Manejo del pollo en engorda durante el periodo pre-sacrificio

769 views
639 views

Published on

Published in: Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
769
On SlideShare
0
From Embeds
0
Number of Embeds
11
Actions
Shares
0
Downloads
17
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Manejo del pollo en engorda durante el periodo pre-sacrificio

  1. 1.           MANEJO DEL POLLO DE ENGORDA DURANTE EL PERIODO PRE-SACRIFICIO S. F. Bilgili, PhD. Department of Poultry Science, Auburn University, Auburn, Alabama 36849-5416 USA bilgisf@auburn.edu Resumen Desde el punto de vista logístico, el suministro ininterrumpido de pollos a la planta de procesamiento de vital importancia para maximizar la utilización de la mano de obra e instalaciones, y requiere de planeación cuidadosa, coordinación y ejecución de varias tareas (es decir, retiro del alimento, captura y carga, transportación y espera en la planta) en una programación casi por hora. Estas tareas deben ser realizadas consistentemente durante este periodo pre-sacrificio (usualmente de menos de 24 horas de duración), el cual tiene la mayor influencia sobre el bienestar, calidad y cantidad de producto comercializable (rendimiento) de pollos de engorda en la planta de procesamiento. Introducción La producción comercial de pollos de engorda involucra sistemas de alojamiento confinado para el control óptimo del ambiente de crianza, crecimiento, bioseguridad, salud de la parvada y manejo. Por lo tanto, lo pollos pasan toda la vida encasetados y bajo condiciones bastante familiares y estandarizadas. Sin embargo, con el inicio del retiro de alimento previo al sacrificio y el manejo subsecuente, enjaulado, transportación y espera en la planta, los pollos se exponen a infinidad de factores estresantes y potencialmente a micro y macro ambientes extremos. Se han publicado excelentes artículos sobre los efectos del retiro del alimento (Wabeck, 1972; Chen et al., 1983; Veerkamp, 1986; Northcutt et al., 1997; Bilgili, 2002), captura (Shackelford et al., 1969; Gregory and Austin, 1992; Nunes, 1998), sistemas de transporte (Kettlewell and Turner, 1985; Williams, 1987; Mitchell and Kettlewell, 1998), estrés (Freeman, 1980; Kite and Duncan, 1987; Duncan, 1989; Warriss et al., 1992; Moran and Bilgili, 1995), y retención en la planta (Shackleford et al., 1984; Petracci et al., 2001; Bianchi et al., 2006; Schneider et al., 2012) de los atributos de calidad del pollo de engorda. Esta revisión intentará remarcar este conocimiento e incorporar experiencias de campo, cuando sea apropiado, para resaltar la importancia económica de este periodo pre-sacrificio. Ayuno: El tipo, cantidad, ubicación, y consistencia del contenido del tracto digestivo en un pollo al sacrificio está directamente relacionado al consumo de agua y alimento previo al mismo, y la tasa de vaciado durante el retiro de alimento pre-sacrificio. Este retiro se refiere al tiempo total de ayuno en la caseta (usualmente 4-5 horas con disponibilidad de agua), en el tránsito a la planta, y el tiempo que las aves se mantienen en esta (tiempo de espera en la planta). Las experiencias de campo (Savage, 1995; Northcutt and Savage, 1996; Bilgili, 1998) y los estudios controlados (Wabeck, 1972; Veerkamp, 1978; Papa, 1991) indican que la contaminación de la canal puede tener lugar con periodo excesivamente corto (menos de 8 horas) o excesivamente largos (más de 12 horas) de periodo total de retiro de alimento. Mientras que la contaminación asociada con el periodo corto de ayuno se debe al vaciado incompleto de tracto digestivo (esto es, alimento en
  2. 2.           el buche y otros segmentos del tracto digestivo), los asociados con periodo largo de ayuno se atribuyen a la ruptura (es decir, tracto intestinal débil y gaseoso) de la integridad tisular (Bilgili, 1988; Northcutt et al, 1997; Bilgili and Hess, 1997). La intensidad de la pérdida de peso o encogimiento que ocurre en asociación con el ayuno es de extrema preocupación para los procesadores. Generalmente se acepta que la pérdida de peso que ocurre durante las primeras 4-6 horas del ayuno se debe al vaciado del tracto gastrointestinal (Northcutt and Buhr, 1997). Después de este periodo inicial, que usualmente tiene lugar en la granja y con acceso al agua, la pérdida de peso se incrementa linealmente entre 0.25 a 0.5% por hora, depende de la temperatura ambiental, y los machos pierden más peso que las hembras (Chen et al., 1978; Benibo and Farr, 1985; Veerkamp, 1986). Captura y enjaule: La captura de pollos vivos generalmente se realiza manualmente y permanece como un trabajo que no ha cambiado durante las últimas 5 décadas de crecimiento y expansión de la industria (Kettlewell and Turner, 1985). Comúnmente, la captura se hace capturando a las aves por una pata, colectando un grupo de 4-5 aves suspendidas en una mano (depende del tamaño del ave), y cargándolas en los módulos de transportación empleados (jaulas, jaulas de vertido [dump- cages], o cajones). La inversión de las aves durante la captura reduce la lucha y aleteo, y en consecuencia el potencial de lesionarse a sí mismas y a otras aves. El número de aves capturadas en una mano dependerá del tamaño del ave, pero nunca debe exceder 5. La cantidad de aves en cada jaula o módulo se basa en el tamaño de las aves, y frecuentemente se modifica debido a la distancia y temporada (Benoff, 1986). Sin embargo, la densidad máxima en la jaula debe permitir a las aves echarse en una sola capa y no exceder 20 kg/m2. El cambio de jaulas individuales a sistemas de transporte modular ha demostrado ahorrar mano de obra (20%), incrementar la eficiencia de carga (10%) y viabilidad (0.2%), y hasta 15% de mejora en la clasificación de las canales (Thornton, 1984). Comparado con las jaulas apiladas, los sistemas de cajones modulares y jaulas de vertido (cada uno con 10-12 jaulas fijas) permiten el transporte fácil de los módulos con montacargas. Por supuesto que se requiere suficiente espacio de techo en las casetas para tales sistemas. Aunque la captura es común tanto en la noche como en el día, los pollos grandes (> 3 kg) generalmente se programan para la noche o la madrugada para prevenir muertos al arribo (MAA -DOA’s en inglés-). Independientemente del sistema de captura que se utilice, la condición de la jaula o los módulos, supervisión, velocidad de captura, y técnica de enjaulado usualmente determinan la extensión de las lesiones y el daño de las canales. Las prácticas de captura y enjaulado generalmente se vinculan con varios problemas hemorrágicos en la pechuga, húmero y muslo (Gregory and Austin, 1992; Nunes, 1998) y específicamente a dislocación de las alas. En clima cálido, ahora es común el uso de ventiladores (>20 °C) y atomizadores o nebulizadores (>27 °C) sobre las aves en jaulas o módulos mientras los vehículos se cargan, para reducir el estrés térmico. Con los años se han desarrollado varios tipos de sistemas de captura y enjaule de manos libres o automáticos (Polach, 1977; Shackelford and Wilson Lee, 1981; Kettlewell and Turner, 1985; O’Neill, 1987; Scott, 1993; Martin, 1998), sin embargo, su aplicación comercial ha sido limitada debido al costo inicial relativamente alto, la confiabilidad operacional, y la necesidad de mantenimiento continuo y complejo. Lacy y Czarick (1998) reportaron mejoras en el bienestar de pollos cosechados mecánicamente, desde el punto de vista de la reducción del estrés y lesiones. Estos investigadores también observaron mejores condiciones de trabajo así como menores costos. Sin embargo, los desafíos de operación (transportación, mayor tiempo para instalación e inactividad)
  3. 3.           con el sistema de captura mecánico comparado con las cuadrillas convencionales de captura fueron una limitación (Ramasamy et al., 2004). Transportación y tiempo de espera en la planta: La transportación de pollos de engorda en jaulas o módulos de la granja a la planta es un factor estresante pre-sacrificio importante (Freeman, 1984), pero también es un componente importante de la producción de carne de pollo. El manejo, confinamiento, agrupamiento, movimiento, ruido, disrupción social y el microclima, en adición a la privación de agua y alimento, todos son factores estresantes importantes. El grado de estrés que sufren las aves durante la transportación depende del sistema de confinamiento usado, la distancia, velocidad del aire, y las condiciones ambientales. La velocidad del aire (viento) realmente puede exacerbar el estrés bajo condiciones frías-mojadas y reducirlo bajo condiciones de calor-humedad. El estrés térmico es una causa principal de MAA en pollos de engorda. Hay un vínculo directo entre el microambiente térmico y los MAA. Usualmente la mortalidad es la mayor en las secciones del vehículo de transporte donde la temperatura y humedad son extremas. Los MAA varían grandemente y dependen de factores como la época, ubicación geográfica, duración de la jornada, tamaño del ave, densidad de enjaulado, estado de salud, diseño del vehículo de transporte, tipo y duración durante el tiempo de espera en la planta. Debido a las pérdidas de calor convectivo, el encogimiento de las aves es mayor cuando se sujetan a movimiento activo (es decir, transportación) que cuando se mantienen estáticos (Kettlewell and Turner, 1985). Moran y Bilgili (1995) compararon la pérdida de peso de pollos transportados o mantenidos estáticos por 6 horas, a los 39 y 53 días de edad. Las aves transportadas perdieron más peso y rendimiento de carne. Consistente con observaciones previas (Kite and Duncan, 1987), el daño de las canales fue mayor, en ambas edades, en las aves que se mantuvieron estáticas por mayor periodo. Esta observación se atribuye al incremento de la actividad de las aves en jaulas mantenidas por periodos de espera extendidos. Se detectó efecto significativo de la transportación en parámetros fisiológicos sanguíneos de aves transportadas debido a deshidratación, hemo-concentración, daño muscular, y catabolismo proteico (Bilgili et al., 2003). Yalcin et al. (2004) reportó de manera similar incremento en la creatincinasa plasmática debido al enjaulado y transportación del pollo, especialmente con incremento de la masa muscular. En este estudio, la respuesta al estrés fue alta en aves más jóvenes (<42 días de edad) debido a la transportación y en aves más grandes (>49 días de edad) debido al enjaulado. En adición, también se observa un efecto significativo del estrés de la transportación sobre la excreción microbiana (Mulder, 1996), incluidas Salmonella (Rigby et al., 1982) y Campylobacter (Stern et al., 1995; Whyte et al., 2001). Tanto la distancia de transportación (Warris et al., 1992) como el tiempo de espera (Bilgili, 1995) han demostrado correlacionar con la MAA en pollos. Aunque quizá se pueda hacer poco para minimizar las condiciones de la transportación (distancia, condiciones del camino, clima), existen oportunidades para minimizar el tiempo de espera en la planta y mejorar sus condiciones. Los procedimientos de operación estándar (POE –SOP en inglés-) para las áreas de espera, tanto para invierno como para el verano, deben incluir: el tiempo de espera (<2 horas), establecimiento de la temperatura para la operación de ventiladores y nebulizadores, y condiciones de iluminación. Los camiones de transporte no deben mantenerse fuera de los cobertizos de espera (bajo el sol) por periodos largos si el movimiento adecuado del aire. Un modelo predictivo de la inducción de estrés calórico durante la transportación comercial ha sido desarrollado para mejorar el diseño del vehículo de transporte (Mitchell and Kettlewell, 1998). Pueden usarse vehículos de transporte ventilados tanto activa (clima frío) como pasivamente (clima cálido) para transportar al pollo de engorda, depende de la ubicación geográfica y el macroclima extremo.
  4. 4.           References BENIBO, B. S., AND FARR, A. J. (1985) The effects of feed and water withdrawal and holding shed treatments on broiler yield parameters. Poultry Science 64: 920-924. BENOFF, F. H. (1984) How to get broilers in at the correct weight. Broiler Industry, 12: 24-30. BENOFF, F. H. (1986) Minimizing broiler collection losses in hot weather. Poultry International 1: 36-38. BIANCHI, M., PETRACCI, M., AND CAVANI, C. (2006) The influence of genotype, market live weight, transportation and holding conditions prior to slaughter on broiler breast meat color. Poultry Science 85:123-128. BILGILI, S. F. (1988) Research Note: Effect of feed and water withdrawal on shear strength of broiler gastrointestinal tract. Poultry Science 67:845-847. BILGILI, S. F. (2002) Slaughter quality as influenced by feed withdrawal. World’s Poultry Science Journal 58: 123-130. BILGILI, S. F. and HESS, J.B. (1997) Tensile strength of broiler intestines as influenced by age and feed withdrawal. J. of Appl. Poultry Research 6:279-283. BILGILI, S. F. and HORTON, A. B. (1995) Influence of production factors on broiler carcass quality and grade. Pages 13-20, in: Proc. of the XII European Symposium on the Quality of Poultry Meat, Zaragoza, Spain. BILGILI, S. F., MORAN, E. T. JR., and SPANO, J. S. (2003) Pre-slaughter alterations in blood chemistry of broiler chickens. Pages 345-351, in: Proc. of the XVIth European Symposium on the Quality of Poultry Meat, Ploufragan, France. CHEN, T.C., SHULTZ, C. D., REECE, F. N., LOTT, B. D. and MCNAUGHTON, J. L. (1983) The effect of extended holding time, temperature, and dietary energy on yields of broilers. Poultry Science 62:1566-1571. DUNCAN, I. J. H. (1989) The assessment of welfare during the handling and transport of broilers. Pages 93–107 in: Proceedings of the Third European Symposium on Poultry Welfare. Tours, France. FREEMAN, B. M. (1984) Transportation of Poultry. World’s Poult. Sci. J. 40:19-31. GREGORY, N. G. (1992) Catching damage. Broiler Industry 11: 14-16. GREGORY, N. G., and AUSTIN, S. D. (1992) Causes of trauma in broilers arriving a poultry processing plants. The Veterinary Record 131: 501-503. KETTLEWELL, P. J. and TURNER, M. J. B. (1985) A review of broiler chicken catching and transport systems. J. Ag. Eng. Res. 31:93-114. KITE, V. G. and DUNCAN, I. J. H. (1987) Some studies of the stressfulness of harvesting and transporting broilers. Pages 35-41, in: Proc. 7th Australian Poultry and Feed Convention Sydney, Australia. LACY, M. P., and M. CZARICK (1998) Mechanical harvesting of broilers. Poultry Science 77: 1794-1797. MARTIN, D. (1998). Auto-harvesting arrives in Europe. Broiler Industry, 8: 27-34. MITCHELL, M. A. and KETTLEWELL, P. J. (1998) Physiological stress and welfare of broiler chickens in transit: Solutions, not problems! Poultry Science 77: 1803-1814. MORAN, E. T., JR., and BILGILI, S. F. (1995) Influence of broiler livehaul on carcass quality and further-processing yields. Journal of Applied Poultry Research 4:13-22. MULDER, R. W. A. W. (1996) Impact of transport on the incidence of human pathogens. Misset World Poultry 12: 18-19. NORTHCUTT, J. K., and BUHR, R. J. (1997) Longer feed withdrawal can be costly. Broiler Industry 12: 28-34.
  5. 5.           NORTHCUTT, J. K. and SAVAGE, S. I. (1996) Managing feed withdrawal: The broiler’s last meal. Broiler Industry 9: 24-27. NORTHCUTT, J. K., SAVAGE, S. I., and VEST, L. R. (1997) Relationship between feed withdrawal and viscera condition in broilers. Poultry Science 76: 410-414. O’NEIL, J. J. (1987) Latest developments in pick-up and transportation of live broilers. Pages 42-48, in: Proc. 7th Australian Poultry and Feed Convention, Sydney, Australia. PAPA, C. M. (1991) Lower gut contents of broiler chickens withdrawn from feed and held in cages. Poultry Science 70:375-380. PETRACCI, M. D., FLETCHER, D. L., and NORTHCUTT, J. K. (2001) The effect of holding temperature on live shrink, processing yield, and breast meat quality of broiler chickens. Poultry Science 80:670-675. POLACH, M. (1997) Mechanical catching and handling of broilers. Shaver Focus,6:3-4 RAMASAMY, S., BENSON, E. R., and VAN WICKLEN, G. L. (2004) Efficiency of a commercial mechanical chicken catching system. J. App. Poultry Res. 13: 19-28. RIGBY, C. E., PETIT, J. R., BENTLY, A. H., SPENCER, J. L., SALOMONS, M. O., and LIOR, H. (1982) The relationship of Salmonellae from infected broiler flocks, transport crates or processing plants to contamination of eviscerated carcasses. Canadian Journal of Comparative Medicine 46: 272-278. SAVAGE, S. I. (1995) Preparing broilers to minimize reprocessing. Pages 109-112, in: Proc. 30th National Meeting on Poultry Health and Processing, Ocean City, MD. SCHNEIDER, B. L., RENEMA, R. A., BETTI, M., CARNEY, V. L., and ZUIDHOF, M. J. (2012 Effect of holding temperature, shackling, sex, and age on broiler breast meat quality. Poultry Science 91:468-477. SCOTT, G. B. (1983) Poultry handling: A review of mechanical devices and their effect on bird welfare. World’s Poultry Science Journal 49:44-57. SHACKLEFORD, A. D., and WILSON LEE, V. (1981) Loading live poultry: A time and motion study of loading broiler chickens by hand, forklift truck, and squeeze-lift truck. Advances in Agricultural Technology, AAT-S-22/June USDA. SHACKLEFORD, A. D., CHILDS, R. E., and HAMANN, J. A. (1969) Determination of bruise rates on broilers before and after handling by live bird pickup crews. Agricultural Research Service Bulletin No.52-47, USDA. SHACKLEFORD, A. D., WHITEHEAD, W. F., DICKENS, J. A., THONSON, J. E., and WILSON, R. I. (1984) Evaporative cooling of broilers during pre-slaughter holding. Poultry Science 63: 927-931. STERN, N. J., CLAVERO, M. R. S., BAILEY, J. S., COX, N. A., and ROBACH, M. C. (1995) Campylobacter spp. In broilers on the farm and after transport. Poultry Science 74: 937-941. THORNTON, G. (1984) One in three plants convert to cages. Broiler Industry 5: 20-28. VEERKAMP, C. H. (1978) The influence of fasting and transport on yield of broilers. Poultry Science 57:634-638. VEERKAMP, C. H. (1986) Fasting and yields of broilers. Poultry Science 65:1299- 1304. WABECK, C. J. (1972) Feed and water withdrawal time relationship to processing yield and potential fecal contamination of broilers. Poultry Science 51:1119-1121. WARRIS, P. D., BEVIS, E. A., BROWN, S. N., and EDWARDS, J. E. (1992) Longer journeys to processing plants are associated with higher mortality in broiler chickens. British Poultry Science 33:201-206. WHYTE, P. COLLINS, J. D., MCGILL, K., MONAHAN, C, and O’MAHONY, H. (2001) The effect of transportation stress on excretion rates of Campylobacters in market-age broilers. Poultry Science 80:817-820.
  6. 6.           WILLIAMS, D. M. (1987) Establishing a successful live haul program. Zootecnica, 4: 36-39. YALCIN, S., OZKAN, S., OKTAY, G., CABUK, M., ERBAYRAKTAR, Z., and BILGILI, S. F. (2004) Age-related effects of catching, crating, and transportation at different seasons on core body temperature and physiological blood parameters in broilers. Journal of Applied Poultry Research 13:549-560.
  7. 7.           MANAGING BROILER CHICKENS DURING THE PRE-SLAUGHTER PERIOD S. F. Bilgili, PhD. Department of Poultry Science, Auburn University, Auburn, Alabama 36849-5416 USA bilgisf@auburn.edu Abstract From a logistical standpoint, an uninterrupted supply of broilers to the processing plant is of utmost importance for maximum utilization of labor and facilities, and requires careful planning, coordination, and execution of several tasks (i.e., feed withdrawal, catching and loading, transportation and plant holding) on a nearly hourly basis. These tasks have to be performed consistently during this pre-slaughter period (usually < 24 h in duration), which has the greatest influence on welfare, quality, and marketable product quantity (i.e., yield) of broiler chickens in the processing plant. Introduction Commercial broiler chicken production involves confined housing systems for optimal control of rearing environment, growth, biosecurity, flock health and management. Therefore, broiler chickens spend all their life indoors and under fairly familiar and standardized conditions. However, with the initiation of pre-slaughter feed withdrawal and subsequent handling, crating, transportation and plant holding, broilers are exposed a myriad of “stressors” and potentially to extremes in micro- and macro-environment. Excellent articles have been published on effects of feed withdrawal (Wabeck, 1972; Chen et al., 1983; Veerkamp, 1986; Northcutt et al., 1997; Bilgili, 2002), catching (Shackelford et al., 1969; Gregory and Austin, 1992; Nunes, 1998), transport systems (Kettlewell and Turner, 1985; Williams, 1987; Mitchell and Kettlewell, 1998) and stress (Freeman, 1980; Kite and Duncan, 1987; Duncan, 1989; Warriss et al., 1992; Moran and Bilgili, 1995), and plant holding (Shackleford et al., 1984; Petracci et al., 2001; Bianchi et al., 2006; Schneider et al., 2012) of broiler chicken quality attributes. This review will attempt to outline this body of knowledge and incorporate field experiences, where appropriate, to highlight the economic importance of this pre-slaughter period. Feed withdrawal: The type, amount, location, and consistency of digestive tract contents in a broiler at slaughter are directly related to feed and water intake prior to, and rate of clearance during, the pre- slaughter feed withdrawal. Feed withdrawal refers to total time of fasting in the house (usually 4- 5 hours with water available), in transit to the plant, and the time birds are held at the plant (plant holding time). Field experiences (Savage, 1995; Northcutt and Savage, 1996; Bilgili, 1998) and controlled studies (Wabeck, 1972; Veerkamp, 1978; Papa, 1991) indicate that carcass contamination can take place with both excessively short (less than 8 hours) or excessively long (over 12 hours) of total feed withdrawal period. Whereas, contamination associated with short fasting periods is due to incomplete emptying of the digestive tract (i.e., feed in the crop and other segments of the digestive tract), those associated with long fasting periods is attributed to a breakdown (i.e., weak and gaseous intestinal tract) of tissue integrity (Bilgili, 1988; Northcutt et al, 1997; Bilgili and Hess, 1997).
  8. 8.           The extent of weight loss or shrink that occurs in association with feed withdrawal is of extreme concern to the processors. It is generally accepted that weight loss occurring during the first 4 to 6 hours of fasting is due to gastrointestinal emptying (Northcutt and Buhr, 1997). After this initial period, which usually takes place at the farm with access to water), weight losses increase linearly between 0.25 to 0.50% per hour, depending on the environmental temperature with males loosing more weight than females (Chen et al., 1978; Benibo and Farr, 1985; Veerkamp, 1986). Catching and crating: Catching live broilers is often accomplished by manual labor and remains to be a job unchanged during the last 5 decades of industry growth and expansion (Kettlewell and Turner, 1985). Commonly, catching is performed by grabbing the birds by one leg, gathering a bundle of 4-5 birds suspended in one hand (depending on bird size), and then loading them to into the transportation modules used (crates, dump-cages or drawers). Inversion of birds during catching reduces struggle and wing flapping, and therefore the potential for injury to themselves and other birds. The number of birds caught in one hand will depend on bird size, but should never exceed five. The number of birds placed in each crate or module is based on bird size, and often modified due to live-haul distance and season (Benoff, 1986). However, the maximum crating density should allow birds to sit in a single layer and not exceed 20 kg/m2 . Switching from individual crates to modular transport systems has been shown to save labor (20%), increase payload efficiency (10%) and livability (0.2%), and up to 15% improvement in carcass grade (Thornton, 1984). Compared to the stacked crates, the modular drawer and dump-cage systems (each with 10-12 fixed cages) allows easy transport of modules with forklifts. Of course sufficient ceiling clearance in the broiler house is a must for such systems. Although both day- and night-time catching is common, large broilers (3+ kg) are usually scheduled for night or early morning catch to prevent DOA’s. Regardless of the catching system used, the condition of crates or modules, availability of supervision, catch speed and crating technique usually determines the extent of injuries and carcass damage. Catching and crating practices are often linked to various hemorrhagic problems in the breast, drumsticks and thighs (Gregory and Austin, 1992; Nunes, 1998) and to specifically to wing dislocations. In warm climates, it is now common practice to use fans (>20 C) and misters or foggers (>27C) on birds in crates and modules while the transport vehicles are loaded to reduce thermal stress in broiler chickens. Various types of hands-off or automatic catching and crating systems have been developed over the years (Polach, 1977; Shackelford and Wilson Lee, 1981; Kettlewell and Turner, 1985; O’Neill, 1987; Scott, 1993; Martin, 1998), however their commercial application have been limited due to relatively high initial cost, operational reliability, and need for continuous and complex maintenance. Lacy and Czarick (1998) reported improvements in welfare of mechanically harvested broilers both from stress and injury reduction standpoints. These investigators also observed improved working conditions as well as lower costs. However, operational challenges (transportation, longer set-up and idle times) with mechanical catching system compared to conventional catch crews was a limitation (Ramasamy et al., 2004). Transportation and plant holding: Transportation of broiler chickens confined in crates or modules from the farm to the plant is an important pre-slaughter stressor (Freeman, 1984), but is also an important component of broiler meat production. Handling, confinement, crowding, motion, noise, social disruption and microclimate, in addition to feed and water deprivation are all important stressors. The degree of stress encountered by the birds during transportation depends on the confinement system used,
  9. 9.           distance, air speed and the ambient conditions. Air (wind) speed can actually exacerbate the stress under cold-wet conditions and ameliorate it under hot-humid conditions. Thermal stress is a major cause of DOA’s in broiler chickens. There is a direct link between the thermal microenvironment and DOA’s. Mortality is usually highest in sections of the transport vehicle where the temperature and humidity is extreme. The DOA’s vary widely depending upon factors such as season, geographical location, journey length, bird size, crating density, health status, transport vehicle design, type and conditions during plant holding. Because of convective heat losses, live shrink of broilers is greater when they are subjected to active movement (i.e., transportation) than when they are held stationary (Kettlewell and Turner, 1985). Moran and Bilgili (1995) compared the weight losses of broilers transported or held stationary for 6 hours both at 39 and 53 days of age. Transported birds lost more weight and meat yield. Consistent with previous observations (Kite and Duncan, 1987), carcass damage was higher, at both ages, on birds that were held stationary for extended period. This observation is attributed to increased bird activity in crates held for extended periods of holding. Significant effect of transportation was detected in blood physiological parameters of transported broilers due to dehydration, hemo- concentration, muscle damage, and protein catabolism (Bilgili et al., 2003). Yalcin et al. (2004) similarly reported increases in plasma creatine kinase due to crating and transportation of broiler chickens, especially with increasing body mass. In this study stress response was high in younger birds (<42 days of age) due to transportation and older birds (>49 days of age) due to crating. In addition, a significant effect of transportation stress on microbial shedding (Mulder, 1996), including Salmonella (Rigby et al., 1982) Campylobacter (Stern et al., 1995; Whyte et al., 2001) is also observed. Both transportation distance (Warris et al., 1992) and holding time (Bilgili, 1995) have been shown to correlate with DOA’s in broilers. Although perhaps little can be done to minimize the transportation conditions (distance, road conditions, ambient climate), opportunities exist for minimizing plant holding time and improving holding conditions. Standard operating procedures (SOP) for live holding areas, both for summer and winter conditions, should include: target holding time (<2 h), set temperatures for operation of fans and foggers, and lighting conditions. Transport trucks should not be held outside the holding sheds (under the sun) for extended periods without adequate air movement. A predictive model of the induction of heat stress during commercial transportation have been developed improve transport vehicle design (Mitchell and Kettlewell, 1998). Depending on the geographical location and extremes in macroclimate, both actively (cold weather) and passively (warm weather) ventilated transport vehicles may be utilized to transport broiler chickens. References BENIBO, B. S., AND FARR, A. J. (1985) The effects of feed and water withdrawal and holding shed treatments on broiler yield parameters. Poultry Science 64: 920-924. BENOFF, F. H. (1984) How to get broilers in at the correct weight. Broiler Industry, 12: 24-30. BENOFF, F. H. (1986) Minimizing broiler collection losses in hot weather. Poultry International 1: 36-38. BIANCHI, M., PETRACCI, M., AND CAVANI, C. (2006) The influence of genotype, market live weight, transportation and holding conditions prior to slaughter on broiler breast meat color. Poultry Science 85:123-128. BILGILI, S. F. (1988) Research Note: Effect of feed and water withdrawal on shear strength of broiler gastrointestinal tract. Poultry Science 67:845-847. BILGILI, S. F. (2002) Slaughter quality as influenced by feed withdrawal. World’s
  10. 10.           Poultry Science Journal 58: 123-130. BILGILI, S. F. and HESS, J.B. (1997) Tensile strength of broiler intestines as influenced by age and feed withdrawal. J. of Appl. Poultry Research 6:279-283. BILGILI, S. F. and HORTON, A. B. (1995) Influence of production factors on broiler carcass quality and grade. Pages 13-20, in: Proc. of the XII European Symposium on the Quality of Poultry Meat, Zaragoza, Spain. BILGILI, S. F., MORAN, E. T. JR., and SPANO, J. S. (2003) Pre-slaughter alterations in blood chemistry of broiler chickens. Pages 345-351, in: Proc. of the XVIth European Symposium on the Quality of Poultry Meat, Ploufragan, France. CHEN, T.C., SHULTZ, C. D., REECE, F. N., LOTT, B. D. and MCNAUGHTON, J. L. (1983) The effect of extended holding time, temperature, and dietary energy on yields of broilers. Poultry Science 62:1566-1571. DUNCAN, I. J. H. (1989) The assessment of welfare during the handling and transport of broilers. Pages 93–107 in: Proceedings of the Third European Symposium on Poultry Welfare. Tours, France. FREEMAN, B. M. (1984) Transportation of Poultry. World’s Poult. Sci. J. 40:19-31. GREGORY, N. G. (1992) Catching damage. Broiler Industry 11: 14-16. GREGORY, N. G., and AUSTIN, S. D. (1992) Causes of trauma in broilers arriving a poultry processing plants. The Veterinary Record 131: 501-503. KETTLEWELL, P. J. and TURNER, M. J. B. (1985) A review of broiler chicken catching and transport systems. J. Ag. Eng. Res. 31:93-114. KITE, V. G. and DUNCAN, I. J. H. (1987) Some studies of the stressfulness of harvesting and transporting broilers. Pages 35-41, in: Proc. 7th Australian Poultry and Feed Convention Sydney, Australia. LACY, M. P., and M. CZARICK (1998) Mechanical harvesting of broilers. Poultry Science 77: 1794-1797. MARTIN, D. (1998). Auto-harvesting arrives in Europe. Broiler Industry, 8: 27-34. MITCHELL, M. A. and KETTLEWELL, P. J. (1998) Physiological stress and welfare of broiler chickens in transit: Solutions, not problems! Poultry Science 77: 1803-1814. MORAN, E. T., JR., and BILGILI, S. F. (1995) Influence of broiler livehaul on carcass quality and further-processing yields. Journal of Applied Poultry Research 4:13-22. MULDER, R. W. A. W. (1996) Impact of transport on the incidence of human pathogens. Misset World Poultry 12: 18-19. NORTHCUTT, J. K., and BUHR, R. J. (1997) Longer feed withdrawal can be costly. Broiler Industry 12: 28-34. NORTHCUTT, J. K. and SAVAGE, S. I. (1996) Managing feed withdrawal: The broiler’s last meal. Broiler Industry 9: 24-27. NORTHCUTT, J. K., SAVAGE, S. I., and VEST, L. R. (1997) Relationship between feed withdrawal and viscera condition in broilers. Poultry Science 76: 410-414. O’NEIL, J. J. (1987) Latest developments in pick-up and transportation of live broilers. Pages 42-48, in: Proc. 7th Australian Poultry and Feed Convention, Sydney, Australia. PAPA, C. M. (1991) Lower gut contents of broiler chickens withdrawn from feed and held in cages. Poultry Science 70:375-380. PETRACCI, M. D., FLETCHER, D. L., and NORTHCUTT, J. K. (2001) The effect of holding temperature on live shrink, processing yield, and breast meat quality of broiler chickens. Poultry Science 80:670-675. POLACH, M. (1997) Mechanical catching and handling of broilers. Shaver Focus,6:3-4 RAMASAMY, S., BENSON, E. R., and VAN WICKLEN, G. L. (2004) Efficiency of a commercial mechanical chicken catching system. J. App. Poultry Res. 13: 19-28.
  11. 11.           RIGBY, C. E., PETIT, J. R., BENTLY, A. H., SPENCER, J. L., SALOMONS, M. O., and LIOR, H. (1982) The relationship of Salmonellae from infected broiler flocks, transport crates or processing plants to contamination of eviscerated carcasses. Canadian Journal of Comparative Medicine 46: 272-278. SAVAGE, S. I. (1995) Preparing broilers to minimize reprocessing. Pages 109-112, in: Proc. 30th National Meeting on Poultry Health and Processing, Ocean City, MD. SCHNEIDER, B. L., RENEMA, R. A., BETTI, M., CARNEY, V. L., and ZUIDHOF, M. J. (2012 Effect of holding temperature, shackling, sex, and age on broiler breast meat quality. Poultry Science 91:468-477. SCOTT, G. B. (1983) Poultry handling: A review of mechanical devices and their effect on bird welfare. World’s Poultry Science Journal 49:44-57. SHACKLEFORD, A. D., and WILSON LEE, V. (1981) Loading live poultry: A time and motion study of loading broiler chickens by hand, forklift truck, and squeeze-lift truck. Advances in Agricultural Technology, AAT-S-22/June USDA. SHACKLEFORD, A. D., CHILDS, R. E., and HAMANN, J. A. (1969) Determination of bruise rates on broilers before and after handling by live bird pickup crews. Agricultural Research Service Bulletin No.52-47, USDA. SHACKLEFORD, A. D., WHITEHEAD, W. F., DICKENS, J. A., THONSON, J. E., and WILSON, R. I. (1984) Evaporative cooling of broilers during pre-slaughter holding. Poultry Science 63: 927-931. STERN, N. J., CLAVERO, M. R. S., BAILEY, J. S., COX, N. A., and ROBACH, M. C. (1995) Campylobacter spp. In broilers on the farm and after transport. Poultry Science 74: 937-941. THORNTON, G. (1984) One in three plants convert to cages. Broiler Industry 5: 20-28. VEERKAMP, C. H. (1978) The influence of fasting and transport on yield of broilers. Poultry Science 57:634-638. VEERKAMP, C. H. (1986) Fasting and yields of broilers. Poultry Science 65:1299- 1304. WABECK, C. J. (1972) Feed and water withdrawal time relationship to processing yield and potential fecal contamination of broilers. Poultry Science 51:1119-1121. WARRIS, P. D., BEVIS, E. A., BROWN, S. N., and EDWARDS, J. E. (1992) Longer journeys to processing plants are associated with higher mortality in broiler chickens. British Poultry Science 33:201-206. WHYTE, P. COLLINS, J. D., MCGILL, K., MONAHAN, C, and O’MAHONY, H. (2001) The effect of transportation stress on excretion rates of Campylobacters in market-age broilers. Poultry Science 80:817-820. WILLIAMS, D. M. (1987) Establishing a successful live haul program. Zootecnica, 4: 36-39. YALCIN, S., OZKAN, S., OKTAY, G., CABUK, M., ERBAYRAKTAR, Z., and BILGILI, S. F. (2004) Age-related effects of catching, crating, and transportation at different seasons on core body temperature and physiological blood parameters in broilers. Journal of Applied Poultry Research 13:549-560.

×