................................................................... 115 ENVIROMENTAL IMPACT ............................................................................................................................. 116 ECONOMIC ASPECTS .................................................................................................................................. 116 SOCIAL FACTORS ......................................................................................................................................... 117SWOT ................................................................................................................................................................. 118SUITABILITY FOR SMALL COMUNITIES ............................................................................................................ 118GEOTHERMAL ENERGY ............................................................................................... 119INTRODUCTION ................................................................................................................................................ 119SHALLOW GEOTHERMAL ........................................................................................................................... 120INTRODUCTION ................................................................................................................................................ 120 THE DEFINITION FOR SHALLOW GEOTHERMAL ENERGY ............................................................................................... 120 THE OPTIONS OF HARNESSING RENEWABLE GEOTHERMAL ENERGY ............................................................................... 121TECHNOLOGIES OF SHALLOW GEOTHERMAL ............................................................................................ 122 HORIZONTAL LOOPS ........................................................................................................................................... 123 VERTICAL LOOPS ............................................................................................................................................... 124 THE CURRENT TECHNOLOGICAL STATUS .................................................................................................................. 126FACTORS ........................................................................................................................................................... 126 EXTERNAL INPUT ................................................................................................................................................. 126 ENVIRONMENTAL IMPACT .................................................................................................................................... 128 ECONOMICAL ASPECT ........................................................................................................................................ 129SWOT ................................................................................................................................................................. 130DEEP GEOTHERMAL ................................................................................................................................... 132INTRODUCTION ................................................................................................................................................ 132 THE EARTH’S STRUCTURE ...................................................................................................................................... 132TECHNOLOGIES OF DEEP GEOTHERMAL ..................................................................................................... 133 DIRECT USE GEOTHERMAL ENERGY ........................................................................................................................ 133 GEOTHERMAL POWER PLANT .............................................................................................................................. 134 CURRENT STATUS .......................................................................................................................................... 135FACTORS ........................................................................................................................................................... 137 ENVIRONMENTAL IMPACT .................................................................................................................................... 137 ECONOMICAL ASPECT ....................................................................................................................................... 140SWOT ................................................................................................................................................................. 140CONCLUSION ............................................................................................................................................ 141SYSTEMS .......................................................................................................... 142HEAT PUMP .................................................................................................................. 143KEY WORD ........................................................................................................................................................ 143INTRODUCTION ................................................................................................................................................ 143 CREATION..................................................................................................................................................... 143 EVOLUTION................................................................................................................................................... 143DESCRIPTION .................................................................................................................................................... 144 TECHNOLOGY .............................................................................................................................................. 144 CURRENT STATUS .......................................................................................................................................... 151FACTORS ........................................................................................................................................................... 154 EXTERNAL INPUTS.......................................................................................................................................... 154 INSTALLATION ............................................................................................................................................... 156 Systems for sustainable energy supply for a small village 3 Master in European Construction Engineering (2012-2013)
  6. 6. ENVIRONMENTAL IMPACT .......................................................................................................................... 157 ECONOMICAL ASPECT ............................................................................................................................... 158FUTURE TRENDS .................................................................................................................................................161 REORGANIZED SECTORS ............................................................................................................................. 161 POTENTIAL MARKET...................................................................................................................................... 162 TARGETS RESULTS ......................................................................................................................................... 162CONCLUSION ............................................................................................................................................ 163SWOT ..................................................................................................................................................................163COGENERATION ......................................................................................................... 164ABREBBIATIONS AND DEFINITIONS ................................................................................................................164 ABBREVIATIONS ........................................................................................................................................... 164 DEFINITIONS ................................................................................................................................................. 164INTRODUCTION ................................................................................................................................................165DESCRIPTION ....................................................................................................................................................165 TECHNOLOGY ............................................................................................................................................. 165 TYPES OF CHP SYSTEMS ................................................................................................................................ 167 REAL APPLICATIONS .................................................................................................................................... 170CURRENT STATUS ..............................................................................................................................................171 EFFICIENCY TERMS ....................................................................................................................................... 171 EUROPEAN FRAMEWORK ............................................................................................................................ 171 UNITED STATES NUMBERS ............................................................................................................................. 172FACTORS ...........................................................................................................................................................173 EXTERNAL INPUTS ......................................................................................................................................... 173 ENVIRONMENTAL IMPACT .......................................................................................................................... 173 ECONOMICAL ASPECT ............................................................................................................................... 175 SOCIAL FACTOR .......................................................................................................................................... 175CONCLUSION ............................................................................................................................................ 176SWOT ..................................................................................................................................................................176 SUITABILITY FOR BUILDINGS & SMALL VILLAGE ........................................................................................... 177HYDROGEN .................................................................................................................. 178INTRODUCTION ................................................................................................................................................178PRODUCTION ...................................................................................................................................................179PRODUCTION PROCESSES ..............................................................................................................................180 CHEMICAL SYNTHESIS .................................................................................................................................. 180 PHOTOLYTIC PROCESSES ............................................................................................................................ 183IMPLEMENTATION OF SOURCES ....................................................................................................................184 FOSSIL FUELS ................................................................................................................................................. 184 NUCLEAR ENERGY ....................................................................................................................................... 184 RENEWABLE ENERGIES................................................................................................................................. 185STORAGE ...........................................................................................................................................................186COMPRESSED HYDROGEN .............................................................................................................................186LIQUID HYDROGEN .......................................................................................................................................... 186METAL HYDRIDES ..............................................................................................................................................186TRANSPORT & DISTRIBUTION. ..........................................................................................................................188FUEL CELLS. .......................................................................................................................................................189EXTERNAL INPUTS..............................................................................................................................................190ENVIRONMENTAL IMPACTS ............................................................................................................................191ECONOMIC ASPECTS ......................................................................................................................................191SOCIAL FACTORS.............................................................................................................................................191CONCLUSION ............................................................................................................................................ 193SWOT ..................................................................................................................................................................193EFFICIENT ENERGY MANAGEMENT .................................................................. 194ENERGY STORAGE SYSTEMS........................................................................................ 195INTRODUCTION ................................................................................................................................................195 DEFINITION OF THE THERMAL INERTIA ..................................................................................................................... 1954 Systems for sustainable energy supply for a small village Master in European Construction Engineering (2012-2013)
  7. 7. DIFFERENT TYPES OF HEAT .................................................................................................................................... 195MAIN STORAGE SYSTEMS AND TECHNIQUES .............................................................................................. 198 STORAGE VOLUMES............................................................................................................................................ 198 STORAGE TIME................................................................................................................................................... 199CONCLUSION .................................................................................................................................................. 201BUILDINGS APPLICATIONS.............................................................................................................................. 202 SEASONAL STORAGE APPLICATION ........................................................................................................................ 202 OTHER APPLICATION IN DEVELOPMENT .................................................................................................................. 203 CHEMICAL STORAGE .......................................................................................................................................... 204 HEAT DISTRIBUTION NETWORK ............................................................................................................................... 204IMPACTS ............................................................................................................................................................ 205 ENERGETIC IMPACTS ........................................................................................................................................... 205 ENVIRONMENTAL IMPACTS .................................................................................................................................. 205 COSTS AND EFFICIENCY COMPARISON .................................................................................................................. 205PASSIVE BUILDING DESIGN......................................................................................... 207INTRODUCTION ................................................................................................................................................ 207DESCRIPTION .................................................................................................................................................... 207CURRENT STATUS: ENERGY AND REGULATORY CONTEXT IN THE EUROPEAN UNION .......................... 207FACTORS ........................................................................................................................................................... 209 DESIGN............................................................................................................................................................ 210 PASSIVE CONSTRUCTION ..................................................................................................................................... 212ENVIRONMENTAL IMPACT ............................................................................................................................. 228ECONOMICAL ASPECT................................................................................................................................... 228SOCIAL FACTORS ............................................................................................................................................ 229CONCLUSION ............................................................................................................................................ 230SWOT ................................................................................................................................................................. 231INSULATING MATERIALS .............................................................................................. 232INTRODUCTION ................................................................................................................................................ 232TRADITIONAL INSULATING MATERIALS .................................................................................................... 233MINERAL WOOL ............................................................................................................................................... 233STONE WOOL ................................................................................................................................................... 233GLASS WOOL ................................................................................................................................................... 235MINERAL FOAM ............................................................................................................................................... 235SYNTHETIC INSULATING MATERIALS ......................................................................................................... 236POLYURETHANE (PUR) ..................................................................................................................................... 236POLYSTYRENE (PS) ........................................................................................................................................... 237EXPANDED POLYSTYRENE (EPS) .................................................................................................................... 237EXTREUDED POLYSTYRENE FOAMS (XPS) ..................................................................................................... 238INSULATING MATERIALS FROM VEGETAL ................................................................................................ 239CORK ................................................................................................................................................................. 239WOOD WOOL .................................................................................................................................................. 240CELLULOSE WADDING .................................................................................................................................... 240HEMP WOOL .................................................................................................................................................... 241FLAX WOOL ...................................................................................................................................................... 242Insulating materials from animals .......................................................................................................... 243SHEEP WOOL .................................................................................................................................................... 243Advanced thermal insulation ................................................................................................................. 244VACUUM INSULATION PANELS (VIP) ............................................................................................................ 244GAS-FILLED PANELS ......................................................................................................................................... 245AEROGELS ........................................................................................................................................................ 245Thermal insulation in development ........................................................................................................ 247VACUUM INSULATION MATERIALS(VIM) ...................................................................................................... 247GAS INSULATION MATERIALS (GIM).............................................................................................................. 247NANO-INSULATION MATERIALS (NIM) .......................................................................................................... 247DYNAMIC INSULATION MATERIALS(DIM) ..................................................................................................... 248CONCLUSION ............................................................................................................................................ 249 Systems for sustainable energy supply for a small village 5 Master in European Construction Engineering (2012-2013)
  8. 8. SMART GRIDS ............................................................................................................... 252ABBREVIATIONS AND ACRONYMS ...............................................................................................................252INTRODUCTION ................................................................................................................................................252 HISTORICAL DEVELOPMENT OF THE ELECTRICITY GRID................................................................................................ 253CURRENT STATUS ..............................................................................................................................................254ENERGY DEMAND ............................................................................................................................................255 INELASTIC ENERGY DEMAND ...................................................................................................................... 255 ELASTIC ENERGY DEMAND ......................................................................................................................... 256ENERGY BALANCE ...........................................................................................................................................256 DEMAND-RESPONSE ................................................................................................................................... 256 FORECASTING ELECTRICITY PRICE AND LOAD .......................................................................................... 257 DEMAND-SIDE MANAGEMENT ................................................................................................................... 257 GAME THEORY FOR DEMAND-SIDE MANAGEMENT .................................................................................. 257ENERGY CONSUMPTION.................................................................................................................................258 SMART HOME AND DRM OPTIMIZATION..................................................................................................... 258SENSORS ............................................................................................................................................................259 ADVANCED METERING INFRASTRUCTURE .................................................................................................. 259 SMART METER ............................................................................................................................................... 259 PHASE MEASUREMENT UNITS ....................................................................................................................... 259COMMUNICATION TECHNOLOGIES IN THE SMART GRID .........................................................................260MICROGRID ......................................................................................................................................................261 MICROGRID GAME THEORETIC MODEL ..................................................................................................... 261EUROPEAN FRAMEWORK ...............................................................................................................................262 GUIDELINES AND STANDARDS .................................................................................................................... 262FUTURE TRENDS .................................................................................................................................................263CONCLUSION ............................................................................................................................................ 264 SMALL VILLAGES .......................................................................................................................................... 265SWOT ..................................................................................................................................................................265COMBINATION OF ENERGIES ........................................................................... 266COMBINATION OF ENERGIES ..................................................................................... 267WIND - WATER ENERGY...................................................................................................................................267SOLAR – WIND ENERGY ..................................................................................................................................268SOLAR – HYDROGEN ENERGY .......................................................................................................................268SOLAR – GEOTHERMAL ENERGY ...................................................................................................................268CONCLUSIONS ................................................................................................. 269GENERAL OVERVIEW OF THE POTENTIAL OF ENERGY ...............................................................................270USES OF THIS ENERGIES CONCERNING TO HOUSES ...................................................................................271COMPARISON AND SELECTION ....................................................................................................................272CONFERENCES AND CONGRESSES ..............................................................................................................276TRENDS, EVOLUTION AND PERSPECTIVE ......................................................................................................278LIST OF FIGURES ........................................................................................................... 280REFERENCES ................................................................................................................. 2846 Systems for sustainable energy supply for a small village Master in European Construction Engineering (2012-2013)
  9. 9. INTRODUCTIONSystems for sustainable energy supply for a small village 7Master in European Construction Engineering (2012-2013)
  10. 10. Aim and Structure of the ReportThe main aim of this report is to identify the different sustainable sources and systems ofenergy and their technological principle which are under substantial developmentreplacing the conventional or traditional sources of energy. It is also the objective of thisstudy to indentify the advantages and disadvantages of each system of energy in theiractual application now and in the future. In addition, the report discusses the differentEnergy Systems and Efficient Energy Management systems, which are currently in use.Moreover, the report addresses the environmental, social and economic aspectssustainable energy in the context of buildings and small villages.The report is organized in the following three main blocks:Block 1 Introduction: - This section introduces the general overview of the world’s energyconsumption, the major energy crisis occurred in history and renewable/sustainableenergy attached with its importance to the Building sector in relation to climate change.Block 2 Sustainable/Renewable Energy: - This is the main body of the report in which thedifferent sources and forms of sustainable energies will be dealt in-depth. The blockintroduces the principles, types and applications of Sustainable Energy, SustainableEnergy Systems and Efficient Energy Management System. In particular the topics to betreated in this part of the report are Solar Energy, Wind Energy, Water/Marine Energy,Bio-energy, Geothermal, Heat Pumps, Cogeneration, Hydrogen, Energy Storage, PassiveBuilding Design, Insulation Materials, and Smart Grids. Moreover, the current status ofeach of these energy forms and systems and their applicability to small villages is alsodiscussed.Block 3 Conclusion: - This block provides a summarized reflection of what has beenstudied in this report. It particularly gives emphasis to the application of renewable andsustainable energy technologies to buildings and small villages.Overview of the World’s Energy ConsumptionThe total Energy which has been utilized by all human civilization is referred to us WorldEnergy Consumption. It comprises of all the energy from every source available appliedto human activities across every sector and country in the world.In recent years, global demand for energy has increased remarkably due to theindustrial development and population growth of many nations in the world. The abruptpopulation and economic growth of the world has caused the Supply of energy to befar more less than the actual demand.One of the major energy sources which has served for many generations is Oil and it hasbrought significant economic changes to the contemporary world. It covered morethan 33% of world’s Energy Demand. The contribution of coal in fulfilling the energydemand of the world is also immense. Only in 2009, it accounts for 27% of the overallworld energy demand. As it is well known, these energy sources are not only beingdepleted from time to time but also their environmental impact is getting worse andworse to a level where it’s irreversible unless we seek for better alternatives. Out of the8 Systems for sustainable energy supply for a small village Master in European Construction Engineering (2012-2013)
  11. 11. global energy mix currently, Fossil fuel accounts the most. In the year 2011, it has beensubsidies by 523billion USD.The data from the year 1990 to 2008 gathered by International Environment Agency in2012 showed that the energy consumption of a single person has increased by 10%during these years. Simultaneously, the population has grown by 27%. Accordingly, theenergy consumption and utilization of the different corner of the world has extremelyincreased. (IEA, 2012)The following table shows the developing and developed portion of the world alongwith the corresponding energy consumption increase for the period between 1990 and2008. ENERGY CONSUMPTION No. REGION GROWTH 1 Middle East 170%, 2 China 146% 3 India 91% 4 Africa 70% 5 Latin America 66% 6 USA 20% 7 EU-27 Block 7% 8 Overall World 39% Table 1.1 Regional Energy Consumption Growth Years 1990-2008 (IEA, 2012)Energy consumption in the world has so far shown an increasing trend along with thegrowing population and development of Nations worldwide. The economic andfinancial crisis in 2009 however caused the energy sector to shown a setback with 1.1%.This has led to the reduction of the GDP of the world by 0.6%. (Global Energy review,2011)In spite of all these consumption, the world still needs more energy to be fed. The energysources which have been exhaustively used up for over generations have broughtdisaster to the planet which led to the distortion of the climate and the environment.Continuing to use the same trend as before to satisfy the demand of the world’s everincreasing energy requirement will without doubt dictate our survival.Energy Crisis Brief ReviewAll crises which have occurred so far one way or another are interrelated. Either it isenergy crisis, developmental crisis or environmental crisis, all could mean the same. (UNEnvironmental Report, 1987). Even though the crisis is labeled as energy, developmentalor environmental the root cause of these entire crisis converges to the same direction. Systems for sustainable energy supply for a small village 9 Master in European Construction Engineering (2012-2013)
  12. 12. In 1970 energy crisis has occurred in Germany, United States, Canada, etc which areknown for their advancement in industry and technology. The main cause of this crisiswas the embargo by OPEC Oil producers. The embargo emanated from the claim thatthe westerns are supporting Israel during the Yom Kippur war. At this point in time, wecan realize that just the oligopoly nature of these limited sources of energy which isfound in only some portion of the world has enabled the producers to use it as aweapon to demand their interest by creating crisis. The gulf war has also brought aboutprice shock in 1990.The glob has passed through potentially devastating global energy crisis andenvironmental changes so far. This is due to not only a decline in the availability ofcheap Energy but also its negative impact on the environment which calls for adecreasing dependency on non renewable and unsustainable energy sources such asfossil fuel.The Buildings sector is one of the major areas where high improvement in energyefficiency and optimization is required to combat the difficulty faced in relation toenvironmental changes and global warming. This sector is said to cover up to 30 to 40%of the total energy consumption. The sector can play a key role in reducing the threat ofenvironmental damage and climate changes.In conclusion, it can evidently be seen from the above discussions that the world energyconsumption is increasing, whereas the source of energy used to satisfy this need, onone hand are being depleted and manipulated because the source is finite and isfound in some region, whereas on the other hand it is damaging the environmentthrough pollution and CO2 emissions. This indicates that the world needs to enter to anera where supply of clean and sustained energy is guaranteed for the present and theyears to come. Hence, it is crucial and compulsory to look for a new, clean andsustainable approach to address the growing energy consumption of the world.EU 2020 targets, Protocols and Global warmingUnder the Kyoto Protocol, the EU-15 countries have committed to a common emissionreduction target of 8% to be achieved over 5 year commitment period from 2008 to2012. Recent estimates of the EEA shows that in 2009 EU-15’s have managed to reducetheir emission by 6.9% compared to 2008. However, subsequent to the recovery from therecent economic crisis, the European Commission speculates that over the fullcommitment period (i.e. 2008 to 2012), EU-15 aggregated emission will stay well below itsKyoto target with the current policies in place. (EEA Report No 7/2010)The EU-27 on the other hand has committed to reduce its GHG emission by at least 20%in the year 2020. It has also an ambition to increase the commitment to 30% if majoremitting countries agree to the achievement of similar target. Based on the latestemission data, in 2009 the EU-27’s emission was approximately 17.3% below the 1990level. This indicates the bloc is very close to achieve its target by 2020. (EEA Report No7/2010)If major emitting countries adhere and strive to achieve these targets the challenge thatour planet has confronted in relation to global warming will be solved over timeprovided that other sustainable developments are in place. Since 1979, landtemperatures have increased about twice as fast as ocean temperatures (0.25 °C per10 Systems for sustainable energy supply for a small village Master in European Construction Engineering (2012-2013)
  13. 13. decade against 0.13 °C per decade). The initial cause of these temperature changes isthe emission of GHG.When we investigate the building sector and its contribution to environmental impacts,we realize that, it is under the operation phase of the building that most of the energy isused compared to construction of the same. Researches done in the area shows thatless than 20% of energy is used during construction of building as oppose to the 80% ofthe total energy consumption used during its operation phase such as when heating,cooling, lighting, cooking, ventilation and so on.Hence, optimization of the use of energy and use of sustainable/renewable energysources will hugely contribute to the effort made for reducing GHG emission and therebyreducing global warming and environmental changes as well.Renewable/Sustainable EnergyIt’s obvious that we need energy to make use of all other natural resources. Simply, lifecannot continue without energy and hence it is vital to all of us. Energy is also a resourcewhich will endanger our wellbeing if we are not curious about its sources and implicationto the environment.Renewable Energy is described as the energy that can be obtained from naturalrecourses such as the sun, water, wind, geothermal, waves, tides etc. The word“renewable” signifies the fact that these energies are naturally replenished at a constantrate following the natural cycle.It is obvious that the energy sources which are in use today are not sustainable andsuitable to the environment. Whereas in contrary to the above, renewable energysources are not only eco-friendly but also can replenish constantly insuring sustainablesupply.Now a days renewable energy sources are replacing the conventional fuel in manyareas of the world energy sector such as electricity generation, hot water and/or spaceheating, etc.Growth of Renewable EnergyThe initial circumstance which has initiated exploration and investigation of renewableenergy sources is the depletion of the conventional ones. Following these, experimentsfor using solar energy and solar engines have been carried out up until the occurrenceof the First World War. Environmentalists also have contributed to the development ofrenewable sources in 1970s by introducing the first wind turbines.The figure below depicts the growth of Renewable energy to the global energy mixsince 2004. Most of these renewable sources show an increasing trend which is hopefullythe way forward. Renewable energies are all derived from the ultimate source of energywhich the sun or the heat found deep within the earth. These energy sources constantlyreplenish themselves following a cyclic and natural path. Systems for sustainable energy supply for a small village 11 Master in European Construction Engineering (2012-2013)
  14. 14. Fig 1.1 Global renewable power capacity (REN21, Renewables Global status Report, 2006- 2012)Data and literatures show that renewable energy sources have begun the way toreplace the conventional energy source. If the support and commitment from thegovernment bodies continues to be positive renewable energy sector will highly flourishin short period of time. To back up the above argument with some figurative data,currently, renewable energy sources constitute about 16% of the world energyconsumption. Furthermore, 19% of global electricity generation comes from renewableenergy sources.Why Renewable EnergyBasically, among the main reasons for emitting more Green House Gases (GHG) to theatmosphere such as CO2 are burning fossil-fuels (oil, coal and natural gas) anddeforestation. Once CO2 is released to the atmosphere it can stay in the atmosphere forup to 200 years heating up our planate. Furthermore, the source of energy is limited andis confined in certain portion of the world which invites competition and conflict ofinterests.To insure sustainable economic and social development, the utilization and use ofenergy shall be optimized to an extent of less impact on the environment and thecontinuity of supply has to be guaranteed. One of the major environmental impacts isthe emission of GHG. Even though, the energy source used largely has brought dynamiceconomic development, its environmental implication which is the result of combustion12 Systems for sustainable energy supply for a small village Master in European Construction Engineering (2012-2013)
  15. 15. of fossil fuels has accounted for 56.6% of all GHG emission. Hence, it’s crucial that theworld need to cease its dependency from these energy sources and resemble more onthe flourishing renewable alternative.The wakeup call for the century’s prime challenge: Environmental change and Globalwarming which has faced humanity, has been heard in every corner of the planet.People in power have begun to work for the betterment of the environment andbudgets are being allocated for the developments of renewable and sustainableenergies as they assume a huge contribution to tackle the problem. Systems for sustainable energy supply for a small village 13 Master in European Construction Engineering (2012-2013)
  16. 16. ENERGIES Solar Wind Water Bioenergy Geothermal14 Systems for sustainable energy supply for a small village Master in European Construction Engineering (2012-2013)
  17. 17. SOLAR ENERGYINTRODUCTIONThe sun, origin of life and source of every way of energy that humans have been usingsince the dawn of history, can cover the needs that we have if we learn how to getprofit from the light that continually is irradiated on the planet. It has been shining in thesky for about 5.000 years, and it has been estimated that it is not even in the middle of itslife cycle.During this year, the sun will radiate on earth 4.000 times the amount of energyconsumed all over the world. It would be irrational not trying to exploitthis free, cleanand endlessenergysource that definitely can free us from dependence on oil or otherunsafe alternatives, polluting or simply exhaustible.Nevertheless, it must be taken into account that there are some problems that we mustface and overcome. Apart from the general energetic policy difficulties, we must beaware that this power does not represent a constant supply of energy; moreover itsuffers from sudden fluctuations. Thus, for instance, in winter the amount of energyreceived is lower, precisely when the need is higher.It is essential to go on with the development and refinement of the collecting,accumulating and distributing technology of solar energy, in order to achieve theconditions that will definitelyturn it into a competitive technology on a global scale(Progensa, 2007). Systems for sustainable energy supply for a small village 15 Master in European Construction Engineering (2012-2013)
  18. 18. THERMAL SYSTEMSLOW THERMAL SYSTEMS DOMESTIC HOT WATERThe production of Domestic Hot Water (DHW) is perhaps the practical application ofsolar energy that suits the best to the characteristics of this kind of energy, because,firstly, the temperature levels that are necessary to achieve (usually between 40 and50°C) match with the optimum temperature for a good efficacy of the solar collector,and moreover, DHW is a need that must be satisfied during twelve months per year.Consequently, the investment in the solar system should pay off itself more quickly thanin the case of seasonal applications, as can be heating in winter or summer poolheating.Apart from systems with very peculiar characteristics, either experimental or very limitedapplications to produce hot water, the truth is that today almost all systems are acombination of plane surface collectors or vacuum tubes, with an accumulatorintegrated in the same set, or separately from those.General DescriptionThe whole system could be defined by pointing out the different parts integrating it andtheir functions:-Collecting and storing function. It depends not only on the collectors, but also ondifferent components that represent the whole collecting and storing subsystem. Amongthese components we will find primary and secondary water circuits, heat exchangerssystems, water tanks, pumps, thermal sensors, controllers and expansion tank.-Supporting function. It is necessary almost in every case, and it is really important that itsdesign does not cause problems to the solar thermal performance. A gas or electricalboiler may carry out this function, for example.-Utilization function. It represents the final goal of the whole system and thus, mustguarantee the requirements of the system not only quantitatively but also qualitatively.This is the distribution subsystem.Basic principles for the solar thermal energy optimum exploitation:-First principle: Collect as much energy as possible. This does not only depend on thecollecting surface and correct inclination, the regulation of this energy collection is a keyfactor to transform solar energy into useful energy. To achieve this we must design asystem of thermal sensors and a control system that will regulate the water circulation inthe primary circuit.-Second principle: Solar energy must be preferably consumed. It is obvious that solarenergy is free, and the supporting energy (electricity, gas, etc.) is not. The point, that the16 Systems for sustainable energy supply for a small village Master in European Construction Engineering (2012-2013)
  19. 19. storage system must give preference to the usage of solar energy rather than thesupporting energy.-Third principle: Assure the optimum complementation between solar energy andconventional energy. To make it simple: the solar energy will heat water from the verybeginning, until it cannot raise its temperature more; to achieve the temperatureneeded, conventional energy will be used.-Fourth principle: Do not mix solar energy with conventional energy.It must be avoidedto mix heated water by the solar collectors with the one heated by the supportingenergy.Respecting these principles will result in excellent outputs of the solar thermal system.Different SystemsDirect system: It is disappearing because of the many inconvenients (corrosion, freezing,pressure) that it has. Its technology is based on a primary circuit open to the storagewater tank.Thermosiphon: It is a compact system, where the circulation of water works by gravity, ascold water is heavier than hot water.Forced circulation:in this system, an electric water pump takes care of the watercirculation in the primary circuit. FigureE.1.1Thermosiphon system (Erenovable, 2010) FigureE.1.2 Forced system (Solarsom, 2010)Which system should we choose?Thermosiphon systems have a notorious economical and thermal advantage for single-family homes.Pump systems offer more advantages economically and technically forbigger buildings.Anyway, each case should be deeply studied to come to a determinedconclusion. Systems for sustainable energy supply for a small village 17 Master in European Construction Engineering (2012-2013)
  20. 20. ComponentsThe main components of these systemshave been already enumerated in thegeneral description; anyway, it is importantto go slightly deeper in the analysis of thedifferent types of collectors.Types of collectorsWe will find two main types of collectorsused to generate Domestic Hot Water, theflat plate collectors and evacuated tubecollectors. Figure E.1.3 Flat plate collector (Sun Tyne Solar,2012) Flat plate collectors: The main components are the ones appearing on the picture on the right, absorber, flow tubes, transparent cover, insulation and solid frame. The key factor for their success is the greenhouse effect that is produced between the absorbing surface and the transparent cover. Evacuated-tube collectors:They also work with an absorber surface, but in this case, Figure E.1.4 Evacuated-tube collectors (Apricus, 2012) it is situated inside vacuum tubes. Insideeach one of these tubes the heat transfer liquid goes through a process of vaporizationand condensation at really low temperatures. The result is a really good final output ofheat produced and stored in water to be consumed. Simple coverMaking a comparison between these two Double cover Selective coverkinds of collectors, none of them wins over Vacuum Without coverthe other, as it always happens, itdepends. In general though, if we have adetermined absorber area, and takinginto consideration a wide range oftemperatures and heating needs,evacuated-tube collectors maintain abetter efficiency compared to flat platecollectors. On the other hand, given aconstantly sunny environment, flat platecollectors are more efficient regardingDHW needs (greenspec, 2012). Figure E.1.5 Comparison of different covers (Progensa, 2007)18 Systems for sustainable energy supply for a small village Master in European Construction Engineering (2012-2013)
  21. 21. HEATINGThe possibility of giving an answerto the need of heating spacesinside buildings using solar energy isreally attractive, and thecombination of several factors isvital to achieve this goal. Referringto solar thermal systems, there areseveral options to design a heatingsystem for a house, although as itwill be explained in the followinglines, not all of them are reallyappropriate.One of the most common ways toheat spaces is using radiators. Figure E.1.6 Solar thermal system for radiant floor. (Aladdin Solar, 2008)These systems, normally attachedto a gas/oil boiler, work with temperatures of around 70-90ºC; obviously, this temperaturecan be easily achieved by those kinds of boilers, but when thinking about solar energy,things are different. It is true that these temperatures could be achieved by putting flatplate collectors in series, but it must be taken into account that the real outputs in winterare so low that the area needed would be extremely large.Anyway, there is a really interesting solution to this problem, radiant floors. For this type ofheating, solar thermal systems fit perfectly as energy suppliers, as its working temperatureis around 30-40ºC, which is an ideal range of working temperature for our flat platecollectors.Nevertheless, there is a possibility to reach high temperatures over 70ºC with anacceptable output, without having to use a huge amount of flat plate collectorsinstalled in series, it consists of using evacuated-tube collectors. Their higher efficiencycompared to flat plate collectors makes them perfect for this purpose.It must be considered that the technical bases of these heating systems are basically thesame as the ones considered for DHW (Starr, R., 2009; Aladdinsolar, 2008; Progensa, 2007) OTHER APLICATIONSAir conditioningAir conditioning using solar thermal energy is being developed nowadays, and althoughit is still quite expensive, the conception of this technology makes think that it will evolvein a near future to an economically affordable status. There are various physicalprinciples to obtain a cooling system with heat, within them, the followings are some ofthe technologies already available in the market to produce chill water, which could beused to cool buildings during summer:-Single effect absorption-Double-effect absorption Systems for sustainable energy supply for a small village 19 Master in European Construction Engineering (2012-2013)
  22. 22. -Adsorption-Steam jet cycle(European solar thermal Technology platform, 2009)Swimming Pool HeatingAnother application of solar thermal energy is swimming pool water heating. In this case,once again we will find a solar thermal system, with the same conception mentionedbefore, but with some differences. The main distinction refers to the type of collector. Inthis case, we do not need high temperatures; indeed, we should not go over 30 ºC,which is the ideal temperature for the water in a pool. Taking this into account, thecollectors will be made of plastic materials (as ph levels of water may create conflictswith copper, aluminium, etc) specifically made for this purpose. These collectors will nothave cover, or special components that would enhance the heat gain, or prevent heatloose (actually in 30ºC levels, the loss of heat is much lower than in higher temperatures).A key factor in the design of these systems is the volume of flow that goes through thecollectors. This volume should be over 300 l/h per square meter of collector in small poolsand could be lower for big installations (although it will be always over 150 l/h and m2).The reason for this, once again is the need of maintaining water under 30ºC, as highertemperatures would result unpleasant.Moreover, there is an important step that could be considered compulsory in somecases in order to assure the optimum state of the water from the pool, the thermic poolblanket. This special cover protects against evaporation during the nights, which is themain reason for energy loss in pools (U.S. Department of Energy, 2012; Progensa, 2007)GreenhousesApart from a convenient passive design, there are some cold areas where greenhousesmay need additional heating supply. In those cases, a solar thermal system based onradiant floors may fit perfectly the needs of those constructions.Drying systemsDrying processes used in agriculture, such as grain or tobacco, or even in many differentindustries, consume a huge amount of energy due to the fact that they need a greatflow of hot air during a long period of time.In this spot, solar energy has another promising future thanks to the variety of plasticmaterials that can be used to fabricate pipes that would act as air collectors, able toraise its temperature 10 to 15 ºC over ambient temperature. Installing a fan inside thepipe would be enough to complete the system (Progensa, 2007).Water desalinationA solar distiller is a simple and efficient system that allows you to reproducemore rapidlynatural cycles of evaporation and condensation of water, which will result in obtainingpure water.This process removes salt, eliminates waste of fungi, bacteria, viruses and othercontaminants, obtaining water suitable for human consumption.20 Systems for sustainable energy supply for a small village Master in European Construction Engineering (2012-2013)
  23. 23. The principles of solar distillation can be applied at different levels, from small domesticdistillers to get a few litres of water a day, to large facilities which will provide severalcubic meters per day.Currently there are large installations of this type that have been developed in variousparts of the world with water shortages but with access to the sea as Israel, CanaryIslands (Spain) and in various arid Mediterranean islands among others(FundaciónEnergizar, 2012). CURRENT STATUSIn the worldwide solar thermal market, the clear leader in square metres installed isChina, followed by Turkey who has 14 times less square metres installed. The solar thermalenergy installed in China is enough to supply domestic hot water to over 112 millionhomes (around 168 m2). One of the key factors is the low cost of these systems. TheChinese government goal is to meet 300 million square metres installed for the year 2020.Concerning Europe, where high cost of energy is a constant, the use of solar thermalsystems in roofs is spreading widely. In Austria for instance, 15% of homes use thistechnology to heat water. In this line, the absolute leader in Europe is Germany with a33%, whereas Spain, after a promising growth between 2004 and 2008, got stuck in a 9%.On the other hand, considering the percentage of Installed capacity/inhabitants,Cyprus would be the first one all over the world, with 0,89 m2/person, followed by Israelwith 0,56 m2/person, country where more than 90% of homes have installed solarthermal systems on their roofs (energía solar España, 2012) FACTORSExternal inputsObviously the need of solar radiation is determinant when talking about this technology,but for domestic applications, such as Domestic Hot Water, heating, etc. it must betaken into account that the temperature needed is holdin a range between 40-60ºCapproximately, that means that a high level of solar radiation is not compulsory,although there is a minimum. It would be hard to establish this minimum, as it will dependon each particular case and installation.Apart from this, there are other external conditions that may vary the efficiency anddesign of the solar thermal installation, such as average temperature of running water,average temperature of the area and possible shades on the panels (other buildings,vegetation, etc.)Environmental ImpactRegarding renewable energies, there are always benefits concerning environmentalimpact. Solar energy does not release any CO2 emissions during its production, andmoreover prevents this release acting as a substitute of common fossil energyproduction. The only environmental consideration that could be made is the emissionsproduced during its fabrication and transport, and those in relation with materials used.In this point, obtaining the plastic materials used to fabricate the panels (polyurethanes,insulating materials, etc) may be the critical phase in the fabrication process, although inthe long run, are compensated with the free emissions energy produced. Anyhow, in Systems for sustainable energy supply for a small village 21 Master in European Construction Engineering (2012-2013)
  24. 24. general, the production and materials used are considered of low environmentalimpact.Another consideration that could be madeis the low land occupation that thesesystems need, as they are conceived fordomestic use and consequently installednormally in home roofs.Economical AspectThis is one of the strong points of thistechnology. As average (in Spain), the costof a solar thermal system to produceDomestic Hot Water is in a range between1.500-3.000 €, and the amortization timerounds about 5-6 years. These numbersmay act as a guide, and obviously eachinstallation will have different amortizationperiods, depending on the area, scale ofthe installation, etc. Figure E.1.7 Solar radiation in Europe (Solarfeedintariff, 2012)Anyway, it is a good way to get a general overview of the high economical profitabilityof this system.Social FactorThe great acceptance of green energies among society is a truth nowadays. To this, wemust add the economic advantages described before. Both factors assure the future ofthis technology, with the indispensable help of governments.Although this, there is still a small rejection to the aesthetic impact of this panels in roofs.For this reason, there are a lot of innovative solutions integrating solar technology in newmaterials and construction process, to include these systems as a component of finaldesigns.22 Systems for sustainable energy supply for a small village Master in European Construction Engineering (2012-2013)
  25. 25. SWOT - It needs support from - Uses a natural resource conventional energies - Free, inexhaustible and - Heating applications are environmentally friendly still not quite profitable - Contribute to CO2 - Costs of a solar thermal emissions system are higher than a - It is a profitable system conventional system - Conventional equipment and - They count with public systems are cheaper financings - Low degree of mechanization of - Solar thermal cooling systems production will allow having a whole solar - Not stable aid programs thermal air conditioning in the - Lack of incentives for private building users - Rising of conventional energy - Lack of knowledge and costs will imply high profitability formation of installersMEDIUM/HIGH THERMAL SYSTEMS THERMOELECTRIC ENERGYSolar thermoelectric energy is a technology that uses the suns heat to generateelectricity. This process is carried out in so-called solar thermal power plants that beganto be built in Europe and Japan in the early 80s. This system shares all the advantages ofother solar systems described before: free, green and inexhaustible energy source.PrinciplesThe working scheme of a solar thermoelectric plant is similar to a power station, butinstead of coal or gas, it uses solar energy. The irradiation from the sun is concentratedby mirrors into a receiver that reaches temperatures up to 1000°C. This energy is used toheat a fluid and generate steam, which moves a turbine and produces electricity. Whilethe first plants could only operate during the hours of sunlight, nowadays is possible tocontinue the electricity production at night thanks to the energy storage systems used inthis plants. Systems for sustainable energy supply for a small village 23 Master in European Construction Engineering (2012-2013)
  26. 26. Types of Power PlantsCurrently, there are three types of solar thermoelectric plants. In general, the process ofproducing energy is similar; the only difference is the way of concentring the sun energy.Central Tower.A plant of this type is formed by a heliostatfield or large directional mirrors, whichreflect and concentrate sunlight in a boilerlocated on the top of a high tower locatedin the centre of the field.In the boiler, the heat input from the solarradiation is absorbed by a heat transferfluid (melted salt, water or other). This fluid isled to a steam generator; where the heat istransferred to a second fluid, generallywater, which is thereby converted intosteam. From this point the plant operation isanalogous to that of a conventional power Figure E.1. 8 Central tower plant. (Unesa, 2012)station. Therefore, the steam is conductedto a turbine where its energy is converted into rotational mechanical energy thatallowsthe generator to produce electricity. The fluid is subsequently liquefied in a condenser torepeat the cycle.The energy produced, is transformed to a transport voltage andpoured to the distribution grid.Parabolic Dish PlantThis kind of solar thermoelectric power plant uses aparabolic dish mirror to reflect and concentratesunlight on a Stirling engine placed at the centre of theparabola, that is the reason why it is also called StirlingEngine Plant. The accumulated energy increases thetemperature of the air, which turns on the Stirlingengine (which works thanks to the compression andexpansion of a gas inside, produced by changes in itstemperature) and moves a turbine to generateelectricity. Figure E.1.9 Parabolic Dish Plant (Npu, 2008)Parabolic Cylinder Collectors PlantAnother technique to obtain electricity from solarthermal energy is using parabolic cylinder collectors.Their working scheme is similar to one explained in theparabolic dish plant; it consists of parabolic cylindersthat concentrate sunlight and channel it to the focusof the parabola, where there is installed a continuoustube. Inside this tube, a specialkind of oil will raise itstemperature thanks to the concentrated heat; thisenergy will be used, as in the first example, to Figure E.1.10 Parabolic cylinder collectorsproduce steam that will finally move a turbine and (Solarpaces, 2009)obtain electricity.24 Systems for sustainable energy supply for a small village Master in European Construction Engineering (2012-2013)
  27. 27. (Wang, Y., 2008; solarweb, 2011; UNESA, 2012) INDUSTRIAL PROCESSESThere are some industrial processes that need high temperatures that can get profit fromthe solar thermal energy. For example, in the first example of central tower plants, thereis a special area inside the tower that is conceived as a solar oven. Its uses are focusedon testing materials for industry, for example the ceramic shell of a space shuttle orsurface treatments to steel (Ministerio de Economía y competitividad, 2012). CURRENTSTATUSIn this area, where a constant and high level of solar radiation is crucial, inside Europewe find Spain as the leader of electricity production with this technology. In 2011, 21solar thermal plants were already producing 852,4 MW, and 40 new plants are beingdeveloped right now. Perspectives for the year 2014 say that Spain will turn into the worldfirst producer of this green energy (PROTERMOSOLAR, 2012). FACTORSExternal InputsIn this case, a constant and high radiation of solar energy is a mandatory factor. That isthe main reason why the main places where we find these solar plants are south Europe,North Africa or in the Southeast of the United States.Environmental ImpactLand occupation is one of the first thoughts regarding environmental impact. Anyway,normally, the places with higher solar radiation are located in desert areas, and takinginto account that there are no CO2 emissions, the final impact is lowered to thatcreated during construction process and materials used.Economical AspectIn growth tendency, theseplants require high inversions, and still long periods to pay off;but considering the amount of energy able to produce and the reduction of emissions,their development in assured.The LCOE parameter for this technology is: 0,2174€/kWhSocial FactorThis technology represents an important step forward in producing electricity in big scaleprocesses without fossil flues.As a green energy, and located in deserted areas, the level of acceptation of this typeof energy production is really high, although as described before, the economicinversion is important, and thus a strong support from the society and governments toachieve a proper development is essential. Systems for sustainable energy supply for a small village 25 Master in European Construction Engineering (2012-2013)
  28. 28. SWOT - Uses a natural resource - Lack of evacuation networks - Free, inexhaustible and - Doubts about storing energy environmentally friendly - Lack of specialized companies in - Contributes to reduce CO2 the production industry emissions - Insufficient law developed in that - It is a profitable system issue - Great I+D development - Actual high prices - It allows big scale electric - Need for investment aids energy production - Uncertainty about potential - Growing sector suppliers and their prices - Government support - Uncertainty facing financial - Rising of conventional energy institutions costs will imply high profitability - The administrative procedures involving these projects are difficult and long26 Systems for sustainable energy supply for a small village Master in European Construction Engineering (2012-2013)
  29. 29. PHOTOVOLTAIC SYSTEMSA photovoltaic system is a set of devices, which isconceived to capture solar energy and transform itinto electricity for consumption.This system is compound byone or morephotovoltaic panels in charge of transformingsunlight into electrical energy thanks to the physicalinteraction of photons present in sunlight andelectrons present in the materials of these panels.The output of this process is direct current (DC). Asdescribed in the following points, the layout of theinstallation will determine its final power andvoltage.There are three basic schemes in a photovoltaic Figure E.1.11 Photovoltaic effect (Val, 2012)system depending on their use:-Day use, without energy storage need.-Night use, which requires energy storage.-Continuous use, which also requires energy storage.GenerationPhotovoltaic panels are responsible for electricity generation. Their number will dependon several factors, the main ones are:-The average solar irradiation of the area.-Kind and rage of electric needs.-Maximum output power needed.AccumulationThe storage system is based on a special type of battery called solar battery. There aredifferent batteries regarding its voltage, generally within a range between 4V to 24V anddeep discharge range.One of the main problems affecting the batteries in these systems is overcharge. Thissituation happens when the battery is 100% charged, but there is still more energy tryingto get into it. The result is an elevation of the voltage of the battery, which will turn into itsfailure in the future. Consequently, it is compulsory the use of regulators in almost everyinstallation. Its function is to control the electricity flow entering in the battery, so thatwhen it is full, it stops the electricity flow in order to preserve the battery life.TransformationThe energy supplied can be used directly (previously regulated);anyhow it must benoticed that this electricity is presented as direct current (+ / - 24V), fact that could getinto trouble with the few appliances and devices available in the common marketready for this electricity. For this reason it requires a component (Inverter), which Systems for sustainable energy supply for a small village 27 Master in European Construction Engineering (2012-2013)

×