VIT – PAST PAPERSMATHEMATICS - UNSOLVED PAPER - 2010
SECTION – I   Single Correct Answer Type         There are five parts in this question. Four choices are given for each ...
01   Problem     If F is function such that F (0) = 2, F (1) = 3, F(x+2)=2F(x)-F(x+1) for x   0   then F     (5) is equal ...
02   Problem     Let S be a set containing n elements. Then,number of binary operations on S is     a. nn          n2     ...
03   Problem                                                                  11            1     The numerically greatest...
04   Problem     The number of solutions of the equation ,is     a. 0     b. 1     c.   2     d. infinitely many
05   Problem     If ax     by   cz   du and a, b, c, d are in GP, then x, y, z, u are in     a. AP     b. GP     c.   HP  ...
06   Problem     If z satisfies the equation z   z   1   2 i , then z is equal to          3     a.        2i          2  ...
07   Problem     If         1   i 3   then arg(z)is          z                1   i 3     a. 60     b.   120     c.   240 ...
08   Problem     If f x        log10 x2 .The set of all values of x , for which f (x) is real, is     a. [- 1, 1]     b.  ...
09   Problem                                                 2     For what values of m can the expression, 2x       mxy  ...
10   Problem                                                                              1     If B is a non-singular mat...
11   Problem                                                                           f x    g x     h x     If f (x), g ...
12   Problem     The chances of defective screws in three boxes A, B, C are 1 , 1 , 1                                     ...
13   Problem     The value of            cos    is equal to                            1 sin     a.   tan    -            ...
14   Problem     If 3 sin   5 cos   5 , then the value of   5 sin   3 cos   is equal to     a. 5     b. 3     c.   4     d...
15   Problem     The principal value of         1         5   is                              sin       sin               ...
16   Problem     A rod of length 1slides with its ends on two perpendicular lines. Then, the locus     of its mid point is...
17   Problem     The equation of straight line through the intersection of line 2x + y = 1 and 3x +     2y =5 and passing ...
18   Problem     The line joining is divided internally in the ratio 2 : 3 at P. If varies, then the locus     of P is    ...
19   Problem     If 2x + y + k = 0 is a normal to the parabola , then the value of k, is     a. 8     b. 16     c.   24   ...
20   Problem            1     1     1                 1    is equal to     lim                     .......     n     1.2  ...
21   Problem     The condition that the line lx +my = 1 may be normal to the curve y 2   4ax     , is     a. al3      2alm...
22   Problem                                              2     If   f    x    dx   f   x , then   f x       dx   is equal...
23   Problem                            2x          2                is equal to          sin 1 ,                         ...
24   Problem     If the equation of an ellipse is 3x 2   2y 2   6x   8y   5   0 , then which of     the following are true...
25   Problem                                                                 x2   y2         y2   x2     The equation of t...
26   Problem     Domain of the function f x   logx cos x , is     a.    ,    1          2 2     b.    ,    1          2 2 ...
27   Problem     Range of the function             1    x2    , is                             y   sin                    ...
28   Problem     If x       sec   cos , y   sec n   cos n   , then x 2       dy                                           ...
29   Problem     If                                                       dy   is equal to          y             x       ...
30   Problem          x           dt     If                            then x can be equal to (a) -          1            ...
31   Problem     The area bounded by the curve y   sin x , x-axis and the lines x   , is     a. 2 sq unit     b. 1 sq unit...
32   Problem     The degree of the differential equation of all curves having normal of constant     length c is     a. 1 ...
33   Problem                                                                        If a    ˆ            2i     ˆ    ...
34   Problem     The distance between the line                                                          r    2ˆ         ...
35   Problem     The equation of sphere concentric with the sphere     x2       y2        z2    4x       6y        8z     ...
36   Problem     If the lines   x 1   y       1   z 1     x 3   y       k   z   intersect, then the value of              ...
37   Problem     The two curves y               3x and y   5x intersect at an angle                          log 3 log 5  ...
38   Problem     The equation        x2   4xy   y2   X   3y   2   0   represents a     parabola, if   is     a. 0     b. 1...
39   Problem     If two circles 2x 2   2y 2   3x   6y       k   0 and x 2   y2   4x   10y   16   0     cut orthogonally, t...
40   Problem     If A (- 2, 1), B (2, 3)and C (- 2, -4)are three points. Then, the angle between BA     and BC is     a. t...
FOR SOLUTION VISIT WWW.VASISTA.NET
Upcoming SlideShare
Loading in …5
×

VIT - Mathematics -2010 Unsolved Paper

642 views

Published on

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
642
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
8
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

VIT - Mathematics -2010 Unsolved Paper

  1. 1. VIT – PAST PAPERSMATHEMATICS - UNSOLVED PAPER - 2010
  2. 2. SECTION – I Single Correct Answer Type  There are five parts in this question. Four choices are given for each part and one of them is correct. Indicate you choice of the correct answer for each part in your answer-book by writing the letter (a), (b), (c) or (d) whichever is appropriate
  3. 3. 01 Problem If F is function such that F (0) = 2, F (1) = 3, F(x+2)=2F(x)-F(x+1) for x 0 then F (5) is equal to a. - 7 b. - 3 c. 17 d. 13
  4. 4. 02 Problem Let S be a set containing n elements. Then,number of binary operations on S is a. nn n2 b. 2 n2 c. n 2 d. n
  5. 5. 03 Problem 11 1 The numerically greatest term in the expansion of 3 5x when x is 5 a. 55 x 39 b. 55x 36 c. 45 x 39 d. 45 x 36
  6. 6. 04 Problem The number of solutions of the equation ,is a. 0 b. 1 c. 2 d. infinitely many
  7. 7. 05 Problem If ax by cz du and a, b, c, d are in GP, then x, y, z, u are in a. AP b. GP c. HP d. None of these
  8. 8. 06 Problem If z satisfies the equation z z 1 2 i , then z is equal to 3 a. 2i 2 b. 3 2i 2 c. 3 2 i 2 3 d. 2+ i 2
  9. 9. 07 Problem If 1 i 3 then arg(z)is z 1 i 3 a. 60 b. 120 c. 240 d. 300
  10. 10. 08 Problem If f x log10 x2 .The set of all values of x , for which f (x) is real, is a. [- 1, 1] b. 1, c. , 1 d. , 1 1,
  11. 11. 09 Problem 2 For what values of m can the expression, 2x mxy 3y 2 5y – 2 be expressed as the product of two linear factors? a. 0 b. ± 1 c. ±7 d. 49
  12. 12. 10 Problem 1 If B is a non-singular matrix and A is a square matrix, then det B AB is equal to 1 a. det A 1 b. det B c. det (A) d. det (B)
  13. 13. 11 Problem f x g x h x If f (x), g (x) and h (x) are three polynomials of degree 2 and x f x g x h x ,then x is a polynomial of degree f x g x h x a. 2 b. 3 c. 0 d. atmost 3
  14. 14. 12 Problem The chances of defective screws in three boxes A, B, C are 1 , 1 , 1 5 6 7 respectively. A box is selected at random and a screw drawn from it at random is found to be defective. Then, the probability that it came from box A, is 16 a. 29 b. 1 15 27 c. 59 42 d. 107
  15. 15. 13 Problem The value of cos is equal to 1 sin a. tan - 2 4 b. tan 4 2 c. tan 4 2 d. tan 4 2
  16. 16. 14 Problem If 3 sin 5 cos 5 , then the value of 5 sin 3 cos is equal to a. 5 b. 3 c. 4 d. None of these
  17. 17. 15 Problem The principal value of 1 5 is sin sin 6 a. 6 b. 5 6 c. 7 6 d. None of these
  18. 18. 16 Problem A rod of length 1slides with its ends on two perpendicular lines. Then, the locus of its mid point is 2 2 l2 a. x y 4 2 2 l2 b. x y 2 c. x 2 2 l2 y 4 d. None of these
  19. 19. 17 Problem The equation of straight line through the intersection of line 2x + y = 1 and 3x + 2y =5 and passing through the origin is a. 7x + 3y =0 b. 7x - y =0 c. 3x + 2y=0 d. x + y=O
  20. 20. 18 Problem The line joining is divided internally in the ratio 2 : 3 at P. If varies, then the locus of P is a. a straight line b. a pair of straight lines c. a circle d. None of the above
  21. 21. 19 Problem If 2x + y + k = 0 is a normal to the parabola , then the value of k, is a. 8 b. 16 c. 24 d. 32
  22. 22. 20 Problem 1 1 1 1 is equal to lim ....... n 1.2 2.3 3.4 n n 1 a. 1 b. -1 c. 0 d. None of these
  23. 23. 21 Problem The condition that the line lx +my = 1 may be normal to the curve y 2 4ax , is a. al3 2alm2 m2 2 b. al 2alm3 m2 3 c. al 2alm2 m3 3 d. al 2alm2 m2
  24. 24. 22 Problem 2 If f x dx f x , then f x dx is equal to a. 1 2 f x 2 3 b. f x 3 c. f x 3 2 d. f x
  25. 25. 23 Problem 2x 2 is equal to sin 1 , dx 2 4x 8x 13 1 2x 2 3 4x 2 8x 13 a. x 1 tan log c 3 4 9 3 1 2x 2 3 4x 2 8x 13 b. tan log c 2 3 4 9 1 2x 2 3 c. x 1 tan log 4x 2 8x 13 c 3 2 3 2x 2 3 d. x 1 tan 1 log 4x 2 8x 13 c 2 3 4
  26. 26. 24 Problem If the equation of an ellipse is 3x 2 2y 2 6x 8y 5 0 , then which of the following are true? 1 e a. 3 b. centre is (-1, 2) c. foci are (- 1, 1) are (- 1, 3) d. All of the above
  27. 27. 25 Problem x2 y2 y2 x2 The equation of the common tangents to the two hyperbolas 1 and 2 1 a2 b2 a b2 ,are a. y x b2 a2 b. y x a2 b2 c. y x a2 b2 d. y x a2 b2
  28. 28. 26 Problem Domain of the function f x logx cos x , is a. , 1 2 2 b. , 1 2 2 c. , 2 2 d. None of these
  29. 29. 27 Problem Range of the function 1 x2 , is y sin 1 x2 a. 0, 2 b. 0, 2 c. 0, 2 d. 0, 2
  30. 30. 28 Problem If x sec cos , y sec n cos n , then x 2 dy 2 is 4 dx equal to a. n2 y 2 4 b. n2 4 y 2 2 2 c. n y 4 d. None of these
  31. 31. 29 Problem If dy is equal to y x y x y ...... , then dx a. y 2 x y 2x y3 x b. 2 2y 2xy 1 y3 x c. 2y 2 x d. None of these
  32. 32. 30 Problem x dt If then x can be equal to (a) - 1 t t2 1 6 2 a. 3 b. 3 c. 2 d. None of these
  33. 33. 31 Problem The area bounded by the curve y sin x , x-axis and the lines x , is a. 2 sq unit b. 1 sq unit c. 4 sq unit d. None of these
  34. 34. 32 Problem The degree of the differential equation of all curves having normal of constant length c is a. 1 b. 3 c. 4 d. None of these
  35. 35. 33 Problem      If a ˆ 2i ˆ 2j ˆ b 3k, ˆ i ˆ 2j ˆ and c k ˆ 3i ˆ then a j, tb is perpendicular to , if t is equal to a. 2 b. 4 c. 6 d. 8
  36. 36. 34 Problem The distance between the line   r 2ˆ i ˆ 2j ˆ 3k ˆ i ˆ j ˆ and the plane r. ˆ 4k i ˆ 5j ˆ k 5 is a. 10 3 10 b. 3 10 c. 3 3 10 d. 9
  37. 37. 35 Problem The equation of sphere concentric with the sphere x2 y2 z2 4x 6y 8z 5 0 and which passes through the origin, is a. x 2 y2 z2 4x 6y 8z 0 2 b. x y2 z2 6y 8z 0 c. x 2 y2 z2 0 2 d. x y2 z2 4x 6y 8z 6 0
  38. 38. 36 Problem If the lines x 1 y 1 z 1 x 3 y k z intersect, then the value of and 2 3 4 2 2 1 k, is 3 a. 2 b. 9 2 c. 2 9 3 d. 2
  39. 39. 37 Problem The two curves y 3x and y 5x intersect at an angle log 3 log 5 a. tan 1 1 log 3 log 5 b. tan 1 log 3 + log 5 1 - log 3 log 5 c. tan 1 log 3 + log 5 1 + log 3 log 5 log 3 - log 5 d. tan 1 1 - log 3 log 5
  40. 40. 38 Problem The equation x2 4xy y2 X 3y 2 0 represents a parabola, if is a. 0 b. 1 c. 2 d. 4
  41. 41. 39 Problem If two circles 2x 2 2y 2 3x 6y k 0 and x 2 y2 4x 10y 16 0 cut orthogonally, then the value of k is a. 41 b. 14 c. 4 d. 1
  42. 42. 40 Problem If A (- 2, 1), B (2, 3)and C (- 2, -4)are three points. Then, the angle between BA and BC is a. tan 1 2 3 3 b. tan 1 2 1 1 c. tan 3 1 1 d. tan 2
  43. 43. FOR SOLUTION VISIT WWW.VASISTA.NET

×