SlideShare a Scribd company logo
1 of 60
Download to read offline
Density of Oil-related Systems at High Pressures
Experimental measurements of HPHT density
	
  Post	
  Doc.	
  
Teresa	
  Regueira	
  Muñiz	
  
Vasos	
  Vasou	
  
s131031	
  
DEPARTMENT	
  OF	
  CHEMISTRY	
  
MASTER	
  THESIS	
  DEFENCE	
  
Senior	
  researcher	
  
Wei	
  Yan	
  
Supervisors:	
  
PresentaHon	
  outline	
  
IntroducHon	
  
–  HPHT	
  reservoirs	
  
–  Thesis	
  scope	
  
–  Literature	
  review	
  
	
  
Density	
  
–  IntroducHon	
  to	
  density	
  
–  Density	
  measurement	
  methods	
  
PresentaHon	
  outline	
  
HPHT	
  density	
  measurements	
  
–  U-­‐tube	
  basic	
  principle	
  
–  CalibraHon	
  procedure	
  
–  Experimental	
  setup	
  
–  Experimental	
  procedure	
  
	
  
Density	
  modeling	
  
	
  
Results	
  and	
  discussion	
  
	
  
Conclusion	
  	
  
HPHT	
  reservoirs	
  
(BakerHughes,	
  2005)	
   (Belani	
  &	
  Orr,	
  2008)	
  	
  
Challenges	
  of	
  HPHT	
  reservoirs	
  
	
  (Shadravan	
  &	
  Amani,	
  2012)	
  
HPHT	
  well	
  summit,	
  London,	
  2012	
  
Thesis	
  scope	
  
Correct	
  idenHficaHon	
  of	
  the	
  
physical	
  properHes	
  of	
  the	
  
reservoir	
  hydrocarbons	
  
Be^er	
  understanding	
  of	
  the	
  
behaviour	
  of	
  the	
  hydrocarbon	
  
reservoir	
  fluids	
  	
  
More	
  precise	
  esHmaHon	
  of	
  
the	
  amount	
  of	
  recourses	
  in	
  
place	
  
Be^er	
  producHon	
  
forecasHng	
  	
  
Minimized	
  technical	
  
risks	
  
PosiHve	
  revenue	
  	
  
Major	
  tasks	
  
•  Literature	
   review	
   of	
   the	
   exisHng	
   relevant	
   data	
   on	
   density	
   of	
  
alkane	
  binary	
  mixtures	
  under	
  HPHT.	
  
•  CalibraHon	
  of	
  the	
  densimeter	
  for	
  pressures	
  up	
  to	
  1400	
  bar	
  and	
  
temperatures	
  up	
  to	
  190	
  °C.	
  
•  ValidaHon	
  of	
  the	
  apparatus	
  through	
  the	
  use	
  of	
  n-­‐decane.	
  
•  Measurement	
  of	
  the	
  density	
  of	
  the	
  binary	
  system	
  methane	
  -­‐	
  n-­‐
decane	
  for	
  three	
  different	
  composiHons	
  and	
  under	
  a	
  wide	
  range	
  
of	
  pressure	
  and	
  temperature.	
  	
  
•  A	
   comparison	
   of	
   two	
   cubic	
   EquaHons	
   of	
   State	
   (EoS)	
   (Soave–
Redlich–Kwong	
   and	
   Peng–Robinson)	
   with	
   two	
   non-­‐cubic	
   EoS	
  
(Perturbed	
   Chain	
   StaHsHcal	
   AssociaHng	
   Fluid	
   Theory	
   and	
  
Benedict–Webb–Rubin).	
  
Literature	
  
Audonnet	
  &	
  Padua	
  (2004):	
  
	
  
•  Anton	
  Paar	
  DMA	
  60	
  densimeter	
  	
  
•  Binary	
  mixture	
  methane	
  –	
  n-­‐decane	
  	
  
•  xmethane	
  =	
  0,	
  0.227,	
  0.410,	
  0.601,	
  0.799	
  
•  Temperatures	
  from	
  30	
  °C	
  to	
  120	
  °C	
  .	
  
•  Pressures	
  from	
  200	
  bar	
  to	
  650	
  bar	
  (extrapolated	
  up	
  to	
  
1400	
  bar)	
  
•  Standard	
  deviaHon	
  with	
  literature	
  equal	
  to	
  0.17%	
  and	
  
0.3%	
  
Literature	
  
Canet	
  et	
  al.	
  (2002):	
  
	
  
•  Binary	
  mixture	
  methane	
  –	
  n-­‐decane	
  	
  
•  xmethane	
  =	
  0.3124,	
  0.4867,	
  0.6,	
  0.7566,	
  0.9575	
  
•  Temperatures	
  from	
  20	
  °C	
  to	
  100	
  °C.	
  	
  
•  Pressures	
  from	
  200	
  bar	
  to	
  650	
  bar	
  (extrapolated	
  up	
  to	
  
1400	
  bar	
  	
  
•  AAD	
  with	
  literature	
  equal	
  to	
  3.3%	
  and	
  7.3%	
  
Density	
  
Density	
  is	
  a	
  fundamental	
  parameter	
  that	
  contributes	
  
to	
  the	
  characterizaHon	
  of	
  the	
  product	
  and	
  is	
  defined	
  
as	
   the	
   exact	
   mass	
   of	
   a	
   solid,	
   gas	
   or	
   liquid	
   that	
   is	
  
occupying	
   a	
   specific	
   volume.	
   The	
   most	
   common	
  
symbol	
  for	
  density	
  is	
  the	
  Greek	
  le^er	
  ρ	
  and	
  it	
  can	
  be	
  
mathemaHcally	
  defined	
  as:	
  	
  
	
  
ρ	
  =	
  m/V	
  	
  (kg/m3).	
  	
  
	
  
where	
  m	
  is	
  the	
  mass	
  and	
  V	
  is	
  the	
  volume	
  
	
  
Density	
  
Pressure	
  and	
  temperature	
  are	
  two	
  important	
  parameters	
  
that	
  affect	
  density.	
  An	
  increase	
  on	
  pressure	
  will	
  cause	
  an	
  
increase	
  on	
  density	
  whereas,	
  on	
  the	
  other	
  hand,	
  for	
  most	
  
materials	
   the	
   temperature	
   affects	
   density	
   inversely	
  
proporHonal.	
  
Temperature	
  
Density	
  
Pressure	
  
Density	
  
Density measurement methods
•  Pycnometric	
  densitometers	
  
•  Hydrometers	
  
•  Refractometer	
  and	
  index	
  of	
  refracHon	
  densitometers	
  	
  
•  VibraHng	
  tube	
  densitometers	
  
Pycnometric	
  densitometers	
  
(Eren,	
  1999)	
  
•  Weighing of the mass of the
empty pycnometer.
•  Determination of the volume
with the use of distilled water
•  Weighing again to get the mass
of the water.
•  Repeat with the liquid of the
unknown density to determine its
mass and its volume.
•  The density of the unknown
liquid is calculated as:
Precision	
  
Can	
  also	
  
measure	
  specific	
  
gravity	
  
User	
  depended	
  
Slow	
  
High	
  cost	
  
(scale,	
  lab)	
  
Hydrometers
Scale
F l u i d
vessel
We i g h t
bulb
Consists	
   of	
   a	
   floaHng	
   glass	
   body,	
  
with	
  a	
  cylindrical	
  stem	
  with	
  a	
  scale	
  
and	
  a	
  bulb	
  filled	
  with	
  metal	
  weight.	
  
The	
   measurement	
   procedure	
   is	
  
very	
   simple	
   since	
   it	
   only	
   involves	
  
the	
   immersion	
   of	
   the	
   hydrometer	
  
in	
   the	
   sample	
   and	
   the	
   reading	
   of	
  
the	
  density	
  directly	
  from	
  the	
  scale.	
  
The	
   deeper	
   the	
   hydrometer	
   sinks	
  
the	
   less	
   dense	
   the	
   sample	
   is.	
   The	
  
principle	
  used	
  for	
  determining	
  the	
  
density	
   with	
   the	
   hydrometer	
   is	
  
buoyancy.	
  	
  
Low	
  cost	
  
Simple	
  
Fast	
  
Traceable	
  to	
  
internaHonal	
  
standards	
  
User	
  depended	
  
Need	
  temperature	
  
correcHon	
  
Require	
  large	
  
sample	
  volume	
  
(100	
  mL)	
  
(Eren,	
  1999)	
  
Refractometer and index of refraction
densitometers
(Eren,	
  1999)	
  
Describes	
  how	
  much	
  of	
  the	
  light,	
  is	
  
refracted	
  when	
  entering	
  a	
  sample	
  
where	
   c	
   is	
   the	
   speed	
   of	
   light	
   in	
  
vacuum	
   and	
   u	
   is	
   the	
   velocity	
   of	
  
light	
  in	
  a	
  medium	
  
Index	
  of	
  refracHon	
  	
  
Consists	
  of	
  a	
  transparent	
  cell	
  that	
  the	
  
liquid	
   or	
   gas	
   flows	
   through,	
   a	
   laser	
  
beam	
  that	
  passes	
  through	
  the	
  cell	
  and	
  
the	
   sample	
   and	
   is	
   refracted	
   with	
   an	
  
angle	
  and	
  a	
  sensor.	
  	
  
	
  
The	
   angle	
   of	
   refracHon	
   depends	
   on	
  
the	
   shape,	
   size	
   and	
   thickness	
   of	
   the	
  
container	
   and	
   on	
   the	
   density	
   of	
   the	
  
sample.	
  
	
  
An	
   accurate	
   measurement	
   of	
   the	
  
posiHon	
   of	
   the	
   beam	
   and	
   the	
  
refracHon	
   angle	
   can	
   relate	
   to	
   the	
  
sample’s	
  density.	
  
n	
  =	
  c/u	
  
Vibrating tube densitometers
The vibrating tube densitometer is based on the principle that
every fluid has a unique natural frequency.
where	
  K	
  is	
  the	
  elasHcity	
  constant	
  of	
  the	
  body,	
  m	
  is	
  the	
  mass	
  of	
  
the	
   body	
   containing	
   the	
   fluid,	
   ρ	
   is	
   the	
   fluid	
   density,	
   V	
   is	
   the	
  
volume	
  of	
  the	
  body	
  and	
  τ	
  	
  is	
  the	
  oscillaHon	
  period.	
  
High	
  accuracy	
  and	
  repeatability	
  
Very	
  fast	
  
Li^le	
  sample	
  volume	
  required	
  	
  
	
  
Possible	
  dynamic	
  influence	
  of	
  
viscosity	
  on	
  the	
  results	
  for	
  
viscous	
  samples	
  
Vibrating tube densitometers
The single tube has pressure
losses and some obstruction
on the natural flow.
The two-tube densitometer is
designed in a way that the two
tubes are vibrating in an antiphase,
which provides higher accuracy.
(Eren,	
  1999)	
  
U-tube basic principle
A	
  hollow	
  U-­‐shaped	
  tube	
  is	
  filled	
  with	
  the	
  sample	
  fluid	
  and	
  is	
  
subjected	
   to	
   an	
   electromagneHc	
   force	
   and	
   is	
   excited	
   into	
  
periodic	
   oscillaHon.	
   The	
   frequency	
   as	
   a	
   funcHon	
   of	
   Hme	
   is	
  
recorded	
  and	
  a	
  sin-­‐wave	
  of	
  a	
  certain	
  period	
  and	
  amplitude	
  is	
  
created.	
  
	
  (Paar,	
  2015)	
  
U-tube basic principle
	
  (Paar,	
  2015)	
  
AlternaHng	
  voltage	
  is	
  sent	
  through	
  the	
  electric	
  coil	
  on	
  the	
  
tube,	
   which	
   creates	
   an	
   alternaHng	
   magneHc	
   field.	
   The	
  
magnet	
  on	
  the	
  tube	
  reacts	
  to	
  the	
  alternaHng	
  current	
  and	
  
as	
  a	
  result	
  an	
  excitaHon	
  is	
  generated.	
  The	
  frequency	
  of	
  the	
  
magnet’s	
   oscillaHon	
   that	
   is	
   caused	
   is	
   measured	
   with	
   an	
  
amplifier.	
  
U-tube basic principle
	
  (Paar,	
  2015)	
  
U-tube basic principle
Hans Stabinger studied the relation between the period of
oscillation and the density and found a way to implement it
mechanically. To achieve this, Stabinger introduced two,
unique	
   for	
   each	
   instrument,	
   adjustment constants namely A
and B described as:
ρ	
  =	
  A	
  .	
  τ2	
  -­‐	
  B	
  
U-tube basic principle
	
  (Paar,	
  2015)	
  
Because the density of the water and the air are known the
adjustment constants A and B can be calculated as they
define a straight line in the graph. The instrument measures
the period of oscillation of the sample and then applies that
value to the adjustment line and converts it to the
corresponding density.
CalibraHon	
  procedure	
  
Pressure:	
  0.1	
  MPa	
  	
  -­‐	
  140	
  MPa	
   	
  Temperature:	
  5	
  °C	
  -­‐	
  75	
  °C	
  
Pressure:	
  0.1	
  Mpa 	
   	
   	
  Temperature:	
  5	
  °C	
  -­‐	
  190°C	
  
CalibraHon	
  procedure	
  
Pressure:	
  0.1	
  Mpa	
  –	
  140	
  MPa 	
  Temperature:	
  100	
  °C	
  -­‐	
  150°C	
  
Pressure:	
  1	
  Mpa	
  –	
  140	
  MPa 	
  Temperature:	
  190°C	
  
&	
  
Pressure:	
  0.1	
  Mpa 	
   	
   	
  Temperature:	
  190°C	
  
Experimental setup
Anton Paar External Measuring Cell DMA-HPM
(DTU	
  laboratory)	
  
	
  (Paar,	
  2015)	
  
Measuring range
Density 0 to 3 g/cm3
Pressure 0 to 1400 bar
Temperature -10 to +200 °C
Accuracy	
  
Density Up to 0.001 g/cm3
Error 0.001 to 0.0001 g/cm3
PolyScience advanced programmable temperature
controller with Swivel 180™ Rotating Controller
(DTU	
  laboratory)	
  
Maximum Temperature 200°C
Minimum Temperature -20°C
Temperature Stability ±0.01°C
Anton	
  Paar	
  mPDS	
  5	
  
(DTU	
  laboratory)	
  
SIKA digital pressure gauge Type P
(DTU	
  laboratory)	
  
Maximum Pressure 1500 bar
Temperature	
  effect ±0.002%.	
  
(SIKA,	
  2015)	
  
Edwards E2M1.5 two-stage oil sealed rotary vane
pump and Edwards Active Digital Controller (ADC)
(DTU	
  laboratory)	
  
Teledyne Isco 260D syringe pump
(DTU	
  laboratory)	
  
Overall experimental setup
(DTU	
  laboratory)	
  
Apparatus cleaning procedure
Cleaning	
  of	
  the	
  densitometer	
  and	
  the	
  fluid	
  piston	
  cylinder:	
  
•  Remove	
   the	
   already	
   inserted	
   sample	
   with	
   moving	
   the	
   fluid	
  
piston	
  cylinder	
  back	
  and	
  forth	
  several	
  Hmes.	
  
•  Rinse	
  with	
  toluene	
  (strong	
  organic	
  solvent,	
  ideal	
  for	
  cleaning	
  
petroleum	
  mixtures).	
  
•  Rinse	
  with	
  ethanol	
  (can	
  remove	
  toluene	
  and	
  is	
  volaHle	
  and	
  can	
  
evaporate	
  without	
  residue).	
  
•  Dry	
   out	
  with	
  pressurized	
  air	
  and	
  evacuate	
  the	
  system	
  for	
  an	
  
hour	
   in	
   75	
   °C	
   and	
   then	
   lep	
   under	
   vacuum	
   over	
   night	
   at	
  
ambient	
  temperature.	
  	
  
Cleaning	
  of	
  the	
  mixture	
  cylinder	
  and	
  peripheral	
  lab	
  equipment:	
  
•  All	
  the	
  parts	
  of	
  the	
  cylinder	
  and	
  peripheral	
  equipment	
  were	
  
rinsed	
  with	
  the	
  cleaning	
  fluids	
  and	
  dried	
  out	
  with	
  pressurized	
  
air.	
  The	
  cylinder	
  was	
  then,	
  evacuated.	
  
Mixture preparation
ρdec	
  =	
  726.55	
  kg/m3	
  at	
  Tambient	
  =	
  24.97	
  °C	
  (Lemmon	
  &	
  Span,	
  2006)	
  	
  
(DTU	
  laboratory)	
  
•  n-­‐decane	
  was	
  transferred	
  with	
  the	
  
use	
   of	
   a	
   50	
   mL	
   bure^e	
   with	
  
readability	
  ±	
  0.01	
  mL.	
  
•  Methane	
  was	
  transferred	
  from	
  the	
  
gas	
  pressurized-­‐bo^le	
  into	
  the	
  gas	
  
cylinder.	
  
•  The	
   gas	
   cylinder	
   was	
   placed	
   on	
   a	
  
balance	
   (readability	
   0.001g)	
   and	
  
the	
   methane	
   mass	
   transferred	
   in	
  
the	
  mixture	
  cylinder	
  was	
  read	
  from	
  
the	
  balance.	
  	
  
Performing a measurement
Performing a measurement
•  Temperature	
  set	
  on	
  the	
  PolyScience	
  advanced	
  programmable	
  
temperature	
  controller.	
  
•  The	
  first	
  pressure	
  step	
  was	
  manually	
  reached.	
  
•  The	
  values	
  for	
  the	
  data	
  transfer	
  and	
  the	
  slope	
  stability	
  were	
  
added	
  by	
  the	
  user.	
  
•  IniHate	
   the	
   measurement	
   from	
   the	
   Microsop	
   Excel®	
  
spreadsheet	
  provided	
  by	
  Anton	
  Paar.	
  
•  Aper	
  the	
  recording	
  process	
  ended,	
  the	
  user	
  could	
  access	
  the	
  
recorded	
  values	
  from	
  the	
  data	
  spreadsheet	
  of	
  the	
  Microsop	
  
Excel®	
  tool.	
  
•  Finally,	
  the	
  pressure	
  was	
  increased	
  and	
  aper	
  all	
  the	
  pressure	
  
steps	
  were	
  measured	
  the	
  same	
  procedure	
  was	
  repeated	
  for	
  
the	
  remaining	
  temperatures.	
  
Anton	
  Paar	
  mPDS	
  5	
  
(DTU	
  laboratory)	
  
Density	
  modelling	
  
Cubic	
  EoS	
   Non-­‐Cubic	
  EoS	
  
Soave–Redlich–Kwong	
  (SRK)	
  	
   Perturbed	
  Chain	
  StaHsHcal	
  AssociaHng	
  
Fluid	
  Theory	
  (PC-­‐SAFT)	
  	
  
Peng–Robinson	
  (PR)	
  	
   Soave	
  modified	
  Benedict–Webb–
Rubin	
  (SBWR)	
  	
  
InteracHon	
  parameters	
  for	
  the	
  methane	
  –	
  n-­‐decane	
  binary	
  mixture	
  	
  
CriHcal	
  parameters	
  of	
  methane	
  and	
  n-­‐decane	
  
Results	
  and	
  discussion	
  
Densimeter	
  calibraHon	
  and	
  validaHon	
  results	
  
•  The	
  oscillaHon	
  period	
  of	
  the	
  tube	
  when	
  filled	
  with	
  water	
  was	
  
measured.	
  	
  
•  The	
  oscillaHon	
  period	
  of	
  the	
  evacuated	
  tube	
  was	
  measured.	
  	
  
•  The	
   density	
   of	
   water	
   was	
   taken	
   from	
   NIST	
   that	
   uses	
   the	
   EoS	
  
from	
  Wagner	
  and	
  Pruss	
  (2002)	
  	
  
•  The	
  density	
  of	
  n-­‐dodecane	
  was	
  taken	
  from	
  NIST	
  that	
  uses	
  the	
  
EoS	
  from	
  Lemmon	
  &	
  Huber	
  (2004).	
  	
  
•  The	
   oscillaHon	
   period	
   of	
   n-­‐dodecane	
   was	
   measured	
   in	
   a	
  
previous	
  work	
  (Chasomeris	
  et	
  al.,	
  2015).	
  
Densimeter	
  calibraHon	
  and	
  validaHon	
  results	
  
2580	
  
2590	
  
2600	
  
2610	
  
2620	
  
2630	
  
2640	
  
2650	
  
2660	
  
0	
   20	
   40	
   60	
   80	
   100	
   120	
   140	
   160	
   180	
   200	
  
Period	
  (μs)	
  
Temperature	
  (°C)	
  
2655	
  
2665	
  
2675	
  
2685	
  
2695	
  
2705	
  
2715	
  
2725	
  
2735	
  
0	
   200	
   400	
   600	
   800	
   1000	
   1200	
   1400	
   1600	
  
Period	
  (μs)	
  
Pressure	
  (bar)	
  
5	
  °C	
  	
   25	
  °C	
  	
   50	
  °C	
  	
   75	
  °C	
  	
   100	
  °C	
  	
   150	
  °C	
  	
   190	
  °C	
  	
  
Period	
  of	
  the	
  evacuated	
  densimeter	
  for	
  temperatures	
  from	
  5°C	
  to	
  190°C	
  	
  
Water	
  measured	
  period	
  for	
  temperatures	
  from	
  5°C	
  to	
  190°C	
  and	
  pressures	
  from	
  1	
  bar	
  to	
  1400	
  bar	
  	
  
Densimeter	
  calibraHon	
  and	
  validaHon	
  results	
  
2,26	
  
2,28	
  
2,30	
  
2,32	
  
2,34	
  
2,36	
  
2,38	
  
2,40	
  
2,42	
  
2,44	
  
0	
   50	
   100	
   150	
   200	
  
	
  A	
  (T)	
  (10^9kg	
  s-­‐1	
  m-­‐3)	
  
Temperature	
  (°C)	
  	
  
1,41	
  
1,42	
  
1,43	
  
1,44	
  
1,45	
  
1,46	
  
1,47	
  
1,48	
  
1,49	
  
1,5	
  
0	
   200	
   400	
   600	
   800	
   1000	
   1200	
   1400	
  
A(T)/B(T,p)(105s-­‐2)	
  
Pressure	
  (bar)	
  
5°C	
  
25°C	
  
50°C	
  
75°C	
  
100°C	
  
150°C	
  
190°C	
  
(Segovia	
  et	
  al.	
  2009)	
  
CharacterisHc	
  parameter	
  A(T)	
  and	
  the	
  raHo	
  between	
  parameter	
  A(T)	
  and	
  parameter	
  
B(T,p)	
  	
  for	
  temperatures	
  from	
  5°C	
  to	
  190°C	
  	
  
Densimeter	
  calibraHon	
  and	
  validaHon	
  results	
  
-­‐0,25	
  
-­‐0,2	
  
-­‐0,15	
  
-­‐0,1	
  
-­‐0,05	
  
0	
  
0,05	
  
0,1	
  
0,15	
  
0,2	
  
0	
   50	
   100	
   150	
   200	
  
RelaTve	
  deviaTon	
  (%)	
  
Temperature	
  (°C)	
  
Lemmon	
  &	
  Span	
  (2006)	
  
AAD	
  =	
  0.08%.	
  	
  
-­‐0,25	
  
-­‐0,2	
  
-­‐0,15	
  
-­‐0,1	
  
-­‐0,05	
  
0	
  
0,05	
  
0,1	
  
0,15	
  
0,2	
  
0	
   200	
   400	
   600	
   800	
   1000	
   1200	
   1400	
   1600	
  RelaTve	
  deviaTon	
  (%)	
  
Pressure	
  (bar)	
  
Lemmon	
  &	
  Span	
  (2006)	
  
RelaHve	
  deviaHons	
  between	
  the	
  experimental	
  density	
  values	
  of	
  n-­‐decane	
  and	
  the	
  data	
  
from	
  Lemmon	
  &	
  Span	
  (2006)	
  as	
  a	
  funcHon	
  of	
  temperature	
  and	
  pressure.	
  	
  
Mixture methane – n-decane (xmethane = 0.227)
A	
   correlaHon	
   with	
  
the	
   use	
   of	
   the	
   Tait	
  
equaHon	
  (Dymond	
  &	
  
Malhotra,	
  1988)	
  was	
  
performed.	
  
Parameters	
  obtained	
  in	
  the	
  Tait	
  equaHon	
  with	
  the	
  results	
  from	
  Audonnet	
  &	
  Pádua	
  
(2004)	
  (xmethane	
  =	
  0.227)	
  and	
  our	
  experimental	
  results	
  (xmethane	
  =	
  0.227)	
  	
  
Mixture methane – n-decane (xmethane = 0.227)
Surface	
  ρ(T,p)	
  for	
  our	
  experimental	
  results	
  (xmethane	
  =	
  0.227)	
  	
  and	
  the	
  results	
  from	
  Audonnet	
  &	
  Pádua	
  
(2004)	
  (xmethane	
  =	
  0.227	
  )for	
  the	
  mixture	
  methane	
  –	
  n-­‐decane	
  
Mixture methane – n-decane (xmethane = 0.227)
RelaHve	
   deviaHons	
   between	
   the	
   experimental	
   density	
   values	
   of	
   the	
   mixture	
   methane	
   –	
   n-­‐decane	
  
(xmethane	
   =	
   0.227)	
   and	
   the	
   data	
   from	
   Audonnet	
   &	
   Paduá	
   (2004)	
   (xmethane	
   =	
   0.227)	
   as	
   a	
   funcHon	
   of	
  
temperature	
  and	
  pressure	
  
-­‐0,2	
  
-­‐0,1	
  
0,0	
  
0,1	
  
0,2	
  
0,3	
  
0,4	
  
0	
   20	
   40	
   60	
   80	
   100	
   120	
  
RelaTve	
  deviaTon	
  (%)	
  
Temperature	
  (°C)	
  
-­‐0,2	
  
-­‐0,1	
  
0,0	
  
0,1	
  
0,2	
  
0,3	
  
0,4	
  
0	
   100	
   200	
   300	
   400	
   500	
   600	
   700	
  
RelaTve	
  deviaTon	
  (%)	
  
Pressure	
  (bar)	
  
AAD	
  of	
  0.17%.	
  	
  
Mixture methane – n-decane (xmethane = 0.6017)
Parameters	
  obtained	
  in	
  the	
  Tait	
  equaHon	
  with	
  the	
  results	
  from	
  Audonnet	
  &	
  Pádua	
  
(2004)	
  (xmethane	
  =	
  0.601),	
  our	
  experimental	
  results	
  (xmethane	
  =	
  0.6017)	
  and	
  those	
  from	
  
Canet	
  et	
  al.	
  (2002)	
  (xmethane	
  =	
  0.6)	
  
Mixture methane – n-decane (xmethane = 0.6017)
Surface	
  ρ(T,p)	
  for	
  our	
  experimental	
  results	
  (xmethane	
  =	
  0.6017)	
  	
  and	
  the	
  results	
  from	
  Audonnet	
  &	
  Pádua	
  
(2004)	
  (xmethane	
  =	
  0.601)	
  for	
  the	
  mixture	
  methane	
  –	
  n-­‐decane	
  
Mixture methane – n-decane (xmethane = 0.6017)
RelaHve	
   deviaHons	
   between	
   the	
   experimental	
   density	
   values	
   of	
   the	
   mixture	
   methane	
   –	
   n-­‐decane	
  
(xmethane	
  =	
  0.6017),	
  the	
  data	
  from	
  Audonnet	
  &	
  Paduá	
  (2004)	
  (xmethane	
  =	
  0.601)	
  and	
  Canet	
  et	
  al.	
  (2002)	
  
(xmethane	
  =	
  0.6)	
  as	
  a	
  funcHon	
  of	
  temperature	
  and	
  pressure	
  
-­‐0,4	
  
-­‐0,2	
  
0,0	
  
0,2	
  
0,4	
  
0,6	
  
0,8	
  
1,0	
  
0	
   20	
   40	
   60	
   80	
   100	
  
RelaTve	
  deviaTon	
  (%)	
  
Temperature	
  (°C)	
  
Audonnet	
  &	
  Padua	
  (2004)	
   Canet	
  et	
  al.	
  (2002)	
  
-­‐0,4	
  
-­‐0,2	
  
0,0	
  
0,2	
  
0,4	
  
0,6	
  
0,8	
  
1,0	
  
0	
   200	
   400	
   600	
   800	
   1000	
   1200	
   1400	
  
RelaTve	
  deviaTon	
  (%)	
  
Pressure	
  (bar)	
  
Audonnet	
  &	
  Padua	
  (2004)	
   Canet	
  et	
  al.	
  (2002)	
  
AAD	
  =	
  0.30%	
  	
   AAD	
  =	
  0.19%	
  	
  
Mixture methane – n-decane (xmethane = 0.8496)
Parameters	
  obtained	
  in	
  the	
  Tait	
  equaHon	
  with	
  the	
  results	
  from	
  Audonnet	
  &	
  Pádua	
  
(2004)	
  (xmethane	
  =	
  0.799)	
  and	
  our	
  experimental	
  results	
  (xmethane	
  =	
  0.8496)	
  	
  
Mixture methane – n-decane (xmethane = 0.8496)
Surface	
  ρ(T,p)	
  for	
  our	
  experimental	
  results	
  (xmethane	
  =	
  0.8496)	
  	
  and	
  the	
  results	
  from	
  Audonnet	
  &	
  Pádua	
  
(2004)	
  (xmethane	
  =	
  0.799)	
  for	
  the	
  mixture	
  methane	
  –	
  n-­‐decane	
  
Mixture methane – n-decane (xmethane = 0.8496)
RelaHve	
   deviaHons	
   between	
   the	
   experimental	
   density	
   values	
   of	
   the	
   mixture	
   methane	
   -­‐	
   n-­‐decane	
  
(xmethane	
   =	
   0.8496)	
   and	
   the	
   data	
   from	
   Audonnet	
   &	
   Paduá	
   (2004)	
   (xmethane	
   =	
   0.799)	
   as	
   a	
   funcHon	
   of	
  
temperature	
  and	
  pressure	
  
AAD	
  =	
  11.11%	
  	
  
-­‐14	
  
-­‐12	
  
-­‐10	
  
-­‐8	
  
-­‐6	
  
-­‐4	
  
-­‐2	
  
0	
  
0	
   20	
   40	
   60	
   80	
   100	
   120	
  
RelaTve	
  deviaTon	
  (%)	
  
Temperature	
  (°C)	
  
Audonnet	
  &	
  Padua	
  (2004)	
  
-­‐14	
  
-­‐12	
  
-­‐10	
  
-­‐8	
  
-­‐6	
  
-­‐4	
  
-­‐2	
  
0	
  
0	
   100	
   200	
   300	
   400	
   500	
   600	
   700	
  
RelaTve	
  deviaTon	
  (%)	
  
Pressure	
  (bar)	
  
Audonnet	
  &	
  Padua	
  (2004)	
  
Density	
  as	
  a	
  funcHon	
  of	
  pressure	
  for	
  all	
  composiHons	
  at	
  
5	
  °C	
  and	
  190	
  °C	
  	
  
300	
  
400	
  
500	
  
600	
  
700	
  
800	
  
300	
   500	
   700	
   900	
   1100	
   1300	
  
Density	
  (kg/m3)	
  
Pressure	
  (bar)	
  
n-­‐decane	
  at	
  5	
  °C	
   Xmethane=0.227	
  at	
  5	
  °C	
   Xmethane=0.6017	
  at	
  5	
  °C	
   Xmethane=0.8496	
  at	
  5	
  °C	
  
n-­‐decane	
  at	
  190	
  °C	
   Xmethane=0.227	
  at	
  190	
  °C	
   Xmethane=0.6017	
  at	
  190	
  °C	
   Xmethane=0.8496	
  at	
  190	
  °C	
  
Density modeling
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
SRK	
   PR	
   PC	
  SAFT	
   SBWR	
  
Xmethane	
  =	
  0.227	
   Xmethane	
  =	
  0.6017	
   Xmethane	
  =	
  0.8496	
   Decane	
  
Conclusion	
  
•  The	
   validaHon	
   of	
   the	
   apparatus	
   through	
   n-­‐decane	
   was	
  
successful.	
   The	
   results	
   were	
   compared	
   with	
   the	
   data	
   from	
  
NIST	
  and	
  they	
  were	
  in	
  good	
  agreement	
  with	
  an	
  AAD	
  of	
  0.08%.	
  	
  
•  For	
   the	
   mixture	
   with	
   a	
   composiHon	
   of	
   methane	
   xmethane	
   =	
  
0.227	
   and	
   aper	
   a	
   correlaHon	
   with	
   the	
   Tait	
   equiHon	
   the	
  
experimental	
  data	
  were	
  compared	
  with	
  the	
  results	
  obtained	
  
from	
  Audonnet	
  &	
  Pádua	
  with	
  an	
  AAD	
  of	
  0.17%.	
  	
  
•  The	
   mixture	
   under	
   study	
   with	
   a	
   composiHon	
   of	
   methane	
  
xmethane	
  =	
  0.6017	
  were	
  again	
  correlated	
  with	
  the	
  Tait	
  equaHon	
  
and	
  compared	
  with	
  the	
  results	
  from	
  Audonnet	
  &	
  Pádua	
  with	
  
an	
  AAD	
  of	
  0.30%	
  and	
  with	
  those	
  from	
  Canet	
  et	
  al.	
  (2002)	
  with	
  
an	
  AAD	
  of	
  0.19%.	
  
Conclusion	
  
•  The	
  mixture	
  with	
  a	
  mole	
  fracHon	
  of	
  methane	
  xmethane	
  =	
  0.8496	
  
was	
   compared	
   with	
   the	
   results	
   obtained	
   from	
   Audonnet	
   &	
  
Pádua	
   (2004)	
   for	
   their	
   mixture	
   with	
   methane	
   mole	
   fracHon	
  
xmethane	
   =	
   0.799.	
   The	
   experimental	
   results	
   have	
   an	
   AAD	
   of	
  
11.11%.	
   A	
   high	
   negaHve	
   deviaHon	
   like	
   this	
   was	
   expected	
  
because	
   of	
   the	
   different	
   methane	
   mole	
   fracHon	
   in	
   the	
   two	
  
mixtures.	
  	
  
•  In	
   general,	
   the	
   method	
   used	
   under	
   this	
   work	
   can	
   be	
  
considered	
  successful	
  since	
  the	
  results	
  for	
  the	
  pure	
  n-­‐decane	
  
and	
   the	
   binary	
   mixture	
   are	
   in	
   good	
   agreement	
   with	
   those	
  
from	
  the	
  literature.	
  
Conclusion	
  
•  PC	
  SAFT	
  was	
  the	
  one	
  that	
  performed	
  be^er	
  with	
  AADs	
  lower	
  
than	
   1.2%.	
   The	
   SRK,	
   on	
   the	
   other	
   hand,	
   showed	
   very	
   high	
  
deviaHons	
  between	
  10%	
  and	
  20%.	
  	
  
•  For	
   the	
   pure	
   n-­‐decane	
   and	
   the	
   mixture	
   with	
   methane	
   mole	
  
fracHon	
   xmethane	
   =	
   0.227	
   the	
   non-­‐cubic	
   equaHons	
   performed	
  
much	
  be^er	
  with	
  lower	
  deviaHons.	
  	
  
	
  
•  The	
   fact	
   that	
   on	
   the	
   one	
   hand	
   the	
   non-­‐cubic	
   EoS	
   showed	
  
beer	
  results	
  but	
  on	
  the	
  other	
  hand	
  the	
  cubic	
  PR	
  performed	
  
beer	
  than	
  the	
  non-­‐cubic	
  SBWR	
  for	
  some	
  of	
  the	
  mixtures,	
  is	
  
an	
  indicator	
  that	
  further	
  study	
  is	
  necessary.	
  	
  
Density modeling
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
SRK	
   PR	
   PC	
  SAFT	
   SBWR	
  
Xmethane	
  =	
  0.227	
   Xmethane	
  =	
  0.6017	
   Xmethane	
  =	
  0.8496	
   Decane	
  
Thank	
  you	
  for	
  your	
  Hme!	
  
Viscosity	
  
	
  (Paar,	
  2015)	
  FricHon	
  between	
  the	
  fluid	
  and	
  the	
  tube	
  
The	
  oscillaHon	
  period	
  of	
  the	
  tube	
  is	
  influenced	
  by	
  viscosity.	
  
High	
  viscous	
  sample	
  will	
  give	
  a	
  density	
  over-­‐reading.	
  
Viscosity	
  
	
  (Paar,	
  2015)	
  
Highest	
   viscosity	
  
m e a s u r e m e n t	
  
from	
   Canet	
   et	
   al.	
  
η	
   =	
   1.7	
   mPa.s	
   for	
  
xmethane=0.3	
   and	
  
T = 2 0	
   ° C	
   a n d	
  
P=140	
  MPa	
  	
  

More Related Content

What's hot

Engineering thermodynamics P K Nag chapter-1 solution
Engineering thermodynamics P K Nag chapter-1 solutionEngineering thermodynamics P K Nag chapter-1 solution
Engineering thermodynamics P K Nag chapter-1 solutionrohit kumar
 
Transport phenomena-Mass Transfer 31-Jul-2016
Transport phenomena-Mass Transfer 31-Jul-2016Transport phenomena-Mass Transfer 31-Jul-2016
Transport phenomena-Mass Transfer 31-Jul-2016Muhammad Rashid Usman
 
Unit i basic concept of isentropic flow
Unit   i basic concept of isentropic flowUnit   i basic concept of isentropic flow
Unit i basic concept of isentropic flowsureshkcet
 
Research Internship Thesis - Final Report - Ankit Kukreja
Research Internship Thesis - Final Report - Ankit KukrejaResearch Internship Thesis - Final Report - Ankit Kukreja
Research Internship Thesis - Final Report - Ankit KukrejaANKIT KUKREJA
 
Conversion factors
Conversion factorsConversion factors
Conversion factorspirate_Scoe
 
Effect of Longitudinal Velocity of the Particle of the Dusty Fluid with Volum...
Effect of Longitudinal Velocity of the Particle of the Dusty Fluid with Volum...Effect of Longitudinal Velocity of the Particle of the Dusty Fluid with Volum...
Effect of Longitudinal Velocity of the Particle of the Dusty Fluid with Volum...inventionjournals
 
Chap 1(a) molecular-diffusion_in_gas(2)
Chap 1(a) molecular-diffusion_in_gas(2)Chap 1(a) molecular-diffusion_in_gas(2)
Chap 1(a) molecular-diffusion_in_gas(2)Charice Wan
 
Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)Yuri Melliza
 
Analisis critical heat flux dalam celah sempit rektangular vertikal rev 02
Analisis critical heat flux dalam celah sempit rektangular vertikal rev 02Analisis critical heat flux dalam celah sempit rektangular vertikal rev 02
Analisis critical heat flux dalam celah sempit rektangular vertikal rev 02moh rohmatulloh
 
Dimension less numbers in applied fluid mechanics
Dimension less numbers in applied fluid mechanicsDimension less numbers in applied fluid mechanics
Dimension less numbers in applied fluid mechanicstirath prajapati
 
Water sensitivity test (tsr)
Water sensitivity test (tsr)Water sensitivity test (tsr)
Water sensitivity test (tsr)Kishan Naik
 
Tracer Cert technical note no 1 ppb & sub ppb water vapour standards, revised...
Tracer Cert technical note no 1 ppb & sub ppb water vapour standards, revised...Tracer Cert technical note no 1 ppb & sub ppb water vapour standards, revised...
Tracer Cert technical note no 1 ppb & sub ppb water vapour standards, revised...John Thompson
 
NUMERICAL INVESTIGATION OF LAMINAR NANOFLUID FLOW IN MICRO CHANNEL HEAT SINKS
NUMERICAL INVESTIGATION OF LAMINAR NANOFLUID FLOW IN MICRO CHANNEL HEAT SINKS NUMERICAL INVESTIGATION OF LAMINAR NANOFLUID FLOW IN MICRO CHANNEL HEAT SINKS
NUMERICAL INVESTIGATION OF LAMINAR NANOFLUID FLOW IN MICRO CHANNEL HEAT SINKS IAEME Publication
 
FOOD ENGINEERING Part 1
FOOD ENGINEERING Part 1FOOD ENGINEERING Part 1
FOOD ENGINEERING Part 1Nima Dorji
 

What's hot (20)

Engineering thermodynamics P K Nag chapter-1 solution
Engineering thermodynamics P K Nag chapter-1 solutionEngineering thermodynamics P K Nag chapter-1 solution
Engineering thermodynamics P K Nag chapter-1 solution
 
Introduction to transport phenomena bodh raj
Introduction to transport phenomena bodh rajIntroduction to transport phenomena bodh raj
Introduction to transport phenomena bodh raj
 
Transport phenomena-Mass Transfer 31-Jul-2016
Transport phenomena-Mass Transfer 31-Jul-2016Transport phenomena-Mass Transfer 31-Jul-2016
Transport phenomena-Mass Transfer 31-Jul-2016
 
1824 02
1824 021824 02
1824 02
 
Unit i basic concept of isentropic flow
Unit   i basic concept of isentropic flowUnit   i basic concept of isentropic flow
Unit i basic concept of isentropic flow
 
003
003003
003
 
Research Internship Thesis - Final Report - Ankit Kukreja
Research Internship Thesis - Final Report - Ankit KukrejaResearch Internship Thesis - Final Report - Ankit Kukreja
Research Internship Thesis - Final Report - Ankit Kukreja
 
Conversion factors
Conversion factorsConversion factors
Conversion factors
 
Effect of Longitudinal Velocity of the Particle of the Dusty Fluid with Volum...
Effect of Longitudinal Velocity of the Particle of the Dusty Fluid with Volum...Effect of Longitudinal Velocity of the Particle of the Dusty Fluid with Volum...
Effect of Longitudinal Velocity of the Particle of the Dusty Fluid with Volum...
 
Chap 1(a) molecular-diffusion_in_gas(2)
Chap 1(a) molecular-diffusion_in_gas(2)Chap 1(a) molecular-diffusion_in_gas(2)
Chap 1(a) molecular-diffusion_in_gas(2)
 
Sedimentation
SedimentationSedimentation
Sedimentation
 
Exp no.03 hydrostatics pressure
Exp no.03 hydrostatics pressureExp no.03 hydrostatics pressure
Exp no.03 hydrostatics pressure
 
Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)
 
Flow visualization
Flow visualizationFlow visualization
Flow visualization
 
Analisis critical heat flux dalam celah sempit rektangular vertikal rev 02
Analisis critical heat flux dalam celah sempit rektangular vertikal rev 02Analisis critical heat flux dalam celah sempit rektangular vertikal rev 02
Analisis critical heat flux dalam celah sempit rektangular vertikal rev 02
 
Dimension less numbers in applied fluid mechanics
Dimension less numbers in applied fluid mechanicsDimension less numbers in applied fluid mechanics
Dimension less numbers in applied fluid mechanics
 
Water sensitivity test (tsr)
Water sensitivity test (tsr)Water sensitivity test (tsr)
Water sensitivity test (tsr)
 
Tracer Cert technical note no 1 ppb & sub ppb water vapour standards, revised...
Tracer Cert technical note no 1 ppb & sub ppb water vapour standards, revised...Tracer Cert technical note no 1 ppb & sub ppb water vapour standards, revised...
Tracer Cert technical note no 1 ppb & sub ppb water vapour standards, revised...
 
NUMERICAL INVESTIGATION OF LAMINAR NANOFLUID FLOW IN MICRO CHANNEL HEAT SINKS
NUMERICAL INVESTIGATION OF LAMINAR NANOFLUID FLOW IN MICRO CHANNEL HEAT SINKS NUMERICAL INVESTIGATION OF LAMINAR NANOFLUID FLOW IN MICRO CHANNEL HEAT SINKS
NUMERICAL INVESTIGATION OF LAMINAR NANOFLUID FLOW IN MICRO CHANNEL HEAT SINKS
 
FOOD ENGINEERING Part 1
FOOD ENGINEERING Part 1FOOD ENGINEERING Part 1
FOOD ENGINEERING Part 1
 

Similar to Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

Fundamentals of Convection
Fundamentals of ConvectionFundamentals of Convection
Fundamentals of ConvectionRuchikaZalpouri
 
Fluid Mechanics MEC 154 Lect 1 Summer 2023.pdf
Fluid Mechanics MEC 154  Lect 1 Summer 2023.pdfFluid Mechanics MEC 154  Lect 1 Summer 2023.pdf
Fluid Mechanics MEC 154 Lect 1 Summer 2023.pdfkaramhmad
 
Lab 2 Fluid Flow Rate.pdfMEE 491 Lab #2 Fluid Flow Rate .docx
Lab 2 Fluid Flow Rate.pdfMEE 491 Lab #2  Fluid Flow Rate .docxLab 2 Fluid Flow Rate.pdfMEE 491 Lab #2  Fluid Flow Rate .docx
Lab 2 Fluid Flow Rate.pdfMEE 491 Lab #2 Fluid Flow Rate .docxDIPESH30
 
lab 4 requermenrt.pdfMECH202 – Fluid Mechanics – 2015 Lab .docx
lab 4 requermenrt.pdfMECH202 – Fluid Mechanics – 2015 Lab .docxlab 4 requermenrt.pdfMECH202 – Fluid Mechanics – 2015 Lab .docx
lab 4 requermenrt.pdfMECH202 – Fluid Mechanics – 2015 Lab .docxDIPESH30
 
Mekanika Fluida 1 P2. Oke.pdf, Presentasi kuliah pertemuan 2 untuk mata kulia...
Mekanika Fluida 1 P2. Oke.pdf, Presentasi kuliah pertemuan 2 untuk mata kulia...Mekanika Fluida 1 P2. Oke.pdf, Presentasi kuliah pertemuan 2 untuk mata kulia...
Mekanika Fluida 1 P2. Oke.pdf, Presentasi kuliah pertemuan 2 untuk mata kulia...ujiburrahman2
 
Developing Flow Pressure Drop and Friction Factor of Water in Copper Microcha...
Developing Flow Pressure Drop and Friction Factor of Water in Copper Microcha...Developing Flow Pressure Drop and Friction Factor of Water in Copper Microcha...
Developing Flow Pressure Drop and Friction Factor of Water in Copper Microcha...Mirmanto
 
Defeloping flow and pressure drop in microchannels
Defeloping flow and pressure drop in microchannelsDefeloping flow and pressure drop in microchannels
Defeloping flow and pressure drop in microchannelsMirmanto
 
TRS 398 (Technical Report Series)
TRS 398 (Technical Report Series)TRS 398 (Technical Report Series)
TRS 398 (Technical Report Series)Vinay Desai
 
Early kick detection and nonlinear behavior of drilling mu…
Early kick detection and nonlinear behavior of drilling mu…Early kick detection and nonlinear behavior of drilling mu…
Early kick detection and nonlinear behavior of drilling mu…Frank-Michael Jäger
 
Rev. August 2014 ME495 - Pipe Flow Characteristics… Page .docx
   Rev. August 2014 ME495 - Pipe Flow Characteristics… Page .docx   Rev. August 2014 ME495 - Pipe Flow Characteristics… Page .docx
Rev. August 2014 ME495 - Pipe Flow Characteristics… Page .docxjoyjonna282
 
Introduction and first law of tehrmodynamics
Introduction and first law of tehrmodynamicsIntroduction and first law of tehrmodynamics
Introduction and first law of tehrmodynamicsHEENAKATARIYA1
 
Physics And Clinical Measurements
Physics And Clinical MeasurementsPhysics And Clinical Measurements
Physics And Clinical MeasurementsKhalid
 
Presentation Kenes
Presentation KenesPresentation Kenes
Presentation Kenestauwaves
 
- VENTURI METER .docx
- VENTURI METER .docx- VENTURI METER .docx
- VENTURI METER .docxHogr kamal
 
Viscosityexperimentusing computer
Viscosityexperimentusing computerViscosityexperimentusing computer
Viscosityexperimentusing computerMidoOoz
 

Similar to Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density (20)

Fundamentals of Convection
Fundamentals of ConvectionFundamentals of Convection
Fundamentals of Convection
 
Fluid Mechanics MEC 154 Lect 1 Summer 2023.pdf
Fluid Mechanics MEC 154  Lect 1 Summer 2023.pdfFluid Mechanics MEC 154  Lect 1 Summer 2023.pdf
Fluid Mechanics MEC 154 Lect 1 Summer 2023.pdf
 
Lab 2 Fluid Flow Rate.pdfMEE 491 Lab #2 Fluid Flow Rate .docx
Lab 2 Fluid Flow Rate.pdfMEE 491 Lab #2  Fluid Flow Rate .docxLab 2 Fluid Flow Rate.pdfMEE 491 Lab #2  Fluid Flow Rate .docx
Lab 2 Fluid Flow Rate.pdfMEE 491 Lab #2 Fluid Flow Rate .docx
 
Presentation10-9.ppt
Presentation10-9.pptPresentation10-9.ppt
Presentation10-9.ppt
 
lab 4 requermenrt.pdfMECH202 – Fluid Mechanics – 2015 Lab .docx
lab 4 requermenrt.pdfMECH202 – Fluid Mechanics – 2015 Lab .docxlab 4 requermenrt.pdfMECH202 – Fluid Mechanics – 2015 Lab .docx
lab 4 requermenrt.pdfMECH202 – Fluid Mechanics – 2015 Lab .docx
 
Mekanika Fluida 1 P2. Oke.pdf, Presentasi kuliah pertemuan 2 untuk mata kulia...
Mekanika Fluida 1 P2. Oke.pdf, Presentasi kuliah pertemuan 2 untuk mata kulia...Mekanika Fluida 1 P2. Oke.pdf, Presentasi kuliah pertemuan 2 untuk mata kulia...
Mekanika Fluida 1 P2. Oke.pdf, Presentasi kuliah pertemuan 2 untuk mata kulia...
 
Developing Flow Pressure Drop and Friction Factor of Water in Copper Microcha...
Developing Flow Pressure Drop and Friction Factor of Water in Copper Microcha...Developing Flow Pressure Drop and Friction Factor of Water in Copper Microcha...
Developing Flow Pressure Drop and Friction Factor of Water in Copper Microcha...
 
Defeloping flow and pressure drop in microchannels
Defeloping flow and pressure drop in microchannelsDefeloping flow and pressure drop in microchannels
Defeloping flow and pressure drop in microchannels
 
TRS 398 (Technical Report Series)
TRS 398 (Technical Report Series)TRS 398 (Technical Report Series)
TRS 398 (Technical Report Series)
 
Practice 1 flow around cylinder
Practice 1 flow around cylinderPractice 1 flow around cylinder
Practice 1 flow around cylinder
 
Early kick detection and nonlinear behavior of drilling mu…
Early kick detection and nonlinear behavior of drilling mu…Early kick detection and nonlinear behavior of drilling mu…
Early kick detection and nonlinear behavior of drilling mu…
 
Flow of fluids
Flow of fluidsFlow of fluids
Flow of fluids
 
Rev. August 2014 ME495 - Pipe Flow Characteristics… Page .docx
   Rev. August 2014 ME495 - Pipe Flow Characteristics… Page .docx   Rev. August 2014 ME495 - Pipe Flow Characteristics… Page .docx
Rev. August 2014 ME495 - Pipe Flow Characteristics… Page .docx
 
Introduction and first law of tehrmodynamics
Introduction and first law of tehrmodynamicsIntroduction and first law of tehrmodynamics
Introduction and first law of tehrmodynamics
 
Physics And Clinical Measurements
Physics And Clinical MeasurementsPhysics And Clinical Measurements
Physics And Clinical Measurements
 
Internship Report
Internship ReportInternship Report
Internship Report
 
Ikard and Revil 2014 - JoH
Ikard and Revil 2014 - JoHIkard and Revil 2014 - JoH
Ikard and Revil 2014 - JoH
 
Presentation Kenes
Presentation KenesPresentation Kenes
Presentation Kenes
 
- VENTURI METER .docx
- VENTURI METER .docx- VENTURI METER .docx
- VENTURI METER .docx
 
Viscosityexperimentusing computer
Viscosityexperimentusing computerViscosityexperimentusing computer
Viscosityexperimentusing computer
 

Recently uploaded

KCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosKCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosVictor Morales
 
STATE TRANSITION DIAGRAM in psoc subject
STATE TRANSITION DIAGRAM in psoc subjectSTATE TRANSITION DIAGRAM in psoc subject
STATE TRANSITION DIAGRAM in psoc subjectGayathriM270621
 
Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...
Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...
Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...arifengg7
 
Substation Automation SCADA and Gateway Solutions by BRH
Substation Automation SCADA and Gateway Solutions by BRHSubstation Automation SCADA and Gateway Solutions by BRH
Substation Automation SCADA and Gateway Solutions by BRHbirinder2
 
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptxTriangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptxRomil Mishra
 
Structural Integrity Assessment Standards in Nigeria by Engr Nimot Muili
Structural Integrity Assessment Standards in Nigeria by Engr Nimot MuiliStructural Integrity Assessment Standards in Nigeria by Engr Nimot Muili
Structural Integrity Assessment Standards in Nigeria by Engr Nimot MuiliNimot Muili
 
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism CommunityPrach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Communityprachaibot
 
Secure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech LabsSecure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech Labsamber724300
 
A brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision ProA brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision ProRay Yuan Liu
 
priority interrupt computer organization
priority interrupt computer organizationpriority interrupt computer organization
priority interrupt computer organizationchnrketan
 
Indian Tradition, Culture & Societies.pdf
Indian Tradition, Culture & Societies.pdfIndian Tradition, Culture & Societies.pdf
Indian Tradition, Culture & Societies.pdfalokitpathak01
 
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHTEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHSneha Padhiar
 
Python Programming for basic beginners.pptx
Python Programming for basic beginners.pptxPython Programming for basic beginners.pptx
Python Programming for basic beginners.pptxmohitesoham12
 
tourism-management-srs_compress-software-engineering.pdf
tourism-management-srs_compress-software-engineering.pdftourism-management-srs_compress-software-engineering.pdf
tourism-management-srs_compress-software-engineering.pdfchess188chess188
 
Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfImmutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfDrew Moseley
 
CS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfCS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfBalamuruganV28
 
Detection&Tracking - Thermal imaging object detection and tracking
Detection&Tracking - Thermal imaging object detection and trackingDetection&Tracking - Thermal imaging object detection and tracking
Detection&Tracking - Thermal imaging object detection and trackinghadarpinhas1
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxStephen Sitton
 

Recently uploaded (20)

KCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosKCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitos
 
Designing pile caps according to ACI 318-19.pptx
Designing pile caps according to ACI 318-19.pptxDesigning pile caps according to ACI 318-19.pptx
Designing pile caps according to ACI 318-19.pptx
 
STATE TRANSITION DIAGRAM in psoc subject
STATE TRANSITION DIAGRAM in psoc subjectSTATE TRANSITION DIAGRAM in psoc subject
STATE TRANSITION DIAGRAM in psoc subject
 
Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...
Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...
Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...
 
Substation Automation SCADA and Gateway Solutions by BRH
Substation Automation SCADA and Gateway Solutions by BRHSubstation Automation SCADA and Gateway Solutions by BRH
Substation Automation SCADA and Gateway Solutions by BRH
 
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptxTriangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptx
 
Structural Integrity Assessment Standards in Nigeria by Engr Nimot Muili
Structural Integrity Assessment Standards in Nigeria by Engr Nimot MuiliStructural Integrity Assessment Standards in Nigeria by Engr Nimot Muili
Structural Integrity Assessment Standards in Nigeria by Engr Nimot Muili
 
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism CommunityPrach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Community
 
Secure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech LabsSecure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech Labs
 
A brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision ProA brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision Pro
 
priority interrupt computer organization
priority interrupt computer organizationpriority interrupt computer organization
priority interrupt computer organization
 
Indian Tradition, Culture & Societies.pdf
Indian Tradition, Culture & Societies.pdfIndian Tradition, Culture & Societies.pdf
Indian Tradition, Culture & Societies.pdf
 
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHTEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
 
Python Programming for basic beginners.pptx
Python Programming for basic beginners.pptxPython Programming for basic beginners.pptx
Python Programming for basic beginners.pptx
 
tourism-management-srs_compress-software-engineering.pdf
tourism-management-srs_compress-software-engineering.pdftourism-management-srs_compress-software-engineering.pdf
tourism-management-srs_compress-software-engineering.pdf
 
Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfImmutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdf
 
CS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfCS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdf
 
Detection&Tracking - Thermal imaging object detection and tracking
Detection&Tracking - Thermal imaging object detection and trackingDetection&Tracking - Thermal imaging object detection and tracking
Detection&Tracking - Thermal imaging object detection and tracking
 
ASME-B31.4-2019-estandar para diseño de ductos
ASME-B31.4-2019-estandar para diseño de ductosASME-B31.4-2019-estandar para diseño de ductos
ASME-B31.4-2019-estandar para diseño de ductos
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptx
 

Master Thesis Defence: Density of Oil-related Systems at High Pressures - Experimental measurements of HPHT density

  • 1. Density of Oil-related Systems at High Pressures Experimental measurements of HPHT density  Post  Doc.   Teresa  Regueira  Muñiz   Vasos  Vasou   s131031   DEPARTMENT  OF  CHEMISTRY   MASTER  THESIS  DEFENCE   Senior  researcher   Wei  Yan   Supervisors:  
  • 2. PresentaHon  outline   IntroducHon   –  HPHT  reservoirs   –  Thesis  scope   –  Literature  review     Density   –  IntroducHon  to  density   –  Density  measurement  methods  
  • 3. PresentaHon  outline   HPHT  density  measurements   –  U-­‐tube  basic  principle   –  CalibraHon  procedure   –  Experimental  setup   –  Experimental  procedure     Density  modeling     Results  and  discussion     Conclusion    
  • 4. HPHT  reservoirs   (BakerHughes,  2005)   (Belani  &  Orr,  2008)    
  • 5. Challenges  of  HPHT  reservoirs    (Shadravan  &  Amani,  2012)   HPHT  well  summit,  London,  2012  
  • 6. Thesis  scope   Correct  idenHficaHon  of  the   physical  properHes  of  the   reservoir  hydrocarbons   Be^er  understanding  of  the   behaviour  of  the  hydrocarbon   reservoir  fluids     More  precise  esHmaHon  of   the  amount  of  recourses  in   place   Be^er  producHon   forecasHng     Minimized  technical   risks   PosiHve  revenue    
  • 7. Major  tasks   •  Literature   review   of   the   exisHng   relevant   data   on   density   of   alkane  binary  mixtures  under  HPHT.   •  CalibraHon  of  the  densimeter  for  pressures  up  to  1400  bar  and   temperatures  up  to  190  °C.   •  ValidaHon  of  the  apparatus  through  the  use  of  n-­‐decane.   •  Measurement  of  the  density  of  the  binary  system  methane  -­‐  n-­‐ decane  for  three  different  composiHons  and  under  a  wide  range   of  pressure  and  temperature.     •  A   comparison   of   two   cubic   EquaHons   of   State   (EoS)   (Soave– Redlich–Kwong   and   Peng–Robinson)   with   two   non-­‐cubic   EoS   (Perturbed   Chain   StaHsHcal   AssociaHng   Fluid   Theory   and   Benedict–Webb–Rubin).  
  • 8. Literature   Audonnet  &  Padua  (2004):     •  Anton  Paar  DMA  60  densimeter     •  Binary  mixture  methane  –  n-­‐decane     •  xmethane  =  0,  0.227,  0.410,  0.601,  0.799   •  Temperatures  from  30  °C  to  120  °C  .   •  Pressures  from  200  bar  to  650  bar  (extrapolated  up  to   1400  bar)   •  Standard  deviaHon  with  literature  equal  to  0.17%  and   0.3%  
  • 9. Literature   Canet  et  al.  (2002):     •  Binary  mixture  methane  –  n-­‐decane     •  xmethane  =  0.3124,  0.4867,  0.6,  0.7566,  0.9575   •  Temperatures  from  20  °C  to  100  °C.     •  Pressures  from  200  bar  to  650  bar  (extrapolated  up  to   1400  bar     •  AAD  with  literature  equal  to  3.3%  and  7.3%  
  • 10. Density   Density  is  a  fundamental  parameter  that  contributes   to  the  characterizaHon  of  the  product  and  is  defined   as   the   exact   mass   of   a   solid,   gas   or   liquid   that   is   occupying   a   specific   volume.   The   most   common   symbol  for  density  is  the  Greek  le^er  ρ  and  it  can  be   mathemaHcally  defined  as:       ρ  =  m/V    (kg/m3).       where  m  is  the  mass  and  V  is  the  volume    
  • 11. Density   Pressure  and  temperature  are  two  important  parameters   that  affect  density.  An  increase  on  pressure  will  cause  an   increase  on  density  whereas,  on  the  other  hand,  for  most   materials   the   temperature   affects   density   inversely   proporHonal.   Temperature   Density   Pressure   Density  
  • 12. Density measurement methods •  Pycnometric  densitometers   •  Hydrometers   •  Refractometer  and  index  of  refracHon  densitometers     •  VibraHng  tube  densitometers  
  • 13. Pycnometric  densitometers   (Eren,  1999)   •  Weighing of the mass of the empty pycnometer. •  Determination of the volume with the use of distilled water •  Weighing again to get the mass of the water. •  Repeat with the liquid of the unknown density to determine its mass and its volume. •  The density of the unknown liquid is calculated as: Precision   Can  also   measure  specific   gravity   User  depended   Slow   High  cost   (scale,  lab)  
  • 14. Hydrometers Scale F l u i d vessel We i g h t bulb Consists   of   a   floaHng   glass   body,   with  a  cylindrical  stem  with  a  scale   and  a  bulb  filled  with  metal  weight.   The   measurement   procedure   is   very   simple   since   it   only   involves   the   immersion   of   the   hydrometer   in   the   sample   and   the   reading   of   the  density  directly  from  the  scale.   The   deeper   the   hydrometer   sinks   the   less   dense   the   sample   is.   The   principle  used  for  determining  the   density   with   the   hydrometer   is   buoyancy.     Low  cost   Simple   Fast   Traceable  to   internaHonal   standards   User  depended   Need  temperature   correcHon   Require  large   sample  volume   (100  mL)   (Eren,  1999)  
  • 15. Refractometer and index of refraction densitometers (Eren,  1999)   Describes  how  much  of  the  light,  is   refracted  when  entering  a  sample   where   c   is   the   speed   of   light   in   vacuum   and   u   is   the   velocity   of   light  in  a  medium   Index  of  refracHon     Consists  of  a  transparent  cell  that  the   liquid   or   gas   flows   through,   a   laser   beam  that  passes  through  the  cell  and   the   sample   and   is   refracted   with   an   angle  and  a  sensor.       The   angle   of   refracHon   depends   on   the   shape,   size   and   thickness   of   the   container   and   on   the   density   of   the   sample.     An   accurate   measurement   of   the   posiHon   of   the   beam   and   the   refracHon   angle   can   relate   to   the   sample’s  density.   n  =  c/u  
  • 16. Vibrating tube densitometers The vibrating tube densitometer is based on the principle that every fluid has a unique natural frequency. where  K  is  the  elasHcity  constant  of  the  body,  m  is  the  mass  of   the   body   containing   the   fluid,   ρ   is   the   fluid   density,   V   is   the   volume  of  the  body  and  τ    is  the  oscillaHon  period.   High  accuracy  and  repeatability   Very  fast   Li^le  sample  volume  required       Possible  dynamic  influence  of   viscosity  on  the  results  for   viscous  samples  
  • 17. Vibrating tube densitometers The single tube has pressure losses and some obstruction on the natural flow. The two-tube densitometer is designed in a way that the two tubes are vibrating in an antiphase, which provides higher accuracy. (Eren,  1999)  
  • 18. U-tube basic principle A  hollow  U-­‐shaped  tube  is  filled  with  the  sample  fluid  and  is   subjected   to   an   electromagneHc   force   and   is   excited   into   periodic   oscillaHon.   The   frequency   as   a   funcHon   of   Hme   is   recorded  and  a  sin-­‐wave  of  a  certain  period  and  amplitude  is   created.    (Paar,  2015)  
  • 19. U-tube basic principle  (Paar,  2015)   AlternaHng  voltage  is  sent  through  the  electric  coil  on  the   tube,   which   creates   an   alternaHng   magneHc   field.   The   magnet  on  the  tube  reacts  to  the  alternaHng  current  and   as  a  result  an  excitaHon  is  generated.  The  frequency  of  the   magnet’s   oscillaHon   that   is   caused   is   measured   with   an   amplifier.  
  • 20. U-tube basic principle  (Paar,  2015)  
  • 21. U-tube basic principle Hans Stabinger studied the relation between the period of oscillation and the density and found a way to implement it mechanically. To achieve this, Stabinger introduced two, unique   for   each   instrument,   adjustment constants namely A and B described as: ρ  =  A  .  τ2  -­‐  B  
  • 22. U-tube basic principle  (Paar,  2015)   Because the density of the water and the air are known the adjustment constants A and B can be calculated as they define a straight line in the graph. The instrument measures the period of oscillation of the sample and then applies that value to the adjustment line and converts it to the corresponding density.
  • 23. CalibraHon  procedure   Pressure:  0.1  MPa    -­‐  140  MPa    Temperature:  5  °C  -­‐  75  °C   Pressure:  0.1  Mpa      Temperature:  5  °C  -­‐  190°C  
  • 24. CalibraHon  procedure   Pressure:  0.1  Mpa  –  140  MPa  Temperature:  100  °C  -­‐  150°C   Pressure:  1  Mpa  –  140  MPa  Temperature:  190°C   &   Pressure:  0.1  Mpa      Temperature:  190°C  
  • 25. Experimental setup Anton Paar External Measuring Cell DMA-HPM (DTU  laboratory)    (Paar,  2015)   Measuring range Density 0 to 3 g/cm3 Pressure 0 to 1400 bar Temperature -10 to +200 °C Accuracy   Density Up to 0.001 g/cm3 Error 0.001 to 0.0001 g/cm3
  • 26. PolyScience advanced programmable temperature controller with Swivel 180™ Rotating Controller (DTU  laboratory)   Maximum Temperature 200°C Minimum Temperature -20°C Temperature Stability ±0.01°C
  • 27. Anton  Paar  mPDS  5   (DTU  laboratory)  
  • 28. SIKA digital pressure gauge Type P (DTU  laboratory)   Maximum Pressure 1500 bar Temperature  effect ±0.002%.   (SIKA,  2015)  
  • 29. Edwards E2M1.5 two-stage oil sealed rotary vane pump and Edwards Active Digital Controller (ADC) (DTU  laboratory)  
  • 30. Teledyne Isco 260D syringe pump (DTU  laboratory)  
  • 32. Apparatus cleaning procedure Cleaning  of  the  densitometer  and  the  fluid  piston  cylinder:   •  Remove   the   already   inserted   sample   with   moving   the   fluid   piston  cylinder  back  and  forth  several  Hmes.   •  Rinse  with  toluene  (strong  organic  solvent,  ideal  for  cleaning   petroleum  mixtures).   •  Rinse  with  ethanol  (can  remove  toluene  and  is  volaHle  and  can   evaporate  without  residue).   •  Dry   out  with  pressurized  air  and  evacuate  the  system  for  an   hour   in   75   °C   and   then   lep   under   vacuum   over   night   at   ambient  temperature.     Cleaning  of  the  mixture  cylinder  and  peripheral  lab  equipment:   •  All  the  parts  of  the  cylinder  and  peripheral  equipment  were   rinsed  with  the  cleaning  fluids  and  dried  out  with  pressurized   air.  The  cylinder  was  then,  evacuated.  
  • 33. Mixture preparation ρdec  =  726.55  kg/m3  at  Tambient  =  24.97  °C  (Lemmon  &  Span,  2006)     (DTU  laboratory)   •  n-­‐decane  was  transferred  with  the   use   of   a   50   mL   bure^e   with   readability  ±  0.01  mL.   •  Methane  was  transferred  from  the   gas  pressurized-­‐bo^le  into  the  gas   cylinder.   •  The   gas   cylinder   was   placed   on   a   balance   (readability   0.001g)   and   the   methane   mass   transferred   in   the  mixture  cylinder  was  read  from   the  balance.    
  • 35. Performing a measurement •  Temperature  set  on  the  PolyScience  advanced  programmable   temperature  controller.   •  The  first  pressure  step  was  manually  reached.   •  The  values  for  the  data  transfer  and  the  slope  stability  were   added  by  the  user.   •  IniHate   the   measurement   from   the   Microsop   Excel®   spreadsheet  provided  by  Anton  Paar.   •  Aper  the  recording  process  ended,  the  user  could  access  the   recorded  values  from  the  data  spreadsheet  of  the  Microsop   Excel®  tool.   •  Finally,  the  pressure  was  increased  and  aper  all  the  pressure   steps  were  measured  the  same  procedure  was  repeated  for   the  remaining  temperatures.  
  • 36. Anton  Paar  mPDS  5   (DTU  laboratory)  
  • 37. Density  modelling   Cubic  EoS   Non-­‐Cubic  EoS   Soave–Redlich–Kwong  (SRK)     Perturbed  Chain  StaHsHcal  AssociaHng   Fluid  Theory  (PC-­‐SAFT)     Peng–Robinson  (PR)     Soave  modified  Benedict–Webb– Rubin  (SBWR)     InteracHon  parameters  for  the  methane  –  n-­‐decane  binary  mixture     CriHcal  parameters  of  methane  and  n-­‐decane  
  • 38. Results  and  discussion   Densimeter  calibraHon  and  validaHon  results   •  The  oscillaHon  period  of  the  tube  when  filled  with  water  was   measured.     •  The  oscillaHon  period  of  the  evacuated  tube  was  measured.     •  The   density   of   water   was   taken   from   NIST   that   uses   the   EoS   from  Wagner  and  Pruss  (2002)     •  The  density  of  n-­‐dodecane  was  taken  from  NIST  that  uses  the   EoS  from  Lemmon  &  Huber  (2004).     •  The   oscillaHon   period   of   n-­‐dodecane   was   measured   in   a   previous  work  (Chasomeris  et  al.,  2015).  
  • 39. Densimeter  calibraHon  and  validaHon  results   2580   2590   2600   2610   2620   2630   2640   2650   2660   0   20   40   60   80   100   120   140   160   180   200   Period  (μs)   Temperature  (°C)   2655   2665   2675   2685   2695   2705   2715   2725   2735   0   200   400   600   800   1000   1200   1400   1600   Period  (μs)   Pressure  (bar)   5  °C     25  °C     50  °C     75  °C     100  °C     150  °C     190  °C     Period  of  the  evacuated  densimeter  for  temperatures  from  5°C  to  190°C     Water  measured  period  for  temperatures  from  5°C  to  190°C  and  pressures  from  1  bar  to  1400  bar    
  • 40. Densimeter  calibraHon  and  validaHon  results   2,26   2,28   2,30   2,32   2,34   2,36   2,38   2,40   2,42   2,44   0   50   100   150   200    A  (T)  (10^9kg  s-­‐1  m-­‐3)   Temperature  (°C)     1,41   1,42   1,43   1,44   1,45   1,46   1,47   1,48   1,49   1,5   0   200   400   600   800   1000   1200   1400   A(T)/B(T,p)(105s-­‐2)   Pressure  (bar)   5°C   25°C   50°C   75°C   100°C   150°C   190°C   (Segovia  et  al.  2009)   CharacterisHc  parameter  A(T)  and  the  raHo  between  parameter  A(T)  and  parameter   B(T,p)    for  temperatures  from  5°C  to  190°C    
  • 41. Densimeter  calibraHon  and  validaHon  results   -­‐0,25   -­‐0,2   -­‐0,15   -­‐0,1   -­‐0,05   0   0,05   0,1   0,15   0,2   0   50   100   150   200   RelaTve  deviaTon  (%)   Temperature  (°C)   Lemmon  &  Span  (2006)   AAD  =  0.08%.     -­‐0,25   -­‐0,2   -­‐0,15   -­‐0,1   -­‐0,05   0   0,05   0,1   0,15   0,2   0   200   400   600   800   1000   1200   1400   1600  RelaTve  deviaTon  (%)   Pressure  (bar)   Lemmon  &  Span  (2006)   RelaHve  deviaHons  between  the  experimental  density  values  of  n-­‐decane  and  the  data   from  Lemmon  &  Span  (2006)  as  a  funcHon  of  temperature  and  pressure.    
  • 42. Mixture methane – n-decane (xmethane = 0.227) A   correlaHon   with   the   use   of   the   Tait   equaHon  (Dymond  &   Malhotra,  1988)  was   performed.   Parameters  obtained  in  the  Tait  equaHon  with  the  results  from  Audonnet  &  Pádua   (2004)  (xmethane  =  0.227)  and  our  experimental  results  (xmethane  =  0.227)    
  • 43. Mixture methane – n-decane (xmethane = 0.227) Surface  ρ(T,p)  for  our  experimental  results  (xmethane  =  0.227)    and  the  results  from  Audonnet  &  Pádua   (2004)  (xmethane  =  0.227  )for  the  mixture  methane  –  n-­‐decane  
  • 44. Mixture methane – n-decane (xmethane = 0.227) RelaHve   deviaHons   between   the   experimental   density   values   of   the   mixture   methane   –   n-­‐decane   (xmethane   =   0.227)   and   the   data   from   Audonnet   &   Paduá   (2004)   (xmethane   =   0.227)   as   a   funcHon   of   temperature  and  pressure   -­‐0,2   -­‐0,1   0,0   0,1   0,2   0,3   0,4   0   20   40   60   80   100   120   RelaTve  deviaTon  (%)   Temperature  (°C)   -­‐0,2   -­‐0,1   0,0   0,1   0,2   0,3   0,4   0   100   200   300   400   500   600   700   RelaTve  deviaTon  (%)   Pressure  (bar)   AAD  of  0.17%.    
  • 45. Mixture methane – n-decane (xmethane = 0.6017) Parameters  obtained  in  the  Tait  equaHon  with  the  results  from  Audonnet  &  Pádua   (2004)  (xmethane  =  0.601),  our  experimental  results  (xmethane  =  0.6017)  and  those  from   Canet  et  al.  (2002)  (xmethane  =  0.6)  
  • 46. Mixture methane – n-decane (xmethane = 0.6017) Surface  ρ(T,p)  for  our  experimental  results  (xmethane  =  0.6017)    and  the  results  from  Audonnet  &  Pádua   (2004)  (xmethane  =  0.601)  for  the  mixture  methane  –  n-­‐decane  
  • 47. Mixture methane – n-decane (xmethane = 0.6017) RelaHve   deviaHons   between   the   experimental   density   values   of   the   mixture   methane   –   n-­‐decane   (xmethane  =  0.6017),  the  data  from  Audonnet  &  Paduá  (2004)  (xmethane  =  0.601)  and  Canet  et  al.  (2002)   (xmethane  =  0.6)  as  a  funcHon  of  temperature  and  pressure   -­‐0,4   -­‐0,2   0,0   0,2   0,4   0,6   0,8   1,0   0   20   40   60   80   100   RelaTve  deviaTon  (%)   Temperature  (°C)   Audonnet  &  Padua  (2004)   Canet  et  al.  (2002)   -­‐0,4   -­‐0,2   0,0   0,2   0,4   0,6   0,8   1,0   0   200   400   600   800   1000   1200   1400   RelaTve  deviaTon  (%)   Pressure  (bar)   Audonnet  &  Padua  (2004)   Canet  et  al.  (2002)   AAD  =  0.30%     AAD  =  0.19%    
  • 48. Mixture methane – n-decane (xmethane = 0.8496) Parameters  obtained  in  the  Tait  equaHon  with  the  results  from  Audonnet  &  Pádua   (2004)  (xmethane  =  0.799)  and  our  experimental  results  (xmethane  =  0.8496)    
  • 49. Mixture methane – n-decane (xmethane = 0.8496) Surface  ρ(T,p)  for  our  experimental  results  (xmethane  =  0.8496)    and  the  results  from  Audonnet  &  Pádua   (2004)  (xmethane  =  0.799)  for  the  mixture  methane  –  n-­‐decane  
  • 50. Mixture methane – n-decane (xmethane = 0.8496) RelaHve   deviaHons   between   the   experimental   density   values   of   the   mixture   methane   -­‐   n-­‐decane   (xmethane   =   0.8496)   and   the   data   from   Audonnet   &   Paduá   (2004)   (xmethane   =   0.799)   as   a   funcHon   of   temperature  and  pressure   AAD  =  11.11%     -­‐14   -­‐12   -­‐10   -­‐8   -­‐6   -­‐4   -­‐2   0   0   20   40   60   80   100   120   RelaTve  deviaTon  (%)   Temperature  (°C)   Audonnet  &  Padua  (2004)   -­‐14   -­‐12   -­‐10   -­‐8   -­‐6   -­‐4   -­‐2   0   0   100   200   300   400   500   600   700   RelaTve  deviaTon  (%)   Pressure  (bar)   Audonnet  &  Padua  (2004)  
  • 51. Density  as  a  funcHon  of  pressure  for  all  composiHons  at   5  °C  and  190  °C     300   400   500   600   700   800   300   500   700   900   1100   1300   Density  (kg/m3)   Pressure  (bar)   n-­‐decane  at  5  °C   Xmethane=0.227  at  5  °C   Xmethane=0.6017  at  5  °C   Xmethane=0.8496  at  5  °C   n-­‐decane  at  190  °C   Xmethane=0.227  at  190  °C   Xmethane=0.6017  at  190  °C   Xmethane=0.8496  at  190  °C  
  • 52. Density modeling 0   5   10   15   20   25   SRK   PR   PC  SAFT   SBWR   Xmethane  =  0.227   Xmethane  =  0.6017   Xmethane  =  0.8496   Decane  
  • 53. Conclusion   •  The   validaHon   of   the   apparatus   through   n-­‐decane   was   successful.   The   results   were   compared   with   the   data   from   NIST  and  they  were  in  good  agreement  with  an  AAD  of  0.08%.     •  For   the   mixture   with   a   composiHon   of   methane   xmethane   =   0.227   and   aper   a   correlaHon   with   the   Tait   equiHon   the   experimental  data  were  compared  with  the  results  obtained   from  Audonnet  &  Pádua  with  an  AAD  of  0.17%.     •  The   mixture   under   study   with   a   composiHon   of   methane   xmethane  =  0.6017  were  again  correlated  with  the  Tait  equaHon   and  compared  with  the  results  from  Audonnet  &  Pádua  with   an  AAD  of  0.30%  and  with  those  from  Canet  et  al.  (2002)  with   an  AAD  of  0.19%.  
  • 54. Conclusion   •  The  mixture  with  a  mole  fracHon  of  methane  xmethane  =  0.8496   was   compared   with   the   results   obtained   from   Audonnet   &   Pádua   (2004)   for   their   mixture   with   methane   mole   fracHon   xmethane   =   0.799.   The   experimental   results   have   an   AAD   of   11.11%.   A   high   negaHve   deviaHon   like   this   was   expected   because   of   the   different   methane   mole   fracHon   in   the   two   mixtures.     •  In   general,   the   method   used   under   this   work   can   be   considered  successful  since  the  results  for  the  pure  n-­‐decane   and   the   binary   mixture   are   in   good   agreement   with   those   from  the  literature.  
  • 55. Conclusion   •  PC  SAFT  was  the  one  that  performed  be^er  with  AADs  lower   than   1.2%.   The   SRK,   on   the   other   hand,   showed   very   high   deviaHons  between  10%  and  20%.     •  For   the   pure   n-­‐decane   and   the   mixture   with   methane   mole   fracHon   xmethane   =   0.227   the   non-­‐cubic   equaHons   performed   much  be^er  with  lower  deviaHons.       •  The   fact   that   on   the   one   hand   the   non-­‐cubic   EoS   showed   beer  results  but  on  the  other  hand  the  cubic  PR  performed   beer  than  the  non-­‐cubic  SBWR  for  some  of  the  mixtures,  is   an  indicator  that  further  study  is  necessary.    
  • 56. Density modeling 0   5   10   15   20   25   SRK   PR   PC  SAFT   SBWR   Xmethane  =  0.227   Xmethane  =  0.6017   Xmethane  =  0.8496   Decane  
  • 57. Thank  you  for  your  Hme!  
  • 58.
  • 59. Viscosity    (Paar,  2015)  FricHon  between  the  fluid  and  the  tube   The  oscillaHon  period  of  the  tube  is  influenced  by  viscosity.   High  viscous  sample  will  give  a  density  over-­‐reading.  
  • 60. Viscosity    (Paar,  2015)   Highest   viscosity   m e a s u r e m e n t   from   Canet   et   al.   η   =   1.7   mPa.s   for   xmethane=0.3   and   T = 2 0   ° C   a n d   P=140  MPa