Medidas De Dispersion

54,777 views
54,742 views

Published on

Published in: Education
2 Comments
12 Likes
Statistics
Notes
No Downloads
Views
Total views
54,777
On SlideShare
0
From Embeds
0
Number of Embeds
181
Actions
Shares
0
Downloads
900
Comments
2
Likes
12
Embeds 0
No embeds

No notes for slide

Medidas De Dispersion

  1. 2. <ul><li>Las medidas de tendencia central tienen como objetivo el sintetizar los datos en un valor representativo, las medidas de dispersión nos di cen hasta que punto estas medidas de tendencia central son representativas como síntesis de la información. </li></ul><ul><li>Las medidas de dispersión cuantifican la separación, la dispersión, la variabilidad de los valores de la distribución respecto al valor central. </li></ul><ul><li>Las medidas de dispersión que estudiaremos son: </li></ul><ul><li>Varianza </li></ul><ul><li>Desviación </li></ul><ul><li>Coeficiente de variación </li></ul>
  2. 3. La varianza es la media aritmética del cuadrado de las desviaciones respecto a la media de una distribución estadística. Se representa por S ². Para los datos tabulados se calcula de la siguiente manera: Para los datos no tabulados se calcula de la siguiente manera: -1
  3. 4. 1 La varianza será siempre un valor positivo o cero , en el caso de que las puntuaciones sean iguales. 2 Si a todos los valores de la variable se les suma un número la varianza no varía . 3 Si todos los valores de la variable se multiplican por un número la varianza queda multiplicada por el cuadrado de dicho número . 4 Si tenemos varias distribuciones con la misma media y conocemos sus respectivas varianzas se puede calcular la varianza total .
  4. 5. 1 La varianza , al igual que la media, es un índice muy sensible a las puntuaciones extremas. 2 En los casos que no se pueda hallar la media tampoco será posible hallar la varianza . 3 La varianza no viene expresada en las mismas unidades que los datos, ya que las desviaciones están elevadas al cuadrado.
  5. 6. Ejemplo 1:   x i f i x i · f i x i 2 · f i [10, 20) 15 1 15 225 [20, 30) 25 8 200 5000 [30,40) 35 10 350 12 250 [40, 50) 45 9 405 18 225 [50, 60 55 8 440 24 200 [60,70) 65 4 260 16 900 [70, 80) 75 2 150 11 250     42 1 820 88 050
  6. 7. Ejemplo 2: Tú y tus amigos habéis medido las alturas de vuestros perros (en milímetros):                                                                               Las alturas (de los hombros) son: 600mm, 470mm, 170mm, 430mm y 300mm. Calcula la media, la varianza y la desviación estándar. Media =   600 + 470 + 170 + 430 + 300   =   1970   = 394 5 5
  7. 8. Ahora calculamos la diferencia de cada altura con la media: Para calcular la varianza, toma cada diferencia, elévala al cuadrado, y haz la media: Varianza: σ 2  =   206 2  + 76 2  + (-224) 2  + 36 2  + (-94) 2   =   108,520   = 21,704 5 5
  8. 9. Es sin duda la medida de dispersión más importante, ya que además sirve como medida previa al cálculo de otros valores estadísticos. La desviación típica se define como la raíz cuadrada de la media de los cuadrados de las desviaciones con respecto a la media de la distribución, es decir, la raíz cuadrada de la varianza, se representa: Para datos agrupados se desglosaría: Y para datos sin agrupar: nᵢ
  9. 10. 1 La desviación típica será siempre un valor positivo o cero , en el caso de que las puntuaciones sean iguales. 2 Si a todos los valores de la variable se les suma un número la desviación típica no varía . 3 Si todos los valores de la variable se multiplican por un número la desviación típica queda multiplicada por dicho número . 4 Si tenemos varias distribuciones con la misma media y conocemos sus respectivas desviaciones típicas se puede calcular la desviación típica total .
  10. 11. 1 La desviación típica , al igual que la media y la varianza, es un índice muy sensible a las puntuaciones extremas. 2 En los casos que no se pueda hallar la media tampoco será posible hallar la desviación típica . 3 Cuanta más pequeña sea la desviación típica mayor será la concentración de datos alrededor de la media .
  11. 12. Ejercicio 1:   x i f i x i · f i x i 2 · f i [10, 20) 15 1 15 225 [20, 30) 25 8 200 5000 [30,40) 35 10 350 12 250 [40, 50) 45 9 405 18 225 [50, 60) 55 8 440 24 200 [60,70) 65 4 260 16 900 [70, 80) 75 2 150 11 250     42 1 820 88 050
  12. 13. Tomando los datos del ejercicio 2 anterior: La varianza es 21,704. Y la desviación estándar es la raíz de la varianza, así que: Desviación estándar:  σ = √21,704 = 147 Y lo bueno de la desviación estándar es que es útil: ahora veremos qué alturas están a distancia menos de la desviación estándar (147mm) de la media: Así que usando la desviación estándar tenemos una manera &quot;estándar&quot; de saber qué es normal, o extra grande o extra pequeño.
  13. 14. Cuando se quiere comparar el grado de dispersión de dos distribuciones que no vienen dadas en las mismas unidades o que las medias no son iguales se utiliza el coeficiente de variación de Pearson que se define como el cociente entre la desviación típica y el valor absoluto de la media aritmética, representa el numero de veces que la desviación típica contiene la media aritmética y por lo tanto cuanto mayor es el coeficiente de variación mayor es mayor es la dispersión y menor la representatividad de la media. Se calcula por:
  14. 15. Ejemplo: Una distribución tiene x = 140 y σ = 28.28 y otra x = 150 y σ = 25. ¿Cuál de las dos presenta mayor dispersión? La primera distribución presenta mayor dispersión.
  15. 16. Realizado por: Aviles,Deisy. Gil, Verónica. Mtto-24

×