Uploaded on

 

More in: Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
7,361
On Slideshare
0
From Embeds
0
Number of Embeds
1

Actions

Shares
Downloads
17
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. I.E.D FERNANDO MAZUERA VILLEGASEDNA VANESSA ESQUIVEL FAJARDOEstudianteWILY CARMONADocenteTRABAJO FINAL DE ALGEBRA
  • 2. Función lineal
    Definición: Una función lineal es una función cuyo dominio son todos los números reales, y cuya expresión analítica es un polinomio de primer grado.
    Definición    f: R —> R  /  f(x) = a.x+b  donde a y b son números reales, es una función lineal.
    Este último renglón se lee: f de R en R tal que f de equis es igual a  a.x+b
    Por ejemplo, son funciones lineales f: f(x) = 2x+5 ,  g: g(x) = -3x+7,   h: h(x) = 4
  • 3. Definición: Las funciones lineales son polinomios de primer grado.
    Recordemos que los polinomios de primer grado tienen la variable elevada al exponente 1. Es habitual no escribir el exponente cuando este es 1.
    Ejemplos de funciones lineales: a(x) = 2x+7        b(x) = -4x+3     f(x) =  2x + 5 + 7x - 3
    De estas funciones, vemos que la f no está reducida y ordenada como las demás. Podemos reducir términos semejantes para que la expresión quede de una forma más sencilla,   f(x) =  9x + 2 
  • 4. Funciones lineales
    Representación grafica de una función lineal:
    1.se marca sobre el eje y la ordena al origen, el punto en donde la recta va a cortar.
    2.desde ese punto, subo o bajo según sea el valor y avanzo o retrocedo según indique el valor de ´´q´´.En ese nuevo lugar marco el segundo punto de la recta.
    3.se podría seguir marcando puntos con la misma pendiente, pero con 2 de ellos ya es suficiente como para poder graficar la recta.
    4. teniendo ya dos puntos, con regla se traza la recta que pasa por los mismos.
  • 5. EjemploUna función lineal de una única variable independiente x suele escribirse en la forma siguientey= mx+bque se conoce como ecuación de la recta en el plano xy.En la figura se ven tres rectas, que corresponden a las ecuaciones lineales siguientes:y=0,5x+1en esta recta el parámetro m= 1/2, esto es el crecimiento de la recta es 1/2, cuando aumentamos x en una unidad, y aumenta en 1/2 unidad, el valor de b es 1, luego la recta corta el eje y en el punto y= 1La ecuación:y=0,5x-1tiene el valor de la pendiente m= 1/2, igual que en el caso anterior, por eso estas dos rectas son paralelas, como el valor de b= -1, esta recta corta el eje de las y en el punto y= -1.La tercera ecuación, es:y=2x+1la pendiente de la recta, el parámetro m= 2, indica que cuando el valor de x aumenta en una unidad, el valor de y la hace en dos unidades, el corte con el eje y, lo tiene en y= 1, dado que el valor de b= 1.En el caso de una recta el valor de m se corresponde al ángulo de inclinación de la recta con el eje de las x a través de la expresión:m=tan
  • 6. EJEMPLO PARA GRAFICAR UNA FUNCION LINEAL:
    Y-1/2 x+3
    a =1/2
    La ordenada al origen me indica que me debo parar sobre el eje y en el 3.de ahí subo 1 y avanzo 2,como me lo indica la pendiente .
  • 7. Perpendicularidad y paralelismo entre rectas.Dos o mas rectas son paralelas si y solo si sus pendientes son iguales.Ejemplo : Y1=a1x+b1 ^ y2=a2x+b2 ^ a1=a2 y es paralela a y2
  • 8.                                                                                           
    Dos rectas son perpendiculares si y si sus pendientes son inversas y opuestasy1=a1x+b1 ^ a2x+b2 ^ a1-1/a2 y es perpendicular a y2
  • 9. Sistemas de ecuaciones linealesUn sistema de ecuaciones lineales formado por dos ecuaciones deprimer grado con dos incógnitas cada una, representa dos rectas en el plano, yresolverlo es hallar la intersección de ambas. {y=a1x+b1 y=a2x+b2como la respuesta de un sistema de ecuación lineales, es el punto donde se cruzan, el conjunto solución estará formado por un valor para ¨x¨´ y otro para la ¨y´´solución (x;y)hay dos métodos para resolver un sistema de ecuaciones lineales, el método grafico y el método analítico.
  • 10. Método graficopara resolver gráficamente un sistema de ecuaciones, se deben graficar las dos funciones en un mismo sistema de ejes cartesianos, y luego hallar la intersección entre las dos rectaseste método es le menos exacto de los dos, ya que se puede cometer errores al graficar.Ejemplo:resolver el siguiente sistema de ecuaciones gráficamente:y=-2x+1y=x-5en un mismo sistema de ejes cartesianos se grafica las dos rectas. Una vez trazadas, se busca el punto en donde se cruzan las dos rectas.
  • 11. Método analíticopara resolver analíticamente un sistema de ecuaciones existen varios metodos.Todos ellos permiten obtener el mismo resultado.Se recomienda utilizar el método de igualación que se desarrollara a continuación:{y=a1x+b1 y =a2x+b2como se tiene dos ecuaciones con las mismas incógnitas(el valor de la x y el valor de la y),se busca armar una sola ecuación con una sola incógnita.Se parte de la base que se esta buscando un punto en donde las rectas son iguales. Por ese punto pasan las dos rectas .Entonces se procede a igualar las dos rectas:y=y
  • 12. ENTONCESa1x+b1- a2x+b2Así queda formada una ecuación de una sola incognita,que es el valor de la ¨x´´. Ecuación que se puede resolver mediante simples cálculos y despejes.Una vez obtenido el valor de la x,se lo remplaza en alguna de las dos ecuaciones del sistema inicial para poder calcular el valor de la y.una vez obtenidos los dos resultados, se puede armar el par ordenado, que es la solución del sistema. En el caso que sea necesario despejar las y ,habrá que hacerlo previamente al procedimiento anterior explicado.
  • 13. ECUACION DE LA RECTA QUE PASA POR LOS PUNTOpuede ser que en vez de tener la ecuación de la recta, se tengan dos puntos de la misma.Teniendo dos puntos de una función lineal, es posible llegar a su ecuación.Ejemplo: encontrar la ecuación de la recta que pase por los siguientes puntos:(2,4) y (4,5)se parte de la ecuación explicita.se arma un sistema, remplazando los valores de los dos puntos en la x y en la y según corresponda, en dos ecuaciones respectivamente:y-ax + b4-a2+b5-a4+b {4-a2+b 5-a4+b
  • 14. Se procede a restar verticalmente termino a termino según corresponda:{4-2ª+b-5-4ª+b(4-5)- (2ª+4ª)+(b-)-1-2ª(-1/-2)-a½-aal restar las dos ecuaciones, siempre se tiene que anular ´´b´´ .quedando formada una ecuación con una sola incógnita (a).Se calcula el valor de la misma, y luego se remplaza en alguna de las ecuaciones iniciales para poder calcular ´b´´
  • 15. FIN……….