Your SlideShare is downloading. ×
Lie Algebras, Killing Forms And Signatures
Lie Algebras, Killing Forms And Signatures
Lie Algebras, Killing Forms And Signatures
Lie Algebras, Killing Forms And Signatures
Lie Algebras, Killing Forms And Signatures
Lie Algebras, Killing Forms And Signatures
Lie Algebras, Killing Forms And Signatures
Lie Algebras, Killing Forms And Signatures
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Lie Algebras, Killing Forms And Signatures

1,112

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,112
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
19
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Lie algebras, Killing forms and signatures Vladimir Cuesta † Instituto de Ciencias Nucleares, Universidad Nacional Aut´ noma de M´ xico, 70-543, Ciudad de o e M´ xico, M´ xico e e Abstract. The killing form is a basic ingredient in abstract Lie algebra theory. If I make a linear transformation in the set of generators of a Lie algebra, I can show that the Killing form is a contravariant tensor, using Sylvester’s law of inertia I can diagonalize it and with this I can find all the Lie algebras of a given dimension according to the signature or equivalently the number of negative, zero or positive eigenvalues. I show that there is one and only one Lie algebra with two generators, using the same method I find that there are five possible Lie algebras with three generators, I show three of them. With this method I can find all the Lie algebras that are isomorphic of a given dimension because the signature is independent of the base, I present some important examples showing isomorphic Lie algebras. 1. Introduction Lie algebras is a branch of abstract mathematics with intense and constant development, in the literature we can find a lot of great and concise books like [1], [2] and so on. We can study different applications (see [3] and [4] for example), even more, we can study the subject as a infinitesimal version of a Lie group (see [5] for instance). Like the reader can note almost all the books are interested in a specific kind of Lie algebras: semisimple Lie algebras. However, according to the Levi decomposition, we take an abstract real Lie algebra with a finite number of generators and it can be divided in a solvable subalgebra and a semisimple subalgebra and this is a first example to make research of the subject, I mean, if I take a Lie algebra I could be interested in the Levi decomposition for different applications. In the case of pure Lie algebras one of the problems that the researcher can find in this area of knowledge is to determine and to classify all the semisimple subalgebras of a specific Lie algebra (see [6] and [7] for instance), its matricial representations and so on. As a third example, if I take a Lie algebra I can study it as a subalgebra of another algebra with more generators (see [1]), which is the opposite of a decomposition problem. Previously I have † vladimir.cuesta@nucleares.unam.mx
  • 2. Lie algebras, Killing forms and signatures 2 presented a brief list of a longer one, in the present paper I will follow the following line of reasoning: I present basic definitions on Lie algebras, I show that the Killing form is a contravariant tensor and like a linear algebra or gravitation specialist knows the signature is an invariant of a bilinear form (like the Killing metric) and so that, if I find the signature of a diagonal Killing form I will obtain an invariant of the theory. Even more, with this it is possible to characterize isomorphic Lie algebras. That is the purpose of the present paper. 2. Lie algebras: definitions and basics 2.1. Lie algebras I present the formal definition of a Lie algebra, along all the present work I will use the following definition (see [2] and [5] for instance): Let L be a vector space over the real field , L is a real Lie algebra when there exists a binary operation denoted as [ , ] and is called commutator or Lie bracket [ , ]:L×L→L (1) and when the commutator obeys the following three properties • Antisymmetry.- For all x, y ∈ L [x, y] = −[y, x], (2) • Bilinearity.- For all x, y ∈ L and all α, β ∈ [αx + βy, z] = α[x, z] + β[y, z], (3) • Jacobi identity.- For all x, y, z ∈ L [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, (4) Now, Let L1 and L2 be two real Lie algebras, then L1 and L2 are isomorphic if there exist a bijection φ : L1 → L2 , (5) such that φ(αx + βy) = αφ(x) + βφ(y), φ([x, y]) = [φ(x), φ(y)], (6) where x, y ∈ L1 and α, β ∈ .
  • 3. Lie algebras, Killing forms and signatures 3 2.2. The Killing form as a tensor We have the definition [ei , ej ] = Cij k ek , (7) for the structure constants of a general Lie algebra (see [2] and [3], for instance). With the previous equations we can define the set of matrices Ti (adjoint representation for the ei generator) as follows: k (Ti )j = −Cij k , (8) where i runs from 1 to the dimension of the Lie algebra. Now, taking the linear transformation ei = Ai m em , (9) I will find the transformation law for the adjoint representations matrices. In fact, these must obey [ei , ej ] = Cij k ek , (10) replacing the transformation law for the Lie algebra generators in the previous equation I find Ai m Aj n Cmn r − Cij k Ak r er = 0, (11) and the result is Tij s = Ai m An A−1 j s Tmn r , (12) r the following step is to replace Tij k in gij = Tim n Tjn m , (13) and the result is gij = Ai m Aj n gmn , (14) I mean, g is a tensor. In fact, gij = T r (Ti · Tj ) = T r (Tj · Ti ) = gji , (15) and g is a Symmetric bilinear form (see [8] for details), in the case when the Killing form is non- degenerate we call this kind of Lie algebras as semisimple. Now, Sylvester’s law of inertia says that when a symmetric bilinear form is written in diagonal form the number of negative, zero and positive eigenvalues (signature) is independent of the original set of generators (see [9] for a detailed discussion). Let A be a Lie algebra of dimension n, then if I have the set of structure constants, I can obtain the adjoint representation, the Killing form and I can find the set of eigenvalues and in this way I can identify and classify a specific Lie algebra according to the signature of the diagonal Killing form. I mean, all the Lie algebras with the same number of negative, zero and positive eigenvalues in the diagonal Killing form are isomorphic.
  • 4. Lie algebras, Killing forms and signatures 4 3. Examples 3.1. Lie algebras with two generators I present the bi-dimensional Lie algebra, the general form is [e1 , e2 ] = αe1 + βe2 , (16) with the adjoint representations 0 0 −α −β T1 = , T2 = , α β 0 0 with Killing metric β 2 −αβ (gij ) = , (17) −αβ α2 and the eigenvalues that I found are λ1 = 0 and λ2 = α2 + β 2 . Then, this is the unique Lie algebra of dimension 2 and like the reader can see, in a base where the Killing form is diagonal the number of negative and zero eigenvalues is zero and the number of positive eigenvalues is one and the Lie algebra is non-semisimple. 3.2. Lie algebras with three generators In the present subsection I present three of the five possible different Lie algebras with three generators. Case I The generators for this first case are (where I take the commutator between matrices)       0 0 0 0 0 1 −1 −2 0        0 0 −1  , (e2ij ) =  0 (e1ij ) =   , (e3ij ) =  1 0 0  1 0 ,     1 2 0 −1 −1 0 0 0 0 the commutation relations between the three generators are, [e1 , e2 ] = e3 , [e1 , e3 ] = −e1 − 2e2 , [e2 , e3 ] = e1 + e2 , (18) using the Killing form definition, I find the result   −4 2 0    2 −2 0  , (gij ) =   0 0 −2
  • 5. Lie algebras, Killing forms and signatures 5 √ √ and I find the eigenvalues λ1 = −3 − 5, λ2 = −2 and λ3 = −3 + 5. I mean, I have a Lie algebra with three negative eigenvalues and it is semisimple (the Lie algebra of this example is equivalent to a Lie algebra with three positive eigenvalues because there is a difference of global sign). Case II I will study the Lie algebra with commutators [e1 , e2 ] = 2e2 , [e1 , e3 ] = 4e2 − 2e3 , [e2 , e3 ] = e1 , (19) using this set I find the adjoint representations       0 0 0 0 2 0 0 4 −2       (e1ij ) =  0 −2 0  , (e2ij ) =  0 0 0  , (e3ij ) =  1 0 0  ,       0 −4 2 −1 0 0 0 0 0 after a straightforward calculation I find the killing form   8 0 0   (gij ) =   0 0 4 ,  0 4 8 √ √ and it has the set of eigenvalues λ1 = 4(1 + 2), λ2 = 8 and λ3 = 4(1 − 2), the number of negative eigenvalues is one and positive eigenvalues are two, the present Lie algebra is semisimple. Case III The set of matrices that I will use are the following, where the Lie bracket is the commutator between matrices       0 0 0 1 0 0 −1 0 0       (e1ij ) =  −1 0 0  , (e2ij ) =  0 0 0  , (e3ij ) =  −1 0 0  ,       1 0 0 1 0 0 0 0 0 The set of commutators for the three generators is [e1 , e2 ] = e1 , [e1 , e3 ] = −e1 , [e2 , e3 ] = −e1 , (20) and the final result for the Killing form is   0 0 0    0 1 −1  , (gij ) =   0 −1 1 and If I diagonalize the previous tensor I find the eigenvalues λ1 = 2, λ2 = 0 and λ3 = 0, in this case the number of positive eigenvalues is one and two null eigenvalues, the Lie algebra is non-semisimple.
  • 6. Lie algebras, Killing forms and signatures 6 4. Isomorphic Lie algebras First example: su(2) In this case the three matrices are       0 0 0 0 0 1 0 −1 0       (Sxij ) =  0 0 −1  , (Syij ) =  0 0 0  , (Szij ) =  1 0 0  ,       0 1 0 −1 0 0 0 0 0 and the commutator is the commutator between matrices, the commutation relations between the three generators are (see [10] for instance), [Sx , Sy ] = Sz , [Sy , Sz ] = Sx , [Sz , Sx ] = Sy , (21) using the Killing form definition, I find the result   −2 0 0   (gij ) =  0 −2 0  ,   0 0 −2 and is a diagonal Killing form with eigenvalues λ1 = −2, λ2 = −2 and λ3 = −2. In this case all the eigenvalues are negative and it means that this Lie algebra is isomorphic to the first Lie algebra of the previous subsection with three positive eigenvalues because the difference between this pair of diagonal Killing forms is a global sign. Second example: sl(2, ) I will study the Lie algebra with generators       0 0 0 0 0 1 −2 0 0        0 0 −1  , (fij ) =  0 0 0  , (hij ) =  0 2 0  , (eij ) =       2 0 0 0 −2 0 0 0 0 in this case the set of commutators is (see [11] and [4] for instance) [h, e] = 2e, [h, f ] = −2f, [e, f ] = h, (22) and after a straightforward calculation I find the killing form   0 4 0   (gij ) =   4 0 0 ,  0 0 8
  • 7. Lie algebras, Killing forms and signatures 7 and the set of eigenvalues for the Killing form is λ1 = 8, λ2 = −4 and λ3 = 4, the number of negative eigenvalues is one and the number of positive eigenvalues is two and the Lie algebra is isomorphic to the second Lie algebra of the previous subsection. Third example: Antisymmetric 3 × 3 matrices I will study the Lie algebra with generators       0 0 0 0 0 −1 0 1 0        0 0 1  , (e2ij ) =  0 0 0  , (e3ij ) =  −1 0 0  , (e1ij ) =       0 −1 0 1 0 0 0 0 0 in this case the set of commutators is [e1 , e2 ] = −e3 , [e1 , e3 ] = e2 , [e2 , e3 ] = −e1 , (23) and after a straightforward calculation I find the killing form   −2 0 0   (gij ) =  0 −2 0  ,   0 0 −2 and the set of eigenvalues for the Killing form is λ1 = −2, λ2 = −2 and λ3 = −2, the number of negative eigenvalues is three and the Lie algebra is isomorphic to the first Lie algebra of the previous subsection (the difference is a global sign). 5. Conclusions and perspectives In the present paper I have shown a general method for finding isomorphic Lie algebras (see [4], too), all the Lie algebras with the same number of negative, null and positive eigenvalues for the Killing form are isomorphic (see [12] for a precise discussion on signatures). I have shown that there is one and only one Lie algebra with two generators and there are five possible Lie algebras with three generators, altough I show only three of all. Later, I show two examples to illustrate the method to recognize isomorphic Lie algebras in the case of three generators, I present the following table where I resume my results N egative Zero P ositive Lie algebra eigenvalues eigenvalues eigenvalues type Case I 0 0 3 semisimple Case II 1 0 2 semisimple Case III 0 1 2 non − semisimple Case IV 1 1 1 non − semisimple Case V 0 2 1 non − semisimple
  • 8. Lie algebras, Killing forms and signatures 8 To finish the paper I show the following table, where I find all the possible signatures for the diagonal Killing form of a Lie algebra with four generators. In fact, I found nine Lie algebras and like I said, If I could diagonalize the Killing form I can identify isomorphic Lie algebras If the number of negative, null and positive eigenvalues for the diagonal Killing form are the same, N egative Zero P ositive Lie algebra eigenvalues eigenvalues eigenvalues type Case I 0 0 4 semisimple Case II 1 0 3 semisimple Case III 0 1 3 non − semisimple Case IV 0 2 2 non − semisimple Case V 2 0 2 semisimple Case VI 1 1 2 non − semisimple Case V II 0 3 1 non − semisimple Case V III 1 2 1 non − semisimple Case IX 0 4 0 non − semisimple for future work, I can identify isomorphic Lie algebras with four generators or another option is to find a classification when the generators are four, five and so on. References [1] M. Rausch de Traubenberg and M. J. Slupinski, Finite-dimensional Lie algebras of order F, J. Math. Phys. 43 (10), (2002), [2] E. van Groesen and E. M. Jager, Lie algebras, Part 1 Finite and infinite dimensional Lie algebras and applications in physics, North-Holland, (1990), [3] Francesco Iachello, Lie Algebras and Applications, Springer, (2006), [4] Vladimir Cuesta, Ph.D. thesis, Cinvestav, Mexico, (2007), [5] Roger Carter, Greame Segal and Ian Macdonald, Lectures on Lie Groups and Lie Algebras, Cambridge University Press, (1995), [6] M. Lorente and B. Gruber, Classification of Semisimple Subalgebras of Simple Lie Algebras, J. Math. Phys., 13 (10), (1972), [7] Evelyn Weimar-Woods, The three-dimensional real Lie algebras and their contractions, J. Math. Phys. 32 (8), (1991), [8] Aleksei Ivanovich Kostrikin, Introducci´ n al algebra, Mosc´ , MIR, (1980), o u ´ [9] Elie Cartan, The theory of spinors, Dover Publications Inc., (1966), [10] Hans Samelson, Notes on Lie Algebras, Universitext, Springer, (1990), [11] Vladimir Cuesta, Merced Montesinos and Jose David Vergara, Gauge invariance of the action principle for gauge systems with noncanonical symplectic structures, Phys. Rev.D 76, 025025, (2007), [12] Steven Weinberg, Gravitation and cosmology: principles and applications of the general theory of relativity, Massachusetts Institute of Technology, John Wiley and Sons, Inc. (1972).

×