Your SlideShare is downloading. ×
  • Like
IGRT: MVCBCT Calibration and Acceptance testing Procedure
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Now you can save presentations on your phone or tablet

Available for both IPhone and Android

Text the download link to your phone

Standard text messaging rates apply

IGRT: MVCBCT Calibration and Acceptance testing Procedure

  • 203 views
Published

 

Published in Health & Medicine
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
203
On SlideShare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
12
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. IGRT:     MV  CBCT  Calibra0on  and  ATP   on  Siemens  Oncor  Linac     By     Vibha  Chaswal,  Ph.D.  
  • 2. Ac0vi0es*   •  Flat  panel  2D  gain  calibra:on  and    dead  pixel   map   •  MVCBCT  calibra:on  using  clinically  used  and   custom  CBCT  protocols   •  MVCBCT  image  quality  assessment  using   clinically  used  and  custom  CBCT  protocols   *Performed at UIHC RadOnc as Medical Physics Resident
  • 3. Flat  panel  2D  gain  calibra0on     •  Correc:on  for  the  differences  in  flat   panel  diodes  response  in  2D  imaging   •  Without  correc:on,  an  obvious   banding  paHern  would  be  visible  on   the  image.     •  Should  be  done  every  4-­‐6  weeks.     •  Coherence  prac:ce  database,   SERVICE  PATIENT  is  used  to  acquire   port  during  gain  fields  at  different   photon  energies,  dose  rates,  clinically   used  SIDs,  monitor  units  and  field   sizes.   •  For  each  SID  a  treatment  site   containing  4  gain  fields  is  assigned,   and  each  site  can  be  delivered  in  a   auto-­‐sequence  group.      
  • 4. Flat  panel  2D  dead  pixel  map   •  Correc:on  for  non-­‐responding  ‘dead’  pixels.     •  The  grayscale  values  in  the  pixel  surrounding  the  dead  pixel  are   averaged  and  this  value  replaces  the  grayscale  of  the  dead  pixel   •  During  ATP  provided  by  the  manufacturer   Dead pixel map limits (table from Siemens ATP)
  • 5. MVCBCT  calibra0on   Using Geometry Calibration Phantom
  • 6. MVCBCT  calibra0on   •  •  Since the Linac rotation suffers with gantry sag, imager’s sag etc, the 3D projection matrix deviates from a projection matrix model calculated from transformations between the world and gantry co-ordinates system The calibration matrices are therefore, obtained from the projection images of the geometry calibration phantom for each Linac Geometry calibration co-ordinate system (source: Siemen’s ATP)
  • 7. MVCBCT  calibra0on   •  •  •  Geometry calibration is done every six months or whenever required A projection imaging dataset of the phantom is acquired using the clinical CBCT protocol. On Siemens Oncor machines, a 2000 arc-rotation starting from 2700 to an end-angle of 1100 is used for MVCBCT acquisition
  • 8. Acquiring  Projec0on  matrices   Posi:on  phantom  using  room  lasers     Fine-­‐tune  posi:oning  using  x-­‐re:c   Spend  sa:sfactory  amount  of  :me   Calibra:on  fails  oWen  due  to  poor  alignment   Take  a  cone-­‐beam  acquisi:on  using  clinical  CBCT   protocol   •  AWer  acquisi:on,  each  phantom  projec:on  image   is  processed  to  determine  the  ball-­‐bearings’   posi:ons  and  sizes  rela0ve  to  the  imager’s  co-­‐ ordinate  system     •  •  •  •  • 
  • 9. Post  acquisi0on  screens   Arrangement of projection images after calibration projection matrix is fitted. status message for successful or failed calibration is displayed.
  • 10. Failed  Calibra0on:  many  reasons   •  Phantom  misalignment   •  Incorrect  phantom  orienta:on  (gantry  side   opposite)   •  Object  in  image  (e.g.,  level  leW  on  the   phantom  base)   •  Incorrect  cone-­‐beam  protocol.     ………..  A  very  set-­‐up-­‐sensi:ve  procedure!  
  • 11. MV  CBCT  image  quality   MVCBCT Image Quality phantom and sections for image quality tests in IMA phantom. •  •  •  •  •  •  Geometry accuracy Uniformity Noise Spatial resolution Low contrast resolution, and High contrast resolution
  • 12. MVCBCT: Geometric Accuracy •  •  •  •  •  Tests the geometric accuracy of the MVCBCT reconstruction algorithm Phantom alignment very critical Check alignment usig x-retic all along the white engraved axes lines on the phantom. Axial, sagittal and coronal views of the Adaptive Targeting (AT) task-card are used to locate the beads of interest. The beads’ x, y and z positions should be within ± 2 mm of the actual physical co-ordinates.
  • 13. MVCBCT: Geometric Accuracy expected ranges for localization of beads Localized co-ordinates from a 270-110 cbct protocol
  • 14. MVCBCT: Geometric Accuracy (additional clinical protocols in use)
  • 15. MVCBCT: Image quality: Low contrast resolution section 1 (Clinical relevance of the visualization between this range is visualization of bone, air-cavities, and organs) Passing criteria
  • 16. MVCBCT: Image quality: Low contrast resolution section 2 (Clinical relevance of the visualization between this range is visualization of soft-tissue) Passing criteria
  • 17. MVCBCT: Image Quality: Spatial Resolution Determine smallest visible bar group Criteria for passing: group 6 (0.3 lp/mm)
  • 18. MVCBCT: Image Uniformity, Noise and Artifact Performed using uniform solid water insert standard deviation and across all ROIs uniformity w.r.t the central insert
  • 19. Thank  you!!!!!