Your SlideShare is downloading. ×

Portafolio mate

738
views

Published on


0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
738
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
27
Comments
0
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Módulo Algebra Página 1 UNIVERSIDAD POLITÉCNICA ESTATAL DEL CARCHI FACULTAD DE INDUSTRIAS AGROPECUARIAS Y CIENCIAS AMBIENTALES Escuela de Desarrollo Integral Agropecuario Módulo “ALGEBRA” PRIMER NIVEL ADRIANA GUACHAGMIRA PARALELO: “ B ” Ing. Oscar René Lomas Reyes Marzo 2013 – Agosto 2013
  • 2. Módulo Algebra Página 2 Contenido INTRODUCCIÓN............................................................................................................................. 3 OBJETIVOS................................................................................................................................. 4 CONJUNTO DE NÚMEROS NATURALES..................................................................................... 5 PROPIEDADES DE LOS NÚMEROS REALES................................................................................. 6 EXPONENTES Y RADICALES........................................................................................................ 7 EXPRESIONES ALGEBRAICAS ..................................................................................................... 9 ¿QUÉ ES UNA ECUACIÓN?....................................................................................................... 11 Partes de una ecuación........................................................................................................... 11 ¡Exponente!............................................................................................................................. 12 PRODUCTOS NOTABLES .......................................................................................................... 13 FACTORIZACIÓN...................................................................................................................... 15 FACTORIZACIÓN POR AGRUPAMIENTO.................................................................................. 16 ECUACIONES LINEALES............................................................................................................ 16 SILABO......................................................................................................................................... 18
  • 3. Módulo Algebra Página 3 INTRODUCCIÓN El álgebra es una rama de las matemáticas que se ocupa de estudiar las propiedades generales de las operaciones aritméticas y lo números para generar procedimientos que puedan globalizarse para todos los casos análogos. Esta rama se caracteriza por hacer implícitas las incógnitas dentro de la misma operación; ecuación algebraica. El álgebra continuó su constante progreso en la antigua Grecia. Los griegos usaban el álgebra para expresar ecuaciones y teoremas, un ejemplo es el Teorema de Pitágoras. El Álgebra es el área de las matemáticas donde las letras (como x o y) u otros símbolos son usados para representar números desconocidos. Por ejemplo: en x - 5 = 2, x es desconocido, pero puede resolverse sumando 5 a ambos lados del signo igual (=), así: x - 5 = 2 x - 5 + 5 = 2 + 5 x + 0 = 7 x = 7 (la respuesta) Se realizara el estudio tanto de números reales, números enteros positivos, negativos , fraccionarios , productos notables, factorización , sistemas de ecuaciones lineales aplicadas a nuestra carrera.
  • 4. Módulo Algebra Página 4 OBJETIVOS OBJETIVO GENERAL  Recopilar toda la información de cada tema ya visto en el módulo de algebra, para que sirva de guía base para nuestro estudio. OBJETIVOS ESPECÍFICOS  Elaborar el portafolio estudiantil  Analizar la información recolectada que servirá de base de estudio para la evaluación.  Trabajar en forma grupal en la recolección de la información
  • 5. Módulo Algebra Página 5 CONJUNTO DE NÚMEROS NATURALES Ciertos conjuntos de números tienen nombres especiales. Los números 1,2,3 y así sucesivamente , forman el conjunto de los números enteros positivos o números naturales. Conjunto de los enteros positivos = (1, 2,3…) Los enteros positivos junto con el cero, y los enteros negativos-1,-2,-3…… forman el conjunto de los enteros. Conjunto de enteros = (…,-3,-2,-1, 0, 1, 2,3,…) El conjunto de los números racionales consiste en números como 1 2 y 5 3 , que pueden escribirse como una razón (cociente) de dos enteros. Esto es, un numero racional es aquél que puede escribirse como 𝑝 𝑞 donde p y q son enteros y q ≠ 0. El entero 2 es racional puesto que 2 = 2 1 . De hecho todo entero es racional. Los números que se representan mediante decimales no periódicos que terminan se conocen como números irracionales. Los números 𝜋 y√2 son ejemplos de números irracionales. Junto, los números racionales y los números irracionales forman el conjunto de los números reales. Los números reales pueden representarse por puntos en una recta. Primeros se selecciona un punto de la recta para representar el cero. Las posiciones a la derecha del origen se consideran positivas y las de la izquierda negativas
  • 6. Módulo Algebra Página 6 PROPIEDADES DE LOS NÚMEROS REALES Propiedad transitiva de igualdad.-Dos números iguales a un tercer número son iguales entre sí. 𝑆𝑖 𝑎 = 𝑏 𝑦 𝑏 = 𝑐, 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑎 = 𝑐 Propiedad de cerradura de la suma y la multiplicación.- Dos números pueden sumarse o multiplicarse y el resultado en cada caso es un número real. 𝑃𝑎𝑟𝑎 𝑡𝑜𝑑𝑜 𝑛ú𝑚𝑒𝑟𝑜 𝑟𝑒𝑎𝑙 𝑎𝑦𝑏, 𝑒𝑥𝑖𝑠𝑡𝑒𝑛 𝑛𝑢𝑚𝑒𝑟𝑜𝑠 𝑟𝑒𝑎𝑙𝑒𝑠 𝑢𝑛𝑖𝑐𝑜𝑠 𝑎 + 𝑏 𝑦 𝑎𝑏 Propiedad conmutativa de la suma y la multiplicación.- Dos números pueden sumarse y multiplicarse en cualquier orden. 𝑎 + 𝑏 = 𝑏 + 𝑎 𝑦 𝑎𝑏 = 𝑏𝑎 Propiedad asociativa de la suma y la multiplicación.- En la suma o en la multiplicación, los números pueden agruparse en cualquier orden. 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 𝑦 𝑎(𝑏𝑐) = (𝑎𝑏)𝑐 Propiedad de la identidad.- existen números reales denotados 0 y 1 tales que para todo número real a. 0 + 𝑎 = 𝑎 𝑦 1𝑎 = 𝑎 Propiedad del inverso.- Para cada número real a, existe un único número real denotado poa –a 𝑎 + (−𝑎) = 0 Propiedad distributiva.- establece que multiplicar una suma por un número da el mismo resultado que multiplicar cada sumando por el número y después sumar todos los productos. 𝑎(𝑎 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 𝑦 (𝑏 + 𝑐)𝑎 = 𝑎𝑏 = 𝑎𝑐
  • 7. Módulo Algebra Página 7 EXPONENTES Y RADICALES Exponentes Un exponente es un valor índice que me indica el número de veces que se va a multiplicar otro valor conocido como base. El exponente se coloca arriba y a la derecha del valor base. Por ejemplo:  𝑏−5 b es el valor base y -5 es el exponente  −27 -2 es el valor base y 7 es el exponente Leyes de los exponentes (𝑥 𝑛)(𝑥 𝑚) = 𝑥 𝑛+𝑚 𝑥 𝑛 𝑥 𝑚 = 𝑥 𝑛−𝑚 𝑥0 = 1 𝑥−𝑛 = 1 𝑥 𝑛 𝑥 𝑚 𝑥 𝑚 = 1 (𝑥 𝑚) 𝑛 = 𝑥 𝑚𝑛 ( 𝑥 𝑦 ) 𝑛 = 𝑥 𝑛 𝑦 𝑛 ( 𝑥 𝑦 ) −𝑛 = ( 𝑦 𝑥 ) RADICALES La radicación es la operación inversa a la potenciación. Se llama raíz enésima de un número “x” a otro número “y”, que elevado a la “n” da como resultado “x”. √ 𝑥 𝑛 = 𝑦 n = índice x = radicando y = raíz
  • 8. Módulo Algebra Página 8 √ =signo radical Leyes radicales 𝑥1/2 = √ 𝑥 𝑛 𝑥−1/2 = 1 𝑥1/2 = 1 √ 𝑥 𝑛 √ 𝑥 𝑛 √ 𝒚𝒎 = √ 𝒙𝒚𝒏 √ 𝑥 𝑛 √ 𝑦𝑛 = √ 𝑥 𝑦 𝑛 √ √ 𝑥 𝑛𝑚 = √ 𝑥 𝑚𝑛 𝑥,/𝑛 = √𝑥 𝑚𝑛 ( √ 𝑥 𝑚 ) 𝑚 = 𝑥
  • 9. Módulo Algebra Página 9 EXPRESIONES ALGEBRAICAS Se llama a un conjunto de letras y números ligados por los signos de las operaciones aritméticas. Monomio: Se llama monomio a la expresión algebraica que tiene un solo término. Ejemplos de expresiones algebraicas de un solo término: Binomio: Se llama binomio a la expresión algebraica que tiene dos términos. Ejemplos de expresiones algebraicas de dos términos: Trinomio: Se llama trinomio a la expresión algebraica que tiene tres términos. Ejemplo: Las expresiones algebraicas que contienen más de tres términos se llaman Polinomios. Suma o adición.- es una operación que tiene por objeto reunir dos o más expresiones algebraicas en una sola expresión algebraica.
  • 10. Módulo Algebra Página 10 Resta o sustracción.- se escribe el minuendo con sus propios signos y a continuación el sustraendo con los signos cambiados y se reducen los términos semejantes. Multiplicación.- se multiplica el monomio por cada uno de los términos del polinomio, teniendo en cuenta en cada caso la regla de los signos , y se separan los productos parciales con sus propios signos. División.- se divide cada uno de los términos del polinomio por el monomio separando los cocientes parciales con sus propios signos.
  • 11. Módulo Algebra Página 11 ¿QUÉ ES UNA ECUACIÓN? Una ecuación dice que dos cosas son iguales. Tendrá un signo de igualdad "=", por ejemplo: x + 2 = 6 Lo que esta ecuación dice: lo que está a la izquierda (x + 2) es igual que lo que está en la derecha (6) Así que una ecuación es como una afirmación "esto es igual a aquello" Partes de una ecuación Para que la gente pueda hablar de ecuaciones, hay nombres para las diferentes partes (¡mejor que decir "esta cosa de aquí"!) Aquí tienes una ecuación que dice 4x-7 es igual a 5, y todas sus partes: Una variable es un símbolo para un número que todavía no conocemos. Normalmente es una letra como x o y. Un número solo se llama una constante. Un coeficiente es un número que está multiplicando a una variable (4x significa 4 por x, así que 4 es un coeficiente) Un operador es un símbolo (como +, ×, etc) que representa una operación (es decir, algo que quieres hacer con los valores).
  • 12. Módulo Algebra Página 12 Un término es o bien un número o variable solo, o números y variables multiplicados juntos. Una expresión es un grupo de términos (los términos están separados por signos + o -) Ahora podemos decir cosas como "esa expresión sólo tiene dos términos", o "el segundo término es constante", o incluso "¿estás seguro de que el coeficiente es 4?" ¡Exponente! Elexponente (como el 2 en x2) dice cuántas veces usar el valor en una multiplicación. Ejemplos: 82 = 8 × 8 = 64 y3 = y × y × y y2z = y × y × z Los exponentes hacen más fácil escribir y usar muchas multiplicaciones Ejemplo: y4z2 es más fácil que y × y × y × y × z × z, o incluso yyyyzz
  • 13. Módulo Algebra Página 13 PRODUCTOS NOTABLES Binomio al cuadrado Binomio de suma al cuadrado Un binomio al cuadrado (suma) es igual es igual al cuadrado del primer término, más el doble producto del primero por el segundo más el cuadrado segundo. (a + b)2 = a2 + 2 · a · b + b2 (X + 3)2 = x 2 + 2 · x ·3 + 3 2 = x 2 + 6 x + 9 Binomio de resta al cuadrado Un binomio al cuadrado (resta) es igual es igual al cuadrado del primer término, menos el doble producto del primero por el segundo, más el cuadrado segundo. (a − b)2 = a2 − 2 · a · b + b2 (2x − 3)2 = (2x)2 − 2 · 2x · 3 + 3 2 = 4x2 − 12 x + 9 Suma por diferencia Una suma por diferencia es igual a diferencia de cuadrados. (a + b) · (a − b) = a2 − b2 (2x + 5) · (2x - 5) = (2 x)2 − 52 = 4x2 − 25 Binomio al cubo Binomio de suma al cubo Un binomio al cubo (suma) es igual al cubo del primero, más el triple del cuadrado del primero por el segundo, más el triple del primero por el cuadrado del segundo, más el cubo del segundo. (a + b)3 = a3 + 3 · a2 · b + 3 · a · b2 + b3 (x + 3)3 = x 3 + 3 · x2 · 3 + 3 · x· 32 + 33 = = x 3 + 9x2 + 27x + 27
  • 14. Módulo Algebra Página 14 Binomio de resta al cubo Un binomio al cubo (resta) es igual al cubo del primero, menos el triple del cuadrado del primero por el segundo, más el triple del primero por el cuadrado del segundo, menos el cubo del segundo. (a − b)3 = a3 − 3 · a2 · b + 3 · a · b2 − b3 (2x - 3)3 = (2x)3 - 3 · (2x)2 ·3 + 3 · 2x· 32 - 33 = = 8x 3 - 36 x2 + 54 x - 27 Trinomio al cuadrado Un trinomio al cuadrado es igual al cuadrado del primero, más el cuadrado del seguno, más el cuadrado del tercero, más el doble del primero por el segundo, más el doble del primero por el tercero, más el doble del segundo por el tercero. (a + b + c)2 = a2 + b2 + c2 + 2 · a · b + 2 · a · c + 2 · b · c (x2 − x + 1)2 = = (x2)2 + (−x)2 + 12 +2 · x2 · (−x) + 2 x2 · 1 + 2 · (−x) · 1 = = x4 + x2 + 1 − 2x3 + 2x2 − 2x = = x4 − 2x3 + 3x2 − 2x + 1 Suma de cubos a3 + b3 = (a + b) · (a2 − ab + b2) 8x3 + 27 = (2x + 3) (4x2 - 6x + 9) Diferencia de cubos a3 − b3 = (a − b) · (a2 + ab + b2) 8x3 − 27 = (2x − 3) (4x2 + 6x + 9) Producto de dos binomios que tienen un término común (x + a) (x + b) = x2 + ( a + b) x + ab (x + 2) (x + 3) = = x2 + (2 + 3)x + 2 · 3 = = x2 + 5x + 6
  • 15. Módulo Algebra Página 15 FACTORIZACIÓN Con frecuencia se necesita expresar o transformar a un polinomio dado en el producto de dos o más polinomios de menor grado .este proceso se llama factorización y nos permite transformar polinomios complejos en el producto de polinomios simples. Factorización por factor común. Cuando en los diversos términos de un polinomio participa un mismo factor, se dice que se le saca como factor común, para lo cual, se escribe e inmediatamente, después, dentro de un paréntesis se anotan los cocientes que resulten de dividir cada uno de los términos del polinomio entre el factor común. 𝑎2 + 2𝑎 = 𝑎(𝑎 + 2) 10𝑏 + 30𝑎𝑏 = 10𝑏(1 + 3𝑎) Factorización de una diferencia de cuadros. Se sabe que: 𝑎2 − 𝑏2 = (𝑎 + 𝑏)(𝑎 − 𝑏) ; por lo tanto una diferencia de cuadrados, es igual al producto de dos binomios conjugados. 9𝑥2 − 4𝑦2 = (3𝑥 + 2𝑦)(3𝑥 − 2𝑦) Factorización de un cuadrado perfecto Para factorizar un trinomio cuadrado perfecto, una vez que ha sido identificado como tal, con apoyo de los productos notables, se extrae raíz cuadrada al primero y tercer término del trinomio separándose estas raíces por medio del signo del segundo término y elevando este binomio al cuadrado: 9𝑥2 − 12𝑥𝑦 + 4𝑦2 = (3𝑥 − 2𝑦)(3𝑥 − 2𝑦) Factorización de una suma o diferencia de cubos Se sabe que: 𝑎3 +𝑏3 = (𝑎 + 𝑏)(𝑎2 − 𝑎𝑏 + 𝑏2)𝑦𝑎3 −𝑏3 = (𝑎 − 𝑏)(𝑎2 + 𝑎𝑏 + 𝑏2) Factorización de cubos perfectos de binomios. (𝑎 + 𝑏)3 = 𝑎3 + 3𝑎2 𝑏 + 3𝑎𝑏2 + 𝑏3 𝑦𝑞𝑢𝑒: (𝑎 − 𝑏)3 = 𝑎3 − 3𝑎2 𝑏 + 3𝑎𝑏2 − 𝑏3
  • 16. Módulo Algebra Página 16 FACTORIZACIÓN POR AGRUPAMIENTO. Algunas veces en un polinomio los términos no contienen ningún factor común, pero pueden ser separados en grupos de términos con factor común. Este método consiste en formar grupos, los más adecuados, para factorizar cada uno como más convenga en cada caso y lograr finalmente la factorización total de la expresión. 𝑥2 + 𝑎𝑥 + 𝑏𝑥 + 𝑎𝑏 = 𝑥(𝑥 + 𝑎) + 𝑏(𝑥 + 𝑎) = (𝑥 + 𝑎)(𝑥 + 𝑏) FACTORIZACIÓN DE UN TRIN0MIO DE LA FORMA 𝒂𝒙 𝟐 + 𝒃𝒙 + 𝒄 9𝑥2 + 6𝑥 − 3 = (3𝑥 − 1)(3𝑥 + 3) 4𝑥2 − 24𝑥 + 11 = (3𝑥 − 1)(3𝑥 + 3) ECUACIONES LINEALES Sabemos que una ecuación lineal o de primer grado es aquella que involucra solamente sumas y restas de variables elevadas a la primera potencia (elevadas a uno, que no se escribe). Son llamadas lineales porque se pueden representar como rectas en el sistema cartesiano. Se pueden presentar tres tipos de ecuaciones lineales: a) Ecuaciones lineales propiamente tales En este tipo de ecuación el denominador de todas las expresiones algebraicas es igual a 1 (no se presentan como fracción, aunque el resultado sí puede serlo). Para proceder a la resolución se debe: Eliminar paréntesis. Dejar todos los términos que contengan a "x" en un miembro y los números en el otro. Luego despejar "x" reduciendo términos semejantes. Ejemplo: 4x – 2(6x – 5) = 3x + 12(2x + 16) 4x – 12x + 10 = 3x + 24x + 192 4x – 12x – 3x – 24x = 192 – 10
  • 17. Módulo Algebra Página 17 –35x = 182 b) Ecuaciones Fraccionarias En este tipo de ecuación lineal el denominador de a lo menos una de las expresiones algebraicas es diferente de 1 (es una fracción). Para proceder a la resolución se debe: Llevar a ecuación lineal (eliminar la fracción) multiplicando la ecuación por el mínimo común múltiplo de los denominadores (m.c.m.) Ejemplo: C . ECUACIONES LITERALES Pueden ser lineales o fraccionarias. Si son fraccionarias, se llevan al tipo lineal, pero en el paso de reducir términos semejantes se factoriza por "x" para despejarla.
  • 18. Módulo Algebra Página 18 SILABO I. DIRECCIONAMIENTO ESTRATÉGICO UPEC – MISIÓN MISIÓN - ESCUELA Formar profesionales humanistas, emprendedores y competentes, poseedores de conocimientos científicos y tecnológicos; comprometida con la investigación y la solución de problemas del entorno para contribuir con el desarrollo y la integración fronteriza La Escuela de Desarrollo Integral Agropecuario contribuye al desarrollo Provincial, Regional y Nacional, entregando profesionales que participan en la producción, transformación, investigación y dinamización del sector agropecuario y agroindustrial, vinculados con la comunidad, todo esto con criterios de eficiencia y calidad UPEC - VISIÓN VISIÓN – ESCUELA Ser una Universidad Politécnica acreditada por su calidad y posicionamiento regional Liderar a nivel regional el proceso de formación y lograr la excelencia académica generando profesionales competentes en Desarrollo Integral Agropecuario, con un sólido apoyo basado en el profesionalismo y actualización de los docentes, en la investigación, criticidad y creatividad de los estudiantes, con una moderna infraestructura que incorpore los últimos adelantos tecnológicos, pedagógicos y que implique un ejercicio profesional caracterizado por la explotación racional de los recursos naturales, producción limpia, principios de equidad, participación, ancestralidad, que den seguridad y consigan la soberanía alimentaria. ÁREA CONOCIMIENTO ESCUELA CINE- UNESCO SUB-ÁREA CONOCIMIENTO CINE- UNESCO Agricultura. Agricultura, Silvicultura y Pesca. II. DATOS BÁSICOS DEL MÓDULO “ALGEBRA”: CÓDIGO NIVEL PRIMER O DOCENTE: Oscar René Lomas Reyes Ing.
  • 19. Módulo Algebra Página 19 TELEFONO: 0986054587 062-932310 e-mail: oscar.lomas@upec.edu.ec oscarlomasreyes@yahoo.es CRÉDITOS T 1 CRÉDITOS P 2 TOTAL CRÉDITOS 3 HORAS T 16 HORAS P 32 TOTAL HORAS 48 PRE-REQUISITOS:(Módulos obligatorios que DEBEN estar aprobados antes de éste módulo) CÓDIGOS 1. Nivelación Aprobada CO-REQUISITOS:(Módulos obligatorios que TIENEN que aprobar en paralelo a éste módulo) CÓDIGOS 1. Física Aplicada 1 EJE DE FORMACIÓN:(En la malla ubicado en un eje con un nombre) PROFESIONAL ÁREA DE FORMACIÓN:(En la malla agrupado con un color y un nombre) Agrícola LIBRO(S)BASE DEL MÓDULO:(Referencie con norma APA el libro, físico o digital, disponible en la UPEC para estudio ) Haeussler, E. (2008). Matemáticas para Administración y Economía, Décima segunda edición: México LIBRO(S)REFERENCIAL/COMPLEMENTARIO DEL MÓDULO:(Referencie con norma APA el libro, físico o digital, disponible en la UPEC para estudio)  Snut S. y otros (2012). Matemáticas para el análisis económico. Segunda edición: Madrid España.  Escudero R. y otros. (2011). Matemáticas Básicas. Segunda edición: Colombia
  • 20. Módulo Algebra Página 20  Soler F. y otros. (2009). Fundamentos de Matemáticas. Tercera edición: Colombia.  Pullas G. (2011). Matemática básica. Primera edición: Ecuador.  SánchezA. (2012). Desarrollo del Pensamiento. Editorial Imprenta Mariscal, Edición Primera, Ecuador.  http://www.sectormatematica.cl /libros.htm.Recuperado: Septiembre 2012.  Sectormatematica.cl, Programas Gratis.  http://www.sectormatematica.cl/software.htm.Recuperado: Septiembre 2012  Manual_Razonamiento_Matemático.pdf DESCRIPCIÓN DEL MÓDULO:(Describe el aporte del módulo a la formación del perfil profesional, a la MISIÓN y VISIÓN de la ESCUELA y, a los logros de aprendizaje de éste módulo). 100 palabras / 7 líneas El módulo de Algebra, permite al estudiante identificar las posibilidades de resolución de problemáticas del entorno a través del conocimiento matemático, haciendo énfasis en estudio de casos, datos estadísticos, análisis de datos, las matemáticas relacionadas a los finanzas, la economía, al campo empresarial de manera preferencial al campo agropecuario; donde se genere proyectos productivos y así fortalecer el aprendizaje académico pedagógico de los educandos. III. RUTA FORMATIVA DEL PERFIL Nodo Problematizado: (Elija uno de la propuesta GENÉRICA de la UPEC o GLOBAL de la ESCUELA). Escaso razonamiento lógico matemático Competencia GENÉRICA - UPEC:(Elija una que guarde coherencia con el NODO PROBLEMATIZADO) Desarrollar el pensamiento lógico Competencia GLOBAL - ESCUELA:(Elija una que guarde coherencia con el NODO PROBLEMATIZADO y las COMPETENCIAS GENÉRICA) Planificar, implementar, coordinar, supervisar y evaluar proyectos y servicios del sector rural Competencia ESPECÍFICA - MÓDULO:(Escriba una que guarde coherencia con el NODO PROBLÉMICO y las COMPETENCIAS GENÉRICA y GLOBAL) Desarrollar el pensamiento lógico adecuadamente a través del lenguaje y las estructuras matemáticas para plantear y resolver problemas del entorno.
  • 21. Módulo Algebra Página 21 NIVELES DE LOGRO PROCESO COGNITIVO LOGROS DE APRENDIZAJE (Acciones sistémicas, ELEMENTOS DE COMPETENCIA, SUB - COMPETENCIAS) Seleccione de los sugeridos por la Escuela para perfil de Ingenierías El estudiante es capaz de: DIMENSIÓN (Elija el grado de complejidad que UD. EXIGIRÁ para alcanzar el logro) 1. TEÓRICO BÁSICO RECORDAR MLP Identificar los términos básicos utilizados durante el desarrollo del pensamiento lógico matemático. FACTUAL.-Si el estudiante va a TRATAR el VOCABULARIO o ELEMENTOS BÁSICOS de lo QUE DEBE SABER para estar al tanto de una disciplina o resolver problemas en ella. 2. TEÓRICO AVANZADO ENTENDER Diferenciar los conceptos básicos utilizados para el desarrollo de pensamiento lógico matemático. CONCEPTUAL.-Si el estudiante va a INTERRELACIONAR entre el VOCABULARIO o ELEMENTOS BÁSICOS de lo QUE DEBE SABER dentro de una ESTRUCTURA más grande que les permitan FUNCIONAR JUNTOS los vocablos. PROCESAL.-Si el estudiante SABE CÓMO HACER, métodos de investigación, y los criterios para el uso de habilidades, algoritmos, técnicas y métodos. 3. PRÁCTICO BÁSICO APLICAR Demostrar la utilidad de las matemáticas para el desarrollo del razonamiento lógico matemático. PROCESAL.-Si el estudiante SABE CÓMO HACER, métodos de investigación, y los criterios para el uso de habilidades, algoritmos, técnicas y métodos. 4. PRÁCTICO AVANZADO ANALIZAR Plantear alternativas mediante la aplicación de la matemática que permitan dar solución a los problemas planteados PROCESAL.-Si el estudiante SABE CÓMO HACER, métodos de investigación, y los criterios para el uso de habilidades, algoritmos, técnicas y métodos. 5. TEÓRICO PRÁCTICO BÁSICO EVALUAR Argumentar el planteamiento que dará solución a los problemas planteados. CONCEPTUAL.-Si el estudiante va a INTERRELACIONAR entre el VOCABULARIO o ELEMENTOS BÁSICOS de lo QUE DEBE SABER dentro de una ESTRUCTURA más grande que les permitan FUNCIONAR JUNTOS los vocablos. PROCESAL.-Si el estudiante SABE CÓMO HACER, métodos de investigación, y los criterios para el uso de habilidades, algoritmos, técnicas y métodos. 6. TEÓRICO PRÁCTICO AVANZADO CREAR Construir expresiones algebraicas que contribuyan a la solución de problemas del entorno. 1. FACTUAL.-Si el estudiante va a TRATAR el VOCABULARIO o ELEMENTOS BÁSICOS de lo QUE DEBE SABER para estar al tanto de una disciplina o resolver problemas en ella. 2. CONCEPTUAL.-Si el estudiante va a INTERRELACIONAR entre el VOCABULARIO o ELEMENTOS BÁSICOS de lo QUE DEBE SABER dentro de una ESTRUCTURA más grande que les permitan FUNCIONAR JUNTOS los vocablos. 3. PROCESAL.-Si el estudiante SABE CÓMO
  • 22. Módulo Algebra Página 22 HACER, métodos de investigación, y los criterios para el uso de habilidades, algoritmos, técnicas y métodos. 4. METACOGNITIVO.-Si el estudiante llega a adquirir EL CONOCIMIENTO DE LA COGNICIÓN GENERAL, así como la sensibilización y el conocimiento del propio conocimiento. Trabajo interdisciplinar:(Saberes integrados de los módulos recibidos y recibiendo que tributan directamente a la formación de la COMPETENCIA ESPECÍFICA). Algebra, calculo, estadística descriptiva, estadística inferencial, investigación de operaciones, matemáticas discretas.
  • 23. Módulo Algebra Página 23 IV. METODOLOGÍA DE FORMACIÓN DEL PERFIL: LOGROS DE APRENDIZAJE (Acciones sistémicas, ELEMENTOS DE COMPETENCIA, SUB - COMPETENCIAS) El estudiante será capaz de CONTENIDOS DE APRENDIZAJE PARA QUE EL ESTUDIANTE ALCANCE LOS LOGROS ESPERADOS ESTRATEGIAS DIDÁCTICAS Estrategias, métodos y técnicas HORAS CLASE COGNITIVOS ¿Qué TIENEque saber? PROCEDIMENTALES ¿Saber cómo TIENE queaplicar el conocimiento? AFECTIVO MOTIVACIONALES ¿Saber qué y cómo TIENEactuar axiológicamente? T P Identificar los términos básicos utilizados durante el desarrollo del pensamiento lógico matemático. Sistema de Números Reales Recta de números Reales Operaciones Binarias Potenciación y Radicación Propiedades fundamentales Aplicaciones Utilizar organizadores gráficos para identificar las clases de números reales que existe Utilizar organizadores gráficos para ubicar los elementos Relacionar en la uve heurística Identificar los diferentes propiedades en potenciación y radicación Hacer síntesis gráfica Repasar los conocimientos adquiridos y aplicarlos a la vida del profesional Turístico Demostrar comprensión sobre los tipos de números reales Disposición para trabajar en equipo Utilizar una actitud reflexiva y critica sobre la importancia de la matemática básica Aceptar opiniones diferentes Potenciar el clima positivo Aceptar errores y elevar el autoestima para que pueda actuar de manera autónoma y eficiente DEMOSTRAR. 1. Caracterizar los números reales para la demostración 2. Seleccionar los argumentos y hechos que corroboraron los números reales. CONVERSACIÓN HEURISTICA 1. Determinación del problema. 2. Dialogo mediante preguntas. 3. Debatir, discutir, intercambiar criterios, hurgar la ciencia, discutir la ciencia, búsqueda individual de la solución, socializar la solución. 2 4
  • 24. Módulo Algebra Página 24 Diferenciar los conceptos básicos utilizados para el desarrollo de pensamiento lógico matemático. Expresiones algebraicas: nomenclatura y clasificación. Polinomios clasificación. Operaciones con Polinomios: adición, resta, multiplicación y división. Productos notables. Descomposición Factorial Aplicar operaciones mentales Identificar los diferentes tipos polinomios Aplicar operaciones mentales en la resolución de un sistema de ecuaciones. Identificar los diferentes tipos de productos notables Resolver ejercicios Aceptar opiniones divergentes Destacar la solidaridad en los ambientes de trabajo Potenciar la resolución de problemas Valorar las participaciones de los demás Demostrar grado por lo que hacemos INDUCTIVO-DEDUCTIVO INDUCTIVO 1.Observación 2. Experimentación. 3. Información (oral, escrita, gráfica, etc.) 4. Dramatización. 5. Resolución de problemas. 6. comprobación. 7. Asociación (especial temporal y casual) 8. Abstracción. 9. Generalización. 10. Resúmenes. 11. Ejercicios de fijación. CONVERSACIÓN HEURISTICA 1. Determinación del 2 4
  • 25. Módulo Algebra Página 25 problema. 2. Dialogo mediante preguntas. 3. Debatir, discutir, intercambiar criterios, hurgar la ciencia, discutir la ciencia, búsqueda individual de la solución, socializar la solución. Demostrar la utilidad de las matemáticas para el desarrollo del razonamiento lógico matemático. Máximo común divisor de polinomios. Mínimo común múltiplos de polinomios. Operaciones con fracciones. Aplicaciones Resolver ejercicios con polinomios sencillos y complejos Aplicar procesos de resolución adecuados para resolver problemas. Resolver ejercicios aplicando en forma conjunta los máximos y los mínimos Distinguir los componentes de las expresiones racionales Utilizar una actitud crítica y reflexiva sobre el tema. Cooperar en el desarrollo del conocimiento. Demostrar confianza en el desarrollo del proceso. Cooperar con el grupo en la resolución de funciones. RAZONAR 1. Determinar las premisas. 2. Encontrar la relación de inferencia entre las premisas a través del término medio. 3. Elaborar las conclusiones. RELACIONAR. 1. Analizar de manera independiente los objetos a relacionar. 2. Determinar los criterios de relación entre los objetos 3 6 Plantear alternativas mediante la aplicación de la matemática que permitan dar solución a los problemas planteados Ecuaciones lineales, resolución Sistemas lineales y clasificación. Resolución de Plantear ecuaciones lineales. Identificar los sistemas líneas y su clasificación Elaborar modelos matemáticos en la solución de problemas de la carrera Implementar procesos de resolución adecuados en Trabajar con eficiencia y eficacia respetando los criterios en la resolución de problemas. Demostrar interés en el trabajo individual y de equipo Respetar las opiniones del grupo y fuera de él. Expresar coherencia en las soluciones EXPOSICION PROBLEMICA. 1. Determinar el problema. 2. Realizar el encuadre del problema. 3. Comunicar el conocimiento. 4. Formulación de la hipótesis. 5. Determinar los 3 6
  • 26. Módulo Algebra Página 26 ecuaciones lineales. Aplicaciones problemas reales. propuestas valorando las iniciativas de cada participante. procedimientos para resolver problemas. 6. Encontrar solución (fuentes, argumentos, búsqueda, contradicciones) Argumentar el planteamiento que dará solución a los problemas planteados. Definición y clasificación. Ecuaciones reducibles a cuadráticas Resolución de ecuaciones cuadráticas por factoreo. Resolución por completación de un trinomio cuadrado. Nombrar la definición de ecuaciones cuadráticas Reducir a expresiones sencillas las expresiones cuadráticas Resolver ejercicios sobre expresiones cuadráticas Ejercitar las operaciones con polinomios incompletos. Utilizar creatividad y capacidad de análisis y síntesis respetando los criterios del grupo. Demostrar razonamiento crítico y reflexivo cooperando en la obtención de resultados EXPOSICIÓN PROBLEMICA 1. Determinar el problema 2. Realizar el encuadre del problema 3. Comunicar el conocimiento (conferencia ,video ) 4. Formulación de la hipótesis ( interacción de las partes) 3 6 Construir expresiones algebraicas que contribuyan a la solución de problemas del entorno. Fórmula general para resolver ecuaciones cuadráticas. Aplicaciones de la ecuación cuadrática. Aplicar la fórmula general para la resolución de ecuaciones cuadráticas Distinguir los componentes de las expresiones racionales Valorar la creatividad de los demás Respetar el criterio del grupo. 1. Determinar los procedimientos para resolver problemas. 2. Encontrar la solución ( fuentes ,argumentos, búsqueda ,contradicciones) 3 6
  • 27. Módulo Algebra Página 27 V. PLANEACIÓN DE LA EVALUACIÓN DEL MÓDULO LOGROS DE APRENDIZAJE (Acciones sistémicas, ELEMENTOS DE COMPETENCIA, SUB - COMPETENCIAS) FORMAS DE EVALUACIÓN DE LOGROS DE APRENDIZAJE indicar las políticas de evaluación para éste módulo según los resultados esperados DIMENSIÓN (Elija el grado de complejidad que UD. EXIGIRÁ para alcanzar el logro) INDICADORES DE LOGRO DE INGENIERIA descripción TÉCNICAS e INSTRUMENTOS de EVALUACIÓN 1° PARCIA L 2° PARCIA L 3° PARCIA L SUPLETORI O Identificar los términos básicos utilizados durante el desarrollo del pensamiento lógico matemático. FACTUAL. Interpretar información. Deberes Trabajos Consultas Participación virtual Pruebas Portafolio Documento Documento Documento Chat-Foro Reactivos Documento 10% 10% 10% 10% 50% 10% Diferenciar los conceptos básicos utilizados para el desarrollo de pensamiento lógico matemático. CONCEPTUAL. Interpretar la información. Deberes Trabajos Consultas Participación virtual Pruebas Portafolio Documento Documento Documento Chat-Foro Reactivos Documento 10% 10% 10% 10% 50% 10% Demostrar la utilidad de las matemáticas para el desarrollo del razonamiento lógico matemático. CONCEPTUAL. Modelar, simular sistemas complejos. Deberes Trabajos Consultas Participación virtual Documento Documento Documento Chat-Foro 10% 10% 10% 10%
  • 28. Módulo Algebra Página 28 Pruebas Portafolio Reactivos Documento 50% 10% 100% Plantear alternativas mediante la aplicación de la matemática que permitan dar solución a los problemas planteados PROCESAL Analizar problemas y sistemas complejos. Deberes Trabajos Consultas Participación virtual Pruebas Portafolio Documento Documento Documento Chat-Foro Reactivos Documento 10% 10% 10% 10% 50% 10% 100% Argumentar el planteamiento que dará solución a los problemas planteados. CONCEPTUAL Desarrollar una estrategia para el diseño. Deberes Trabajos Consultas Participación virtual Pruebas Portafolio Documento Documento Documento Chat-Foro Reactivos Documento 5% 5% 5% 5% 25% 5% Construir expresiones algebraicas que contribuyan a la solución de problemas del entorno. FACTUAL. CONCEPTUAL. PROCESAL METACOGNITIVO Interpretar información. Modelar, simular sistemas complejos. Analizar problemas y sistemas complejos. Deberes Trabajos Consultas Participación virtual Pruebas Portafolio Documento Documento Documento Chat-Foro Reactivos Documento 5% 5% 5% 5% 25% 5% 100% ESCALA DE VALORACIÓN 9.0 a 10.0 Acreditable - Muy Satisfactorio 7.0 a 7.9 Acreditable – Aceptable
  • 29. Módulo Algebra Página 29 Nivel ponderado de aspiración y alcance 8.0 a 8.9 Acreditable – Satisfactorio 4.0 a 6.9 No Acreditable – Inaceptable
  • 30. Módulo Algebra Página 30 VI. GUÍA DE TRABAJO AUTÓNOMO / PRODUCTOS / TIEMPOS LOGROS DE APRENDIZAJE (Acciones sistémicas, ELEMENTOS DE COMPETENCIA, SUB - COMPETENCIAS) APRENDIZAJE CENTRADO EN EL ESTUDIANTE HORAS AUTÓNO MAS INSTRUCCIONES RECURSOS PRODUCTO T P Identificar los términos básicos utilizados durante el desarrollo del pensamiento lógico matemático. Consulte información en el internet y textos especializados los conceptos de números reales, presentar en organizadores gráficos. Prueba Libros. Copias Documentos en pdf. Descarga de documentos de la web. Diferencia los diferentes tipos de sistemas de números reales. 2 4 Diferenciar los conceptos básicos utilizados para el desarrollo de pensamiento lógico matemático. Consulta sobre la definición de un monomio y polinomio. Grado de un polinomio y su ordenamiento Libros. Copias Documentos en pdf. Descarga de documentos de la web. Identifica los tipos de polinomios 2 4 Demostrar la utilidad de las matemáticas para el desarrollo del razonamiento lógico matemático. Distinguir plenamente entre expresiones racionales e irracionales Libros. Copias Documentos en pdf. Descarga de documentos de la web. Distinguir plenamente entre expresiones racionales e irracionales 3 6 Plantear alternativas mediante la aplicación de la matemática que permitan dar solución a los problemas planteados Dar solución a ecuaciones de primer grado Libros. Copias Documentos en pdf. Descarga de documentos de la web. Dar solución a ecuaciones de primer grado 3 6
  • 31. Módulo Algebra Página 31 Argumentar el planteamiento que dará solución a los problemas planteados. Identificar los tipos de soluciones que pueden presentarse en la solución de expresiones cuadráticas. Libros. Copias Documentos en pdf. Descarga de documentos de la web. Identificar los tipos de soluciones que pueden presentarse en la solución de expresiones cuadráticas 3 6 Construir expresiones algebraicas que contribuyan a la solución de problemas del entorno. 3 6 PROYECTO INTEGRADOR DE SABERES: (Proyecto Integrador de conocimientos con los módulos del Nivel ) TOTAL 16 32 CRÉDITOS 1 2 3
  • 32. Módulo Algebra Página 32 VII. Bibliografía. BÁSICA: (Disponible en la UPEC en físico y digital – REFENCIAR con normas APA)  Haeussler, E. (2008). Matemáticas para Administración y Economía, Décima segunda edición: México COMPLEMENTARIA: (NO Disponible en la UPEC en físico y digital - REFENCIAR con normas APA)  Snut S. y otros (2012). Matemáticas para el análisis económico. Segunda edición: Madrid España.  Escudero R. y otros. (2011). Matemáticas Básicas. Segunda edición: Colombia  Soler F. y otros. (2009). Fundamentos de Matemáticas. Tercera edición: Colombia.  Pullas G. (2011). Matemática básica. Primera edición: Ecuador.  SánchezA. (2012). Desarrollo del Pensamiento. Editorial Imprenta Mariscal, Edición Primera, Ecuador.  http://www.sectormatematica.cl /libros.htm.Recuperado: Septiembre 2012.  Sectormatematica.cl, Programas Gratis.  http://www.sectormatematica.cl/software.htm.Recuperado: Septiembre 2012  Manual_Razonamiento_Matemático.pdf DOCENTES: Firma: Nombres y Apellidos Oscar Rene Lomas Reyes Ing. ENTREGADO: Marzo 2011
  • 33. Módulo Algebra Página 33
  • 34. Módulo Algebra Página 34
  • 35. Módulo Algebra Página 35
  • 36. Módulo Algebra Página 36
  • 37. Módulo Algebra Página 37
  • 38. Módulo Algebra Página 38
  • 39. Módulo Algebra Página 39
  • 40. Módulo Algebra Página 40
  • 41. Módulo Algebra Página 41
  • 42. Módulo Algebra Página 42
  • 43. Módulo Algebra Página 43
  • 44. Módulo Algebra Página 44
  • 45. Módulo Algebra Página 45
  • 46. Módulo Algebra Página 46
  • 47. Módulo Algebra Página 47
  • 48. Módulo Algebra Página 48
  • 49. Módulo Algebra Página 49
  • 50. Módulo Algebra Página 50
  • 51. Módulo Algebra Página 51
  • 52. Módulo Algebra Página 52
  • 53. Módulo Algebra Página 53
  • 54. Módulo Algebra Página 54
  • 55. Módulo Algebra Página 55
  • 56. Módulo Algebra Página 56
  • 57. Módulo Algebra Página 57
  • 58. Módulo Algebra Página 58
  • 59. Módulo Algebra Página 59
  • 60. Módulo Algebra Página 60
  • 61. Módulo Algebra Página 61
  • 62. Módulo Algebra Página 62
  • 63. Módulo Algebra Página 63
  • 64. Módulo Algebra Página 64
  • 65. Módulo Algebra Página 65
  • 66. Módulo Algebra Página 66
  • 67. Módulo Algebra Página 67
  • 68. Módulo Algebra Página 68
  • 69. Módulo Algebra Página 69
  • 70. Módulo Algebra Página 70
  • 71. Módulo Algebra Página 71
  • 72. Módulo Algebra Página 72
  • 73. Módulo Algebra Página 73
  • 74. Módulo Algebra Página 74
  • 75. Módulo Algebra Página 75
  • 76. Módulo Algebra Página 76
  • 77. Módulo Algebra Página 77
  • 78. Módulo Algebra Página 78
  • 79. Módulo Algebra Página 79
  • 80. Módulo Algebra Página 80
  • 81. Módulo Algebra Página 81
  • 82. Módulo Algebra Página 82
  • 83. Módulo Algebra Página 83
  • 84. Módulo Algebra Página 84
  • 85. Módulo Algebra Página 85
  • 86. Módulo Algebra Página 86
  • 87. Módulo Algebra Página 87
  • 88. Módulo Algebra Página 88
  • 89. Módulo Algebra Página 89
  • 90. Módulo Algebra Página 90
  • 91. Módulo Algebra Página 91
  • 92. Módulo Algebra Página 92
  • 93. Módulo Algebra Página 93
  • 94. Módulo Algebra Página 94
  • 95. Módulo Algebra Página 95
  • 96. Módulo Algebra Página 96
  • 97. Módulo Algebra Página 97
  • 98. Módulo Algebra Página 98
  • 99. Módulo Algebra Página 99
  • 100. Módulo Algebra Página 100
  • 101. Módulo Algebra Página 101
  • 102. Módulo Algebra Página 102
  • 103. Módulo Algebra Página 103
  • 104. Módulo Algebra Página 104 UNIVERSIDAD POLITÉCNICA ESTATAL DEL CARCHI FACULTAD DE INDUSTRIAS AGROPECUARIAS Y CIENCIAS AMBIENTALES Escuela de Desarrollo Integral Agropecuario Módulo “ALGEBRA” PRIMER NIVEL ADRIANA GUACHAGMIRA PARALELO: “ B ” Ing. Oscar René Lomas Reyes FRACCIONES ALGEBRAICAS
  • 105. Módulo Algebra Página 105 OPERACIONES DE FRACCIONES ALGEBRAICAS Las operaciones que se pueden realizar con las fracciones algebraicas son: Suma y Resta Multiplicación División SIMPLIFICACIÓN DE FRACCIONES ALGEBRAICAS Simplificación de Fracciones Algebraicas Se dice que una fracción está reducida a sus términos más sencillos o totalmente simplificados, cuando no existe ningún factor común al numerador y denominador. Evidentemente una fracción dada puede reducirse a sus términos más sencillos dividiendo el numerador y el denominador entre los factores que tengan en común. Ejemplo: Simplifica la siguiente fracción CLASES DE FRACCIONES ALGEBRAICAS Fracción algebraica simple Es la que el numerador y denominador son expresiones racionales enteras. Fracción propia e impropia Una fracción simple se llama propia si el grado del numerador es menor que el grado del denominador; y se llama impropia si el grado del numerador es
  • 106. Módulo Algebra Página 106 mayor o igual que el grado del denominador. Fracción compuesta Una fracción compuesta es aquella que contiene una o más fracciones ya sea en su numerador o en su denominador, o en ambos. DEFINICION y SIGNOS DE UNA FRACCION DEFINICION Se llama fracción algebraica al cociente indicado de dos polinomios P(x):Q(x). El dividendo se llama numerador y el divisor se llama denominador . Ejemplo: SIGNOS Toda fracción algebraicas tiene tres signos: Signo del Numerador, Signo del Denominador y Signo de la Fracción Significados de una fracción Significado 1.- Una fracción indica una división. Por ejemplo, ¾ quiere decir 3 divido por 4 o bien 3¸4. Cuando una fracción significa división, el numerador es el dividendo y el denominador es el divisor. Significado 2.- Una fracción indica una razón. Por ejemplo, ¾ quiere decir 3 a 4 o bien 3:4. Cuando una fracción significa razón de dos cantidades, éstas deben estar expresadas en las mismas unidades. Por ejemplo la razón de 3 días a 2 semanas es 3:14 o bien 3/14. Se ha hecho la equivalencia de 2 semanas a 14 días eliminándose luego la unidad común. Significado 3.- Una fracción indica una parte de todo o una parte de un grupo de cosas. Por ejemplo, ¾ puede expresarse tres cuartos de una moneda o bien 3 monedas de 4 monedas. Numerador o Denominador Nulo
  • 107. Módulo Algebra Página 107 Si el denominador de una fracción es cero, el valor de dicha fracción es nulo siempre que el denominador sea distinto de cero. Por ejemplo 0/3 = 0. Asimismo, si x/3=0 se deduce que x=0. La fracción para x = 5 vale cero. Sin embargo 0/0 es indeterminado. Como la división por cero carece de sentido, una fracción cuyo denominador sea cero es imposible. Por ejemplo 3¸0 es imposible. O bien 3/0 carece de sentido. Asimismo, si x = 0 la fracción 5¸x es imposible o bien 5/x carece de sentido. EJERCCICIOS http://fraccionesalgebraicas.blogspot.com/
  • 108. Módulo Algebra Página 108 UNIVERSIDAD POLITÉCNICA ESTATAL DEL CARCHI FACULTAD DE INDUSTRIAS AGROPECUARIAS Y CIENCIAS AMBIENTALES Escuela de Desarrollo Integral Agropecuario Módulo “ALGEBRA” PRIMER NIVEL ADRIANA GUACHAGMIRA PARALELO: “ B ” Ing. Oscar René Lomas Reyes Marzo 2013 – Agosto 2013
  • 109. Módulo Algebra Página 109 ECUACIONES LINEALES Sistemas de ecuaciones lineales Un sistema de ecuaciones lineales está formado por ecuaciones de primer grado en todas las incógnitas. Todas esas ecuaciones han de verificarse a la vez. Un sistema formado por dos ecuaciones y dos incógnitas, se puede escribir como sigue: 11 12 1 21 22 2 a x a y b a x a y b Cada una de estas ecuaciones es una recta. La solución del sistema es el punto en el que se cortan las dos rectas. Puede pasar que las rectas no se corten. En ese caso el sistema no tiene solución.
  • 110. Módulo Algebra Página 110 http://www.slideshare.net/chela5808/ec-lin-ejer002-presentation
  • 111. Módulo Algebra Página 111
  • 112. Módulo Algebra Página 112
  • 113. Módulo Algebra Página 113 UNIVERSIDAD POLITÉCNICA ESTATAL DEL CARCHI FACULTAD DE INDUSTRIAS AGROPECUARIAS Y CIENCIAS AMBIENTALES Escuela de Desarrollo Integral Agropecuario Módulo “ALGEBRA” PRIMER NIVEL ADRIANA GUACHAGMIRA PARALELO: “ B ” Ing. Oscar René Lomas Reyes Marzo 2013 – Agosto 2013
  • 114. Módulo Algebra Página 114
  • 115. Módulo Algebra Página 115
  • 116. Módulo Algebra Página 116
  • 117. Módulo Algebra Página 117
  • 118. Módulo Algebra Página 118
  • 119. Módulo Algebra Página 119 UNIVERSIDAD POLITÉCNICA ESTATAL DEL CARCHI FACULTAD DE INDUSTRIAS AGROPECUARIAS Y CIENCIAS AMBIENTALES Escuela de Desarrollo Integral Agropecuario Módulo “ALGEBRA” PRIMER NIVEL ADRIANA GUACHAGMIRA PARALELO: “ B ” Ing. Oscar René Lomas Reyes Marzo 2013 – Agosto 2013
  • 120. Módulo Algebra Página 120 Ejercicios ecuaciones cuadráticas La ecuación cuadrática o también conocida como la ecuación de segundo grado es aquella ecuación que obedece a un polinomio de segundo grado de la forma ax2 + bx + c igual a cero. Donde el coeficiente "a" es necesariamente diferente a cero (En el caso que a = 0 se obtiene una ecuación lineal o de primer orden) Primer ejemplo, 2x2 – x – 1 = 0 Primero se identifican los coeficientes a = 2, b = -1 y c = -1 Luego se procede a reemplazarlos en la fórmula Ambas soluciones son reales y diferentes entre sí. Note que , en este ejemplo en particular Segundo ejemplo, 9x2 – 6x + 1 = 0 Se identifican los coeficientes a = 9, b = -6 y c = 1
  • 121. Módulo Algebra Página 121 Ejercicios
  • 122. Módulo Algebra Página 122 Número de soluciones Solucionar una ecuación de segundo grado consiste en averiguar qué valor o valores al ser sustituidos por la indeterminada convierten la ecuación en una identidad. Llamamos discriminante , en función del signo del discriminante conoceremos el número de soluciones de la ecuación, así: Si el discriminante es menor que 0 la ecuación no tiene solución. Si el discriminante es 0 hay una solución. Si el discriminante es mayor que 0 hay dos soluciones.
  • 123. Módulo Algebra Página 123
  • 124. Módulo Algebra Página 124
  • 125. Módulo Algebra Página 125 UNIVERSIDAD POLITÉCNICA ESTATAL DEL CARCHI FACULTAD DE INDUSTRIAS AGROPECUARIAS Y CIENCIAS AMBIENTALES Escuela de Desarrollo Integral Agropecuario Módulo “ALGEBRA” PRIMER NIVEL ADRIANA GUACHAGMIRA PARALELO: “ B ” Ing. Oscar René Lomas Reyes Marzo 2013 – Agosto 2013
  • 126. Módulo Algebra Página 126 Graficas de ecuaciones cuadráticas
  • 127. Módulo Algebra Página 127
  • 128. Módulo Algebra Página 128
  • 129. Módulo Algebra Página 129
  • 130. Módulo Algebra Página 130
  • 131. Módulo Algebra Página 131
  • 132. Módulo Algebra Página 132
  • 133. Módulo Algebra Página 133
  • 134. Módulo Algebra Página 134
  • 135. Módulo Algebra Página 135
  • 136. Módulo Algebra Página 136
  • 137. Módulo Algebra Página 137
  • 138. Módulo Algebra Página 138
  • 139. Módulo Algebra Página 139
  • 140. Módulo Algebra Página 140
  • 141. Módulo Algebra Página 141
  • 142. Módulo Algebra Página 142
  • 143. Módulo Algebra Página 143
  • 144. Módulo Algebra Página 144
  • 145. Módulo Algebra Página 145