Discrete Mathematics - Predicates and Sets

17,703 views

Published on

Predicates, quantifiers. Sets, subsets, power sets, set operations, laws of set theory, principle of inclusion-exclusion.

Published in: Education, Technology, Business
1 Comment
7 Likes
Statistics
Notes
No Downloads
Views
Total views
17,703
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
462
Comments
1
Likes
7
Embeds 0
No embeds

No notes for slide

Discrete Mathematics - Predicates and Sets

  1. 1. Discrete Mathematics Predicates and SetsH. Turgut Uyar Ay¸eg¨l Gen¸ata Yayımlı s u c Emre Harmancı 2001-2013
  2. 2. License c 2001-2013 T. Uyar, A. Yayımlı, E. Harmancı You are free: to Share – to copy, distribute and transmit the work to Remix – to adapt the work Under the following conditions: Attribution – You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Noncommercial – You may not use this work for commercial purposes. Share Alike – If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one. Legal code (the full license): http://creativecommons.org/licenses/by-nc-sa/3.0/
  3. 3. Topics 1 Predicates Introduction Quantifiers Multiple Quantifiers 2 Sets Introduction Subset Set Operations Inclusion-Exclusion
  4. 4. Topics 1 Predicates Introduction Quantifiers Multiple Quantifiers 2 Sets Introduction Subset Set Operations Inclusion-Exclusion
  5. 5. Predicate Definition predicate (or open statement): a declarative sentence which contains one or more variables, and is not a proposition, but becomes a proposition when the variables in it are replaced by certain allowable choices
  6. 6. Universe of Discourse Definition universe of discourse: U set of allowable choices examples: Z: integers N: natural numbers Z+ : positive integers Q: rational numbers R: real numbers C: complex numbers
  7. 7. Universe of Discourse Definition universe of discourse: U set of allowable choices examples: Z: integers N: natural numbers Z+ : positive integers Q: rational numbers R: real numbers C: complex numbers
  8. 8. Predicate Examples Example U =N p(x): x + 2 is an even integer p(5): F p(8): T ¬p(x): x + 2 is not an even integer Example U =N q(x, y ): x + y and x − 2y are even integers q(11, 3): F , q(14, 4): T
  9. 9. Predicate Examples Example U =N p(x): x + 2 is an even integer p(5): F p(8): T ¬p(x): x + 2 is not an even integer Example U =N q(x, y ): x + y and x − 2y are even integers q(11, 3): F , q(14, 4): T
  10. 10. Predicate Examples Example U =N p(x): x + 2 is an even integer p(5): F p(8): T ¬p(x): x + 2 is not an even integer Example U =N q(x, y ): x + y and x − 2y are even integers q(11, 3): F , q(14, 4): T
  11. 11. Topics 1 Predicates Introduction Quantifiers Multiple Quantifiers 2 Sets Introduction Subset Set Operations Inclusion-Exclusion
  12. 12. Quantifiers Definition Definition existential quantifier: universal quantifier: predicate is true for some values predicate is true for all values symbol: ∃ symbol: ∀ read: there exists read: for all symbol: ∃! read: there exists only one
  13. 13. Quantifiers Definition Definition existential quantifier: universal quantifier: predicate is true for some values predicate is true for all values symbol: ∃ symbol: ∀ read: there exists read: for all symbol: ∃! read: there exists only one
  14. 14. Quantifiers Definition Definition existential quantifier: universal quantifier: predicate is true for some values predicate is true for all values symbol: ∃ symbol: ∀ read: there exists read: for all symbol: ∃! read: there exists only one
  15. 15. Quantifiers existential quantifier U = {x1 , x2 , . . . , xn } ∃x p(x) ≡ p(x1 ) ∨ p(x2 ) ∨ · · · ∨ p(xn ) p(x) is true for some x universal quantifier U = {x1 , x2 , . . . , xn } ∀x p(x) ≡ p(x1 ) ∧ p(x2 ) ∧ · · · ∧ p(xn ) p(x) is true for all x
  16. 16. Quantifiers existential quantifier U = {x1 , x2 , . . . , xn } ∃x p(x) ≡ p(x1 ) ∨ p(x2 ) ∨ · · · ∨ p(xn ) p(x) is true for some x universal quantifier U = {x1 , x2 , . . . , xn } ∀x p(x) ≡ p(x1 ) ∧ p(x2 ) ∧ · · · ∧ p(xn ) p(x) is true for all x
  17. 17. Quantifier Examples Example U =R p(x) : x ≥ 0 ∃x [p(x) ∧ r (x)] q(x) : x 2 ≥ 0 ∀x [p(x) → q(x)] r (x) : (x − 4)(x + 1) = 0 ∀x [q(x) → s(x)] s(x) : x 2 − 3 > 0 ∀x [r (x) ∨ s(x)] ∀x [r (x) → p(x)] are the following expressions true?
  18. 18. Quantifier Examples Example U =R p(x) : x ≥ 0 ∃x [p(x) ∧ r (x)] q(x) : x 2 ≥ 0 ∀x [p(x) → q(x)] r (x) : (x − 4)(x + 1) = 0 ∀x [q(x) → s(x)] s(x) : x 2 − 3 > 0 ∀x [r (x) ∨ s(x)] ∀x [r (x) → p(x)] are the following expressions true?
  19. 19. Quantifier Examples Example U =R p(x) : x ≥ 0 ∃x [p(x) ∧ r (x)] q(x) : x 2 ≥ 0 ∀x [p(x) → q(x)] r (x) : (x − 4)(x + 1) = 0 ∀x [q(x) → s(x)] s(x) : x 2 − 3 > 0 ∀x [r (x) ∨ s(x)] ∀x [r (x) → p(x)] are the following expressions true?
  20. 20. Quantifier Examples Example U =R p(x) : x ≥ 0 ∃x [p(x) ∧ r (x)] q(x) : x 2 ≥ 0 ∀x [p(x) → q(x)] r (x) : (x − 4)(x + 1) = 0 ∀x [q(x) → s(x)] s(x) : x 2 − 3 > 0 ∀x [r (x) ∨ s(x)] ∀x [r (x) → p(x)] are the following expressions true?
  21. 21. Quantifier Examples Example U =R p(x) : x ≥ 0 ∃x [p(x) ∧ r (x)] q(x) : x 2 ≥ 0 ∀x [p(x) → q(x)] r (x) : (x − 4)(x + 1) = 0 ∀x [q(x) → s(x)] s(x) : x 2 − 3 > 0 ∀x [r (x) ∨ s(x)] ∀x [r (x) → p(x)] are the following expressions true?
  22. 22. Quantifier Examples Example U =R p(x) : x ≥ 0 ∃x [p(x) ∧ r (x)] q(x) : x 2 ≥ 0 ∀x [p(x) → q(x)] r (x) : (x − 4)(x + 1) = 0 ∀x [q(x) → s(x)] s(x) : x 2 − 3 > 0 ∀x [r (x) ∨ s(x)] ∀x [r (x) → p(x)] are the following expressions true?
  23. 23. Negating Quantifiers replace ∀ with ∃, and ∃ with ∀ negate the predicate ¬∃x p(x) ⇔ ∀x ¬p(x) ¬∃x ¬p(x) ⇔ ∀x p(x) ¬∀x p(x) ⇔ ∃x ¬p(x) ¬∀x ¬p(x) ⇔ ∃x p(x)
  24. 24. Negating Quantifiers replace ∀ with ∃, and ∃ with ∀ negate the predicate ¬∃x p(x) ⇔ ∀x ¬p(x) ¬∃x ¬p(x) ⇔ ∀x p(x) ¬∀x p(x) ⇔ ∃x ¬p(x) ¬∀x ¬p(x) ⇔ ∃x p(x)
  25. 25. Negating Quantifiers Theorem ¬∃x p(x) ⇔ ∀x ¬p(x) Proof. ¬∃x p(x) ≡ ¬[p(x1 ) ∨ p(x2 ) ∨ · · · ∨ p(xn )] ⇔ ¬p(x1 ) ∧ ¬p(x2 ) ∧ · · · ∧ ¬p(xn ) ≡ ∀x ¬p(x)
  26. 26. Negating Quantifiers Theorem ¬∃x p(x) ⇔ ∀x ¬p(x) Proof. ¬∃x p(x) ≡ ¬[p(x1 ) ∨ p(x2 ) ∨ · · · ∨ p(xn )] ⇔ ¬p(x1 ) ∧ ¬p(x2 ) ∧ · · · ∧ ¬p(xn ) ≡ ∀x ¬p(x)
  27. 27. Negating Quantifiers Theorem ¬∃x p(x) ⇔ ∀x ¬p(x) Proof. ¬∃x p(x) ≡ ¬[p(x1 ) ∨ p(x2 ) ∨ · · · ∨ p(xn )] ⇔ ¬p(x1 ) ∧ ¬p(x2 ) ∧ · · · ∧ ¬p(xn ) ≡ ∀x ¬p(x)
  28. 28. Negating Quantifiers Theorem ¬∃x p(x) ⇔ ∀x ¬p(x) Proof. ¬∃x p(x) ≡ ¬[p(x1 ) ∨ p(x2 ) ∨ · · · ∨ p(xn )] ⇔ ¬p(x1 ) ∧ ¬p(x2 ) ∧ · · · ∧ ¬p(xn ) ≡ ∀x ¬p(x)
  29. 29. Predicate Equivalences Theorem ∃x [p(x) ∨ q(x)] ⇔ ∃x p(x) ∨ ∃x q(x) Theorem ∀x [p(x) ∧ q(x)] ⇔ ∀x p(x) ∧ ∀x q(x)
  30. 30. Predicate Equivalences Theorem ∃x [p(x) ∨ q(x)] ⇔ ∃x p(x) ∨ ∃x q(x) Theorem ∀x [p(x) ∧ q(x)] ⇔ ∀x p(x) ∧ ∀x q(x)
  31. 31. Predicate Implications Theorem ∀x p(x) ⇒ ∃x p(x) Theorem ∃x [p(x) ∧ q(x)] ⇒ ∃x p(x) ∧ ∃x q(x) Theorem ∀x p(x) ∨ ∀x q(x) ⇒ ∀x [p(x) ∨ q(x)]
  32. 32. Predicate Implications Theorem ∀x p(x) ⇒ ∃x p(x) Theorem ∃x [p(x) ∧ q(x)] ⇒ ∃x p(x) ∧ ∃x q(x) Theorem ∀x p(x) ∨ ∀x q(x) ⇒ ∀x [p(x) ∨ q(x)]
  33. 33. Predicate Implications Theorem ∀x p(x) ⇒ ∃x p(x) Theorem ∃x [p(x) ∧ q(x)] ⇒ ∃x p(x) ∧ ∃x q(x) Theorem ∀x p(x) ∨ ∀x q(x) ⇒ ∀x [p(x) ∨ q(x)]
  34. 34. Topics 1 Predicates Introduction Quantifiers Multiple Quantifiers 2 Sets Introduction Subset Set Operations Inclusion-Exclusion
  35. 35. Multiple Quantifiers ∃x∃y p(x, y ) ∀x∃y p(x, y ) ∃x∀y p(x, y ) ∀x∀y p(x, y )
  36. 36. Multiple Quantifier Examples Example U =Z p(x, y ) : x + y = 17 ∀x∃y p(x, y ): for every x there exists a y such that x + y = 17 ∃y ∀x p(x, y ): there exists a y so that for all x, x + y = 17 what if U = N?
  37. 37. Multiple Quantifier Examples Example U =Z p(x, y ) : x + y = 17 ∀x∃y p(x, y ): for every x there exists a y such that x + y = 17 ∃y ∀x p(x, y ): there exists a y so that for all x, x + y = 17 what if U = N?
  38. 38. Multiple Quantifier Examples Example U =Z p(x, y ) : x + y = 17 ∀x∃y p(x, y ): for every x there exists a y such that x + y = 17 ∃y ∀x p(x, y ): there exists a y so that for all x, x + y = 17 what if U = N?
  39. 39. Multiple Quantifier Examples Example U =Z p(x, y ) : x + y = 17 ∀x∃y p(x, y ): for every x there exists a y such that x + y = 17 ∃y ∀x p(x, y ): there exists a y so that for all x, x + y = 17 what if U = N?
  40. 40. Multiple Quantifiers Example Ux = {1, 2} ∧ Uy = {A, B} ∃x∃y p(x, y ) ≡ [p(1, A) ∨ p(1, B)] ∨ [p(2, A) ∨ p(2, B)] ∃x∀y p(x, y ) ≡ [p(1, A) ∧ p(1, B)] ∨ [p(2, A) ∧ p(2, B)] ∀x∃y p(x, y ) ≡ [p(1, A) ∨ p(1, B)] ∧ [p(2, A) ∨ p(2, B)] ∀x∀y p(x, y ) ≡ [p(1, A) ∧ p(1, B)] ∧ [p(2, A) ∧ p(2, B)]
  41. 41. Multiple Quantifiers Example Ux = {1, 2} ∧ Uy = {A, B} ∃x∃y p(x, y ) ≡ [p(1, A) ∨ p(1, B)] ∨ [p(2, A) ∨ p(2, B)] ∃x∀y p(x, y ) ≡ [p(1, A) ∧ p(1, B)] ∨ [p(2, A) ∧ p(2, B)] ∀x∃y p(x, y ) ≡ [p(1, A) ∨ p(1, B)] ∧ [p(2, A) ∨ p(2, B)] ∀x∀y p(x, y ) ≡ [p(1, A) ∧ p(1, B)] ∧ [p(2, A) ∧ p(2, B)]
  42. 42. Multiple Quantifiers Example Ux = {1, 2} ∧ Uy = {A, B} ∃x∃y p(x, y ) ≡ [p(1, A) ∨ p(1, B)] ∨ [p(2, A) ∨ p(2, B)] ∃x∀y p(x, y ) ≡ [p(1, A) ∧ p(1, B)] ∨ [p(2, A) ∧ p(2, B)] ∀x∃y p(x, y ) ≡ [p(1, A) ∨ p(1, B)] ∧ [p(2, A) ∨ p(2, B)] ∀x∀y p(x, y ) ≡ [p(1, A) ∧ p(1, B)] ∧ [p(2, A) ∧ p(2, B)]
  43. 43. Multiple Quantifiers Example Ux = {1, 2} ∧ Uy = {A, B} ∃x∃y p(x, y ) ≡ [p(1, A) ∨ p(1, B)] ∨ [p(2, A) ∨ p(2, B)] ∃x∀y p(x, y ) ≡ [p(1, A) ∧ p(1, B)] ∨ [p(2, A) ∧ p(2, B)] ∀x∃y p(x, y ) ≡ [p(1, A) ∨ p(1, B)] ∧ [p(2, A) ∨ p(2, B)] ∀x∀y p(x, y ) ≡ [p(1, A) ∧ p(1, B)] ∧ [p(2, A) ∧ p(2, B)]
  44. 44. Multiple Quantifiers Example Ux = {1, 2} ∧ Uy = {A, B} ∃x∃y p(x, y ) ≡ [p(1, A) ∨ p(1, B)] ∨ [p(2, A) ∨ p(2, B)] ∃x∀y p(x, y ) ≡ [p(1, A) ∧ p(1, B)] ∨ [p(2, A) ∧ p(2, B)] ∀x∃y p(x, y ) ≡ [p(1, A) ∨ p(1, B)] ∧ [p(2, A) ∨ p(2, B)] ∀x∀y p(x, y ) ≡ [p(1, A) ∧ p(1, B)] ∧ [p(2, A) ∧ p(2, B)]
  45. 45. References Required Reading: Grimaldi Chapter 2: Fundamentals of Logic 2.4. The Use of Quantifiers Supplementary Reading: O’Donnell, Hall, Page Chapter 7: Predicate Logic
  46. 46. Topics 1 Predicates Introduction Quantifiers Multiple Quantifiers 2 Sets Introduction Subset Set Operations Inclusion-Exclusion
  47. 47. Set Definition set: a collection of elements that are distinct unordered non-repeating
  48. 48. Set Representation explicit representation elements are listed within braces: {a1 , a2 , . . . , an } implicit representation elements that validate a predicate: {x|x ∈ G , p(x)} ∅: empty set let S be a set, and a be an element a ∈ S: a is an element of set S a ∈ S: a is not an element of set S / |S|: number of elements (cardinality)
  49. 49. Set Representation explicit representation elements are listed within braces: {a1 , a2 , . . . , an } implicit representation elements that validate a predicate: {x|x ∈ G , p(x)} ∅: empty set let S be a set, and a be an element a ∈ S: a is an element of set S a ∈ S: a is not an element of set S / |S|: number of elements (cardinality)
  50. 50. Set Representation explicit representation elements are listed within braces: {a1 , a2 , . . . , an } implicit representation elements that validate a predicate: {x|x ∈ G , p(x)} ∅: empty set let S be a set, and a be an element a ∈ S: a is an element of set S a ∈ S: a is not an element of set S / |S|: number of elements (cardinality)
  51. 51. Set Representation explicit representation elements are listed within braces: {a1 , a2 , . . . , an } implicit representation elements that validate a predicate: {x|x ∈ G , p(x)} ∅: empty set let S be a set, and a be an element a ∈ S: a is an element of set S a ∈ S: a is not an element of set S / |S|: number of elements (cardinality)
  52. 52. Set Representation explicit representation elements are listed within braces: {a1 , a2 , . . . , an } implicit representation elements that validate a predicate: {x|x ∈ G , p(x)} ∅: empty set let S be a set, and a be an element a ∈ S: a is an element of set S a ∈ S: a is not an element of set S / |S|: number of elements (cardinality)
  53. 53. Explicit Representation Example Example {3, 8, 2, 11, 5} 11 ∈ {3, 8, 2, 11, 5} |{3, 8, 2, 11, 5}| = 5
  54. 54. Implicit Representation Examples Example {x|x ∈ Z+ , 20 < x 3 < 100} ≡ {3, 4} {2x − 1|x ∈ Z+ , 20 < x 3 < 100} ≡ {5, 7} Example A = {x|x ∈ R, 1 ≤ x ≤ 5} Example E = {n|n ∈ N, ∃k ∈ N [n = 2k]} A = {x|x ∈ E , 1 ≤ x ≤ 5}
  55. 55. Implicit Representation Examples Example {x|x ∈ Z+ , 20 < x 3 < 100} ≡ {3, 4} {2x − 1|x ∈ Z+ , 20 < x 3 < 100} ≡ {5, 7} Example A = {x|x ∈ R, 1 ≤ x ≤ 5} Example E = {n|n ∈ N, ∃k ∈ N [n = 2k]} A = {x|x ∈ E , 1 ≤ x ≤ 5}
  56. 56. Implicit Representation Examples Example {x|x ∈ Z+ , 20 < x 3 < 100} ≡ {3, 4} {2x − 1|x ∈ Z+ , 20 < x 3 < 100} ≡ {5, 7} Example A = {x|x ∈ R, 1 ≤ x ≤ 5} Example E = {n|n ∈ N, ∃k ∈ N [n = 2k]} A = {x|x ∈ E , 1 ≤ x ≤ 5}
  57. 57. Set Dilemma There is a barber who lives in a small town. He shaves all those men who don’t shave themselves. He doesn’t shave those men who shave themselves. Does the barber shave himself? yes → but he doesn’t shave men who shave themselves → no no → but he shaves all men who don’t shave themselves → yes
  58. 58. Set Dilemma There is a barber who lives in a small town. He shaves all those men who don’t shave themselves. He doesn’t shave those men who shave themselves. Does the barber shave himself? yes → but he doesn’t shave men who shave themselves → no no → but he shaves all men who don’t shave themselves → yes
  59. 59. Set Dilemma There is a barber who lives in a small town. He shaves all those men who don’t shave themselves. He doesn’t shave those men who shave themselves. Does the barber shave himself? yes → but he doesn’t shave men who shave themselves → no no → but he shaves all men who don’t shave themselves → yes
  60. 60. Set Dilemma let S be the set of sets that are not an element of themselves S = {A|A ∈ A} / Is S an element of itself? yes → but the predicate is not valid → no no → but the predicate is valid → yes
  61. 61. Set Dilemma let S be the set of sets that are not an element of themselves S = {A|A ∈ A} / Is S an element of itself? yes → but the predicate is not valid → no no → but the predicate is valid → yes
  62. 62. Set Dilemma let S be the set of sets that are not an element of themselves S = {A|A ∈ A} / Is S an element of itself? yes → but the predicate is not valid → no no → but the predicate is valid → yes
  63. 63. Set Dilemma let S be the set of sets that are not an element of themselves S = {A|A ∈ A} / Is S an element of itself? yes → but the predicate is not valid → no no → but the predicate is valid → yes
  64. 64. Topics 1 Predicates Introduction Quantifiers Multiple Quantifiers 2 Sets Introduction Subset Set Operations Inclusion-Exclusion
  65. 65. Subset Definition A ⊆ B ⇔ ∀x [x ∈ A → x ∈ B] set equality: A = B ⇔ (A ⊆ B) ∧ (B ⊆ A) proper subset: A ⊂ B ⇔ (A ⊆ B) ∧ (A = B) ∀S [∅ ⊆ S]
  66. 66. Subset Definition A ⊆ B ⇔ ∀x [x ∈ A → x ∈ B] set equality: A = B ⇔ (A ⊆ B) ∧ (B ⊆ A) proper subset: A ⊂ B ⇔ (A ⊆ B) ∧ (A = B) ∀S [∅ ⊆ S]
  67. 67. Subset Definition A ⊆ B ⇔ ∀x [x ∈ A → x ∈ B] set equality: A = B ⇔ (A ⊆ B) ∧ (B ⊆ A) proper subset: A ⊂ B ⇔ (A ⊆ B) ∧ (A = B) ∀S [∅ ⊆ S]
  68. 68. Subset Definition A ⊆ B ⇔ ∀x [x ∈ A → x ∈ B] set equality: A = B ⇔ (A ⊆ B) ∧ (B ⊆ A) proper subset: A ⊂ B ⇔ (A ⊆ B) ∧ (A = B) ∀S [∅ ⊆ S]
  69. 69. Subset not a subset A B ⇔ ¬∀x [x ∈ A → x ∈ B] ⇔ ∃x ¬[x ∈ A → x ∈ B] ⇔ ∃x ¬[¬(x ∈ A) ∨ (x ∈ B)] ⇔ ∃x [(x ∈ A) ∧ ¬(x ∈ B)] ⇔ ∃x [(x ∈ A) ∧ (x ∈ B)] /
  70. 70. Subset not a subset A B ⇔ ¬∀x [x ∈ A → x ∈ B] ⇔ ∃x ¬[x ∈ A → x ∈ B] ⇔ ∃x ¬[¬(x ∈ A) ∨ (x ∈ B)] ⇔ ∃x [(x ∈ A) ∧ ¬(x ∈ B)] ⇔ ∃x [(x ∈ A) ∧ (x ∈ B)] /
  71. 71. Subset not a subset A B ⇔ ¬∀x [x ∈ A → x ∈ B] ⇔ ∃x ¬[x ∈ A → x ∈ B] ⇔ ∃x ¬[¬(x ∈ A) ∨ (x ∈ B)] ⇔ ∃x [(x ∈ A) ∧ ¬(x ∈ B)] ⇔ ∃x [(x ∈ A) ∧ (x ∈ B)] /
  72. 72. Subset not a subset A B ⇔ ¬∀x [x ∈ A → x ∈ B] ⇔ ∃x ¬[x ∈ A → x ∈ B] ⇔ ∃x ¬[¬(x ∈ A) ∨ (x ∈ B)] ⇔ ∃x [(x ∈ A) ∧ ¬(x ∈ B)] ⇔ ∃x [(x ∈ A) ∧ (x ∈ B)] /
  73. 73. Subset not a subset A B ⇔ ¬∀x [x ∈ A → x ∈ B] ⇔ ∃x ¬[x ∈ A → x ∈ B] ⇔ ∃x ¬[¬(x ∈ A) ∨ (x ∈ B)] ⇔ ∃x [(x ∈ A) ∧ ¬(x ∈ B)] ⇔ ∃x [(x ∈ A) ∧ (x ∈ B)] /
  74. 74. Power Set Definition power set: P(S) the set of all subsets of a set, including the empty set and the set itself if a set has n elements, its power set has 2n elements
  75. 75. Power Set Definition power set: P(S) the set of all subsets of a set, including the empty set and the set itself if a set has n elements, its power set has 2n elements
  76. 76. Example of Power Set Example P({1, 2, 3}) = { ∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} }
  77. 77. Topics 1 Predicates Introduction Quantifiers Multiple Quantifiers 2 Sets Introduction Subset Set Operations Inclusion-Exclusion
  78. 78. Set Operations complement A = {x|x ∈ A} / intersection A ∩ B = {x|(x ∈ A) ∧ (x ∈ B)} if A ∩ B = ∅ then A and B are disjoint union A ∪ B = {x|(x ∈ A) ∨ (x ∈ B)}
  79. 79. Set Operations complement A = {x|x ∈ A} / intersection A ∩ B = {x|(x ∈ A) ∧ (x ∈ B)} if A ∩ B = ∅ then A and B are disjoint union A ∪ B = {x|(x ∈ A) ∨ (x ∈ B)}
  80. 80. Set Operations complement A = {x|x ∈ A} / intersection A ∩ B = {x|(x ∈ A) ∧ (x ∈ B)} if A ∩ B = ∅ then A and B are disjoint union A ∪ B = {x|(x ∈ A) ∨ (x ∈ B)}
  81. 81. Set Operations difference A − B = {x|(x ∈ A) ∧ (x ∈ B)} / A−B =A∩B symmetric difference: A B = {x|(x ∈ A ∪ B) ∧ (x ∈ A ∩ B)} /
  82. 82. Set Operations difference A − B = {x|(x ∈ A) ∧ (x ∈ B)} / A−B =A∩B symmetric difference: A B = {x|(x ∈ A ∪ B) ∧ (x ∈ A ∩ B)} /
  83. 83. Set Operations difference A − B = {x|(x ∈ A) ∧ (x ∈ B)} / A−B =A∩B symmetric difference: A B = {x|(x ∈ A ∪ B) ∧ (x ∈ A ∩ B)} /
  84. 84. Cartesian Product Definition Cartesian product: A × B = {(a, b)|a ∈ A, b ∈ B} A × B × C × · · · × N = {(a, b, . . . , n)|a ∈ A, b ∈ B, . . . , n ∈ N} |A × B × C × · · · × N| = |A| · |B| · |C | · · · |N|
  85. 85. Cartesian Product Definition Cartesian product: A × B = {(a, b)|a ∈ A, b ∈ B} A × B × C × · · · × N = {(a, b, . . . , n)|a ∈ A, b ∈ B, . . . , n ∈ N} |A × B × C × · · · × N| = |A| · |B| · |C | · · · |N|
  86. 86. Cartesian Product Example Example A = {a1 .a2 , a3 , a4 } B = {b1 , b2 , b3 } A×B = { (a1 , b1 ), (a1 , b2 ), (a1 , b3 ), (a2 , b1 ), (a2 , b2 ), (a2 , b3 ), (a3 , b1 ), (a3 , b2 ), (a3 , b3 ), (a4 , b1 ), (a4 , b2 ), (a4 , b3 ) }
  87. 87. Equivalences Double Complement A=A Commutativity A∩B =B ∩A A∪B =B ∪A Associativity (A ∩ B) ∩ C = A ∩ (B ∩ C ) (A ∪ B) ∪ C = A ∪ (B ∪ C ) Idempotence A∩A=A A∪A=A Inverse A∩A=∅ A∪A=U
  88. 88. Equivalences Double Complement A=A Commutativity A∩B =B ∩A A∪B =B ∪A Associativity (A ∩ B) ∩ C = A ∩ (B ∩ C ) (A ∪ B) ∪ C = A ∪ (B ∪ C ) Idempotence A∩A=A A∪A=A Inverse A∩A=∅ A∪A=U
  89. 89. Equivalences Double Complement A=A Commutativity A∩B =B ∩A A∪B =B ∪A Associativity (A ∩ B) ∩ C = A ∩ (B ∩ C ) (A ∪ B) ∪ C = A ∪ (B ∪ C ) Idempotence A∩A=A A∪A=A Inverse A∩A=∅ A∪A=U
  90. 90. Equivalences Double Complement A=A Commutativity A∩B =B ∩A A∪B =B ∪A Associativity (A ∩ B) ∩ C = A ∩ (B ∩ C ) (A ∪ B) ∪ C = A ∪ (B ∪ C ) Idempotence A∩A=A A∪A=A Inverse A∩A=∅ A∪A=U
  91. 91. Equivalences Double Complement A=A Commutativity A∩B =B ∩A A∪B =B ∪A Associativity (A ∩ B) ∩ C = A ∩ (B ∩ C ) (A ∪ B) ∪ C = A ∪ (B ∪ C ) Idempotence A∩A=A A∪A=A Inverse A∩A=∅ A∪A=U
  92. 92. Equivalences Identity A∩U =A A∪∅=A Domination A∩∅=∅ A∪U =U Distributivity A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ) A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C ) Absorption A ∩ (A ∪ B) = A A ∪ (A ∩ B) = A DeMorgan’s Laws A∩B =A∪B A∪B =A∩B
  93. 93. Equivalences Identity A∩U =A A∪∅=A Domination A∩∅=∅ A∪U =U Distributivity A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ) A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C ) Absorption A ∩ (A ∪ B) = A A ∪ (A ∩ B) = A DeMorgan’s Laws A∩B =A∪B A∪B =A∩B
  94. 94. Equivalences Identity A∩U =A A∪∅=A Domination A∩∅=∅ A∪U =U Distributivity A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ) A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C ) Absorption A ∩ (A ∪ B) = A A ∪ (A ∩ B) = A DeMorgan’s Laws A∩B =A∪B A∪B =A∩B
  95. 95. Equivalences Identity A∩U =A A∪∅=A Domination A∩∅=∅ A∪U =U Distributivity A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ) A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C ) Absorption A ∩ (A ∪ B) = A A ∪ (A ∩ B) = A DeMorgan’s Laws A∩B =A∪B A∪B =A∩B
  96. 96. Equivalences Identity A∩U =A A∪∅=A Domination A∩∅=∅ A∪U =U Distributivity A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ) A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C ) Absorption A ∩ (A ∪ B) = A A ∪ (A ∩ B) = A DeMorgan’s Laws A∩B =A∪B A∪B =A∩B
  97. 97. DeMorgan’s Laws Proof. A ∩ B = {x|x ∈ (A ∩ B)} / = {x|¬(x ∈ (A ∩ B))} = {x|¬((x ∈ A) ∧ (x ∈ B))} = {x|¬(x ∈ A) ∨ ¬(x ∈ B)} = {x|(x ∈ A) ∨ (x ∈ B)} / / = {x|(x ∈ A) ∨ (x ∈ B)} = {x|x ∈ A ∪ B} = A∪B
  98. 98. DeMorgan’s Laws Proof. A ∩ B = {x|x ∈ (A ∩ B)} / = {x|¬(x ∈ (A ∩ B))} = {x|¬((x ∈ A) ∧ (x ∈ B))} = {x|¬(x ∈ A) ∨ ¬(x ∈ B)} = {x|(x ∈ A) ∨ (x ∈ B)} / / = {x|(x ∈ A) ∨ (x ∈ B)} = {x|x ∈ A ∪ B} = A∪B
  99. 99. DeMorgan’s Laws Proof. A ∩ B = {x|x ∈ (A ∩ B)} / = {x|¬(x ∈ (A ∩ B))} = {x|¬((x ∈ A) ∧ (x ∈ B))} = {x|¬(x ∈ A) ∨ ¬(x ∈ B)} = {x|(x ∈ A) ∨ (x ∈ B)} / / = {x|(x ∈ A) ∨ (x ∈ B)} = {x|x ∈ A ∪ B} = A∪B
  100. 100. DeMorgan’s Laws Proof. A ∩ B = {x|x ∈ (A ∩ B)} / = {x|¬(x ∈ (A ∩ B))} = {x|¬((x ∈ A) ∧ (x ∈ B))} = {x|¬(x ∈ A) ∨ ¬(x ∈ B)} = {x|(x ∈ A) ∨ (x ∈ B)} / / = {x|(x ∈ A) ∨ (x ∈ B)} = {x|x ∈ A ∪ B} = A∪B
  101. 101. DeMorgan’s Laws Proof. A ∩ B = {x|x ∈ (A ∩ B)} / = {x|¬(x ∈ (A ∩ B))} = {x|¬((x ∈ A) ∧ (x ∈ B))} = {x|¬(x ∈ A) ∨ ¬(x ∈ B)} = {x|(x ∈ A) ∨ (x ∈ B)} / / = {x|(x ∈ A) ∨ (x ∈ B)} = {x|x ∈ A ∪ B} = A∪B
  102. 102. DeMorgan’s Laws Proof. A ∩ B = {x|x ∈ (A ∩ B)} / = {x|¬(x ∈ (A ∩ B))} = {x|¬((x ∈ A) ∧ (x ∈ B))} = {x|¬(x ∈ A) ∨ ¬(x ∈ B)} = {x|(x ∈ A) ∨ (x ∈ B)} / / = {x|(x ∈ A) ∨ (x ∈ B)} = {x|x ∈ A ∪ B} = A∪B
  103. 103. DeMorgan’s Laws Proof. A ∩ B = {x|x ∈ (A ∩ B)} / = {x|¬(x ∈ (A ∩ B))} = {x|¬((x ∈ A) ∧ (x ∈ B))} = {x|¬(x ∈ A) ∨ ¬(x ∈ B)} = {x|(x ∈ A) ∨ (x ∈ B)} / / = {x|(x ∈ A) ∨ (x ∈ B)} = {x|x ∈ A ∪ B} = A∪B
  104. 104. DeMorgan’s Laws Proof. A ∩ B = {x|x ∈ (A ∩ B)} / = {x|¬(x ∈ (A ∩ B))} = {x|¬((x ∈ A) ∧ (x ∈ B))} = {x|¬(x ∈ A) ∨ ¬(x ∈ B)} = {x|(x ∈ A) ∨ (x ∈ B)} / / = {x|(x ∈ A) ∨ (x ∈ B)} = {x|x ∈ A ∪ B} = A∪B
  105. 105. Example of Equivalence Theorem A ∩ (B − C ) = (A ∩ B) − (A ∩ C )
  106. 106. Equivalence Example Proof. (A ∩ B) − (A ∩ C ) = (A ∩ B) ∩ (A ∩ C ) = (A ∩ B) ∩ (A ∪ C ) = ((A ∩ B) ∩ A) ∪ ((A ∩ B) ∩ C )) = ∅ ∪ ((A ∩ B) ∩ C )) = (A ∩ B) ∩ C = A ∩ (B ∩ C ) = A ∩ (B − C )
  107. 107. Equivalence Example Proof. (A ∩ B) − (A ∩ C ) = (A ∩ B) ∩ (A ∩ C ) = (A ∩ B) ∩ (A ∪ C ) = ((A ∩ B) ∩ A) ∪ ((A ∩ B) ∩ C )) = ∅ ∪ ((A ∩ B) ∩ C )) = (A ∩ B) ∩ C = A ∩ (B ∩ C ) = A ∩ (B − C )
  108. 108. Equivalence Example Proof. (A ∩ B) − (A ∩ C ) = (A ∩ B) ∩ (A ∩ C ) = (A ∩ B) ∩ (A ∪ C ) = ((A ∩ B) ∩ A) ∪ ((A ∩ B) ∩ C )) = ∅ ∪ ((A ∩ B) ∩ C )) = (A ∩ B) ∩ C = A ∩ (B ∩ C ) = A ∩ (B − C )
  109. 109. Equivalence Example Proof. (A ∩ B) − (A ∩ C ) = (A ∩ B) ∩ (A ∩ C ) = (A ∩ B) ∩ (A ∪ C ) = ((A ∩ B) ∩ A) ∪ ((A ∩ B) ∩ C )) = ∅ ∪ ((A ∩ B) ∩ C )) = (A ∩ B) ∩ C = A ∩ (B ∩ C ) = A ∩ (B − C )
  110. 110. Equivalence Example Proof. (A ∩ B) − (A ∩ C ) = (A ∩ B) ∩ (A ∩ C ) = (A ∩ B) ∩ (A ∪ C ) = ((A ∩ B) ∩ A) ∪ ((A ∩ B) ∩ C )) = ∅ ∪ ((A ∩ B) ∩ C )) = (A ∩ B) ∩ C = A ∩ (B ∩ C ) = A ∩ (B − C )
  111. 111. Equivalence Example Proof. (A ∩ B) − (A ∩ C ) = (A ∩ B) ∩ (A ∩ C ) = (A ∩ B) ∩ (A ∪ C ) = ((A ∩ B) ∩ A) ∪ ((A ∩ B) ∩ C )) = ∅ ∪ ((A ∩ B) ∩ C )) = (A ∩ B) ∩ C = A ∩ (B ∩ C ) = A ∩ (B − C )
  112. 112. Equivalence Example Proof. (A ∩ B) − (A ∩ C ) = (A ∩ B) ∩ (A ∩ C ) = (A ∩ B) ∩ (A ∪ C ) = ((A ∩ B) ∩ A) ∪ ((A ∩ B) ∩ C )) = ∅ ∪ ((A ∩ B) ∩ C )) = (A ∩ B) ∩ C = A ∩ (B ∩ C ) = A ∩ (B − C )
  113. 113. Topics 1 Predicates Introduction Quantifiers Multiple Quantifiers 2 Sets Introduction Subset Set Operations Inclusion-Exclusion
  114. 114. Principle of Inclusion-Exclusion |A ∪ B| = |A| + |B| − |A ∩ B| |A ∪ B ∪ C | = |A| + |B| + |C | − (|A ∩ B| + |A ∩ C | + |B ∩ C |) + |A ∩ B ∩ C | Theorem |A1 ∪ A2 ∪ · · · ∪ An | = |Ai | − |Ai ∩ Aj | i i,j + |Ai ∩ Aj ∩ Ak | i,j,k · · · + −1n−1 |Ai ∩ Aj ∩ · · · ∩ An |
  115. 115. Principle of Inclusion-Exclusion |A ∪ B| = |A| + |B| − |A ∩ B| |A ∪ B ∪ C | = |A| + |B| + |C | − (|A ∩ B| + |A ∩ C | + |B ∩ C |) + |A ∩ B ∩ C | Theorem |A1 ∪ A2 ∪ · · · ∪ An | = |Ai | − |Ai ∩ Aj | i i,j + |Ai ∩ Aj ∩ Ak | i,j,k · · · + −1n−1 |Ai ∩ Aj ∩ · · · ∩ An |
  116. 116. Principle of Inclusion-Exclusion |A ∪ B| = |A| + |B| − |A ∩ B| |A ∪ B ∪ C | = |A| + |B| + |C | − (|A ∩ B| + |A ∩ C | + |B ∩ C |) + |A ∩ B ∩ C | Theorem |A1 ∪ A2 ∪ · · · ∪ An | = |Ai | − |Ai ∩ Aj | i i,j + |Ai ∩ Aj ∩ Ak | i,j,k · · · + −1n−1 |Ai ∩ Aj ∩ · · · ∩ An |
  117. 117. Inclusion-Exclusion Example Example (sieve of Eratosthenes) a method to identify prime numbers 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 2 3 5 7 9 11 13 15 17 19 21 23 25 27 29 2 3 5 7 11 13 17 19 23 25 29 2 3 5 7 11 13 17 19 23 29
  118. 118. Inclusion-Exclusion Example Example (sieve of Eratosthenes) a method to identify prime numbers 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 2 3 5 7 9 11 13 15 17 19 21 23 25 27 29 2 3 5 7 11 13 17 19 23 25 29 2 3 5 7 11 13 17 19 23 29
  119. 119. Inclusion-Exclusion Example Example (sieve of Eratosthenes) a method to identify prime numbers 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 2 3 5 7 9 11 13 15 17 19 21 23 25 27 29 2 3 5 7 11 13 17 19 23 25 29 2 3 5 7 11 13 17 19 23 29
  120. 120. Inclusion-Exclusion Example Example (sieve of Eratosthenes) a method to identify prime numbers 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 2 3 5 7 9 11 13 15 17 19 21 23 25 27 29 2 3 5 7 11 13 17 19 23 25 29 2 3 5 7 11 13 17 19 23 29
  121. 121. Inclusion-Exclusion Example Example (sieve of Eratosthenes) a method to identify prime numbers 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 2 3 5 7 9 11 13 15 17 19 21 23 25 27 29 2 3 5 7 11 13 17 19 23 25 29 2 3 5 7 11 13 17 19 23 29
  122. 122. Inclusion-Exclusion Example Example (sieve of Eratosthenes) number of primes between 1 and 100 numbers that are not divisible by 2, 3, 5 and 7 A2 : set of numbers divisible by 2 A3 : set of numbers divisible by 3 A5 : set of numbers divisible by 5 A7 : set of numbers divisible by 7 |A2 ∪ A3 ∪ A5 ∪ A7 |
  123. 123. Inclusion-Exclusion Example Example (sieve of Eratosthenes) number of primes between 1 and 100 numbers that are not divisible by 2, 3, 5 and 7 A2 : set of numbers divisible by 2 A3 : set of numbers divisible by 3 A5 : set of numbers divisible by 5 A7 : set of numbers divisible by 7 |A2 ∪ A3 ∪ A5 ∪ A7 |
  124. 124. Inclusion-Exclusion Example Example (sieve of Eratosthenes) number of primes between 1 and 100 numbers that are not divisible by 2, 3, 5 and 7 A2 : set of numbers divisible by 2 A3 : set of numbers divisible by 3 A5 : set of numbers divisible by 5 A7 : set of numbers divisible by 7 |A2 ∪ A3 ∪ A5 ∪ A7 |
  125. 125. Inclusion-Exclusion Example Example (sieve of Eratosthenes) |A2 | = 100/2 = 50 |A2 ∩ A3 | = 100/6 = 16 |A3 | = 100/3 = 33 |A2 ∩ A5 | = 100/10 = 10 |A5 | = 100/5 = 20 |A2 ∩ A7 | = 100/14 = 7 |A7 | = 100/7 = 14 |A3 ∩ A5 | = 100/15 = 6 |A3 ∩ A7 | = 100/21 = 4 |A5 ∩ A7 | = 100/35 = 2
  126. 126. Inclusion-Exclusion Example Example (sieve of Eratosthenes) |A2 | = 100/2 = 50 |A2 ∩ A3 | = 100/6 = 16 |A3 | = 100/3 = 33 |A2 ∩ A5 | = 100/10 = 10 |A5 | = 100/5 = 20 |A2 ∩ A7 | = 100/14 = 7 |A7 | = 100/7 = 14 |A3 ∩ A5 | = 100/15 = 6 |A3 ∩ A7 | = 100/21 = 4 |A5 ∩ A7 | = 100/35 = 2
  127. 127. Inclusion-Exclusion Example Example (sieve of Eratosthenes) |A2 ∩ A3 ∩ A5 | = 100/30 = 3 |A2 ∩ A3 ∩ A7 | = 100/42 = 2 |A2 ∩ A5 ∩ A7 | = 100/70 = 1 |A3 ∩ A5 ∩ A7 | = 100/105 = 0 |A2 ∩ A3 ∩ A5 ∩ A7 | = 100/210 = 0
  128. 128. Inclusion-Exclusion Example Example (sieve of Eratosthenes) |A2 ∩ A3 ∩ A5 | = 100/30 = 3 |A2 ∩ A3 ∩ A7 | = 100/42 = 2 |A2 ∩ A5 ∩ A7 | = 100/70 = 1 |A3 ∩ A5 ∩ A7 | = 100/105 = 0 |A2 ∩ A3 ∩ A5 ∩ A7 | = 100/210 = 0
  129. 129. Inclusion-Exclusion Example Example (sieve of Eratosthenes) |A2 ∪ A3 ∪ A5 ∪ A7 | = (50 + 33 + 20 + 14) − (16 + 10 + 7 + 6 + 4 + 2) + (3 + 2 + 1 + 0) − (0) = 78 number of primes: (100 − 78) + 4 − 1 = 25
  130. 130. Inclusion-Exclusion Example Example (sieve of Eratosthenes) |A2 ∪ A3 ∪ A5 ∪ A7 | = (50 + 33 + 20 + 14) − (16 + 10 + 7 + 6 + 4 + 2) + (3 + 2 + 1 + 0) − (0) = 78 number of primes: (100 − 78) + 4 − 1 = 25
  131. 131. References Required Reading: Grimaldi Chapter 3: Set Theory 3.1. Sets and Subsets 3.2. Set Operations and the Laws of Set Theory Chapter 8: The Principle of Inclusion and Exclusion 8.1. The Principle of Inclusion and Exclusion Supplementary Reading: O’Donnell, Hall, Page Chapter 8: Set Theory

×