Semestral
Upcoming SlideShare
Loading in...5
×
 

Semestral

on

  • 456 views

 

Statistics

Views

Total Views
456
Slideshare-icon Views on SlideShare
453
Embed Views
3

Actions

Likes
0
Downloads
1
Comments
0

1 Embed 3

http://john-johnunderground.blogspot.com 3

Accessibility

Categories

Upload Details

Uploaded via as Microsoft Word

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Semestral Semestral Document Transcript

    • Centro de Educación Artística David Alfaros Siqueiros (CEDART)<br />Algebra Primer Semestre Grupo 1<br />Profe: Víctor Manuel Morales<br />Alumno: jO María Goretti Espíndola de la Vega<br />ahí está wey<br />María Goretti Espíndola de la Vega<br />ahí está wey<br />Jonathan Moreno Esquivel<br />3er parcial<br />Índice:<br />Algebra (definición)<br />Suma y resta (definición y problemas)<br />División algebraica (definición y problemas)<br />Producto notable (definición y problemas)<br />Factorización (definición y problemas)<br />Fracciones algebraicas (problemas y definición)<br />Ecuaciones lineales (definición y problemas)<br />Ecuaciones de 2º grado (definición y problemas)<br />Algebra: es una de las muchas ramas de las matemáticas en la cual se trabajan los números con letras, por ejemplo: 3x+5xy.<br />Aplicaciones: se aplica en la vida diaria, tanto como en la tecnología y la ciencia<br />Términos Algebraicos: Los términos algebraicos forman parte de la Álgebra que se caracteriza por estudiar la forma de resolver ecuaciones y por poseer para tal fin un lenguaje propio, el cual se conforma primordialmente de letras y números y algunos símbolos con un significado bien definido, como por ejemplo los que se usan en la aritmética para denotar las operaciones básicas: +, -, ( ), /, los cuales representan relaciones matemáticas.<br />Exponentes: La potenciación es una expresión matemática que incluye dos términos denominados: base a y exponente n.<br />Se escribe an, y se lee: «a elevado a n». Su definición varía según el conjunto numérico al que pertenezca el exponente<br />Grado: en álgebra se tiene la extensión de cuerpo y en ella se define el grado como todo espacio vectorial con base, pudiéndose calcular la dimensión de L como espacio vectorial sobre K, denotado por dimK(L). Se denomina grado de la extensión L: K a la dimensión de L como K-espacio vectorial: [L: K] = dimK (L).<br />Ejemplos de Suma:<br />4a2+3a-1+6a-7+2a2+3<br />6a2+9a+2<br />45m2-5m+32+67m-310m2-14<br />m2:45-310=40-1550=2550m2<br />m:-51+67=-35+67=-297m<br />#: 32-14=12-28=108<br />2550m2-2950m+108<br />3x+5y2+y+7y-3y2-x+(6x-7y2)<br />-15y2+8x+8y<br />Ejemplos de Resta:<br />5m+4n—7-8n-7+4m-3n+5--6m+4n-3=<br />15m-3n+8<br /> <br />4m4-3m3+6m2+5m-4-6m3-8m2-3m+1=<br />4m4-9m3+10m2+8m-3<br />6x5+3x2-7x+2)-(10x5+6x3-6x2+2m-4)<br />-xy4-7y3+xy2+2xy4+5y-2--6y3+xy2-5<br />xy4-y3+5y-7<br />16x+38y-5-83y-54+32x+29<br />x: 16+32=2+1812=2012x<br />y: 38-83=24-2424=124y<br />#: -51+54=-20+54=-154<br />2012x+124y-154<br />1.- ley de los signos: + (mas) por + igual al +, - (menos) por – igual a +, + por – igual a -, - por + igual a -.<br />2.-Propiedad distributiva: 5+3=5*4+3*4, se obtiene igual resultado si sumamos 5 mas 3 y luego multiplicamos por 4 o multiplicamos 5 por 4 y le sumamos 3 por 4<br />3.-Ley de los exponentes (multiplicación, división, radical y potencia): <br />Multiplicación: los exponentes de las mismas literales se suman<br />División: los exponentes se restan indicando el residuo donde estaba el mayor<br />Radical: se dividen el exponente de adentro por el de afuera<br />Potencia: se multiplica el exponente de la literal por el de la potencia.<br />4.- resuelve:<br />2x2-x-32x2-5x-2=4x4-12x3-x2+17x 6<br />3x-14x2-2x-1=12x3-2x2+2x-1<br />43a2-54a-1225a+32=815a3+18020a2+13480a-34<br />9xy-4x2y2xy2+6x2y2= 45x4y4-24x4y3-8x3y3+18x2y3<br />5m12-3m234m-34-2m5=20m-¡/4-10m11/2-12m-1/12+6m12/3<br />25z2-12z+4937z2-72z-3=135z3-370z2-474270z-129<br />3y-52y+4=6y2+2y-20<br />3x2-x+75x+2=15x3-x2-33x+14<br />3ab+36a2b-2ab2=24a3b2-8a2b3+18a2b2-6ab3<br />Definición División Algebraica:<br />La división algebraica se puede definir como la operación que tiene por objeto, repartir un número en tantas partes iguales, como unidades que tiene el otro o básicamente hallas las veces que un número contiene a otro.<br />Propiedades de la división Algebraica:<br />Se aplica ley de signos<br />Se multiplica el dividendo del primer término por el divisor del segundo para crear el dividendo de la división, y el divisor del primero por el dividendo del segundo para crear el divisor de la división.<br />Se divide el coeficiente del dividendo entre el coeficiente del divisor<br />Se aplica ley de los exponentes tomando las letras que no se encuentren como elevadas a cero (nº = 1), y se escriben en orden alfabético.<br />Partes de la División Algebraica:<br />El producto dado recibe el nombre de dividendo por lo tanto el factor conocido se llama divisor y por último el termino o resultado que se busca recibe el nombre de Cociente.<br />8m9n2-10m7n4-20m5n6+12m3n82m3n3=4m7n-5m5n-10m3n3+6mn5<br />20x4-5x3-10x2+15x-5x=-4x4-x3+2x2+3x<br />4a8-10a6-5a42a3=2a5-5a3-2a<br />2x2y+6xy2-8xy+10x2y22xy=x+3y-4+5xy=5xy+3x+y-4<br />3x2+2x-8x+2=x+23x2+2x-8 -3x2+6x8x-8-8x-16-8=3x+8<br />2x3-4x-22x+2=2x+22x3-4x-2-2x3+2x22x2-4x-2-2x2-2x-6x-26x+64=x2+x-3<br />2a4-a3+7a-32a+3=2a+32a4-a3+7a-3-2a4+3a33a3+7a-3=a3<br />14y2-71y-337y+3=7y+314y2-71y-31-14y2+6y-63y-3363y-27-6=2y+9<br />Productos Notables<br />Se refiere al producto o los productos en cuyo desarrollo o proceso para resolver se, por lo tantos se conoce fácilmente por simple observación.<br />Reglas para su resolución:<br />1) Monomio por monomio <br />A·b = a·b <br />Ejemplo:<br />a) (–4x3y) ( –2xy2) = (–4)( –2)( x3x )( yy2 ) = 8x4y3  <br />b) (ab) (4a2b2)( –5a3b4) = 4(–5)( aa2a3 )( bb2b4 ) = –20a6b7<br />2) Monomio por polinomio <br />a(c + d) = ac + ad <br />Ejemplo:<br />a) 3x(5 – x) = 3x(5) – 3x(x) = 15x – 3x2  <br />b) –2(a – b) = –2a + (–2)( –b) = –2a + 2b<br />3) Polinomio por polinomio <br />(a + b)(c + d) = ac + bc + ad + bd <br />Ejemplo:<br />4) Binomio cuadrado <br />(a + b)2 = a2 + 2ab + b2 (a – b)2 = a2 – 2ab + b2<br />Ejemplo:<br /> 5) Suma por diferencia <br />(a + b)(a – b) = a2 – b2<br />Ejemplo:<br />3a+42=9a2+24a+16<br />(2x2-5)2=4x4-20x2-25<br />(7m+8n)2=49m2+112m-64n2<br />4a+53=64a3+240a2+300a+125<br />(2a3-7)3=8a9-84a6+1372a3-343<br />5m+43=125m3+300m2+240m+64<br />3x+24=162x4+216x3+216x2+96x+48<br />(2x2-4)5=128x10-320x8+1280x6-3840x4+2560x2-2048<br />(4y3+3)6=24576y18+36864y15+138240y12+276480y9+311040y6+186624y3+186624<br />2x-32x+5=4x2+10x-6x+15=4x2+4x+15<br />(x2-1)x2+1=x4-x2+x2-1=x4-1<br />m+4m-2=m2-2m+4m-6=m2+2m-6<br />3a+73a-7=9a2-21a+21a-49=9a2-49<br />5a+3b5a-2b=25a2-10ab+15ab-6b2=25a2+5ab-6b2<br />(4a3-3)4a3+3=16a9+12a3+12a3-9=16a9-9<br />(a2-1)a2-4=a4-4a2-a2-4=a4-5a2-4<br />FACTORIZACIÓN<br />1. Define qué es factorización.- es cambiar una expresión algebraica por el producto de 2 o más factores<br />2. Ilustra en un mapa conceptual los diversos métodos de factorización.-<br />3. Factoriza las siguientes expresiones:<br />25a2-64b2=5a-8b(5a+8b)<br />8m2-14m-15=2m-5(4m+3)<br />x2-15x+54=x+6(x+9)<br />5x2-13x+6=5x-2(x-3)<br />27a9-b3=3a-b(9a2+3ab+b2)<br />5a2+10a=5a(a+2)<br />n2-14n+49=(n-7)2<br />x2-20x-300=x+10x-30<br />9x6-1=3x3-1(3x3+1)<br />64x3+125=4x+5(16x2-20x+25)<br />x2-144=x-12(x-12)<br />2x2+11x+12=2x+3(x+4)<br />4x2y-12xy2=4xy(x-2y)<br />xw-yw+xz-yz=w+z(x-y)<br />x2+14x+45=x+9(x+5)<br />6y2-y-2=2y+1(3y-2)<br />4m2-49=2m+70(2m-7)<br />x2-x-42=x-7(x+6)<br />2m2+3m-35=m-5(2m+7)<br />a2-24a+119=a-17(a-7)<br />4. Investiga la aplicación de la factorización en la solución de ecuaciones cuadráticas.<br />5. Conclusiones personales sobre la unidad de factorización.<br />FRACCIONES ALGEBRAICAS<br />1. Realiza las operaciones con fracciones algebraicas:<br />x2-16x2+8x+16=x+8(x-29x+4(x+4)<br />4x2-20xx2-4x-5=4x(x-5)x+5(x-1)<br />3a-9b6a-18b= 3(a-3b)6(a-3b)=36<br />x2-6x+9x2-7x+12*x2+6x+53x2+2x-1=x-3(x+5)x-43(x-2)<br />7x+21x2-16y2*x2-5xy+4y24x2+11x-3=7(x-3y)4x-1(x+4y)<br />x2-3x-10x2-25*2x+106x+12=x+5x-26x+2x+5x-52x+5=x-26x+2x-5(x+5)<br />x-42x+8*4x+8x2-16=x-4x+4(x-4)2x+44(x+2)=(x-4)28(x+2)<br />3x-15x+3÷12x+184x+12=12(x-5)2(6x+9)<br />4x2-9x+3y÷2x-32x+6y=2 (2x+3)<br />x2-14x-15x2-4x-45÷x2-12x-45x2-6x-27=x+3(x-3)x-9(x+5)<br />a-3a2-3a+2-aa2-4a+3=a+3(a-3)a-2(a)<br />mm2-1+3mm+1=4m2-4mm-1(m+1)<br />2aa2-a-6-4a2-7a+12=2a2+12a+8a+2a-3(a+4)<br />2m2-11m+30-1m2-36+1m2-25=4m-21m+6m+5(m-5)<br />xx2-5x-14+2x-7=x2(x+2)<br />2. Define qué es una fracción compleja y da un ejemplo.<br />3. Conclusiones personales sobre la unidad de fracciones algebraicas.<br />ECUACIONES LINEALES<br />Definir qué es una ecuación lineal, los tipos que existen y cuáles son los principales métodos de resolución.<br />Una ecuación lineal representa una línea recta de un modelo: y=a+bx.<br />Existen varios tipos como: ecuación con una incógnita<br />Resolver la siguientes ecuaciones:<br />42x-3-5x-2=7x+2-3x+4, x=279=3<br />5x-34+2x3=x+12, x=3034=1517<br />34x+3+2x-32-x=2+3x-4+5x-2, x=-159=-53<br />2x+57-3x5=x+22+3x, x=-2060=-13<br />52x-3+4x+1-5=2x-32+x3, x=2932<br />Graficar:<br />y = 5x -1<br />XY-4-21-3-16-2-11-1-6011429314<br />y = 2x+3<br />XY-4-5-3-3-2-1-1103152739<br />y = -1/2 x + 2<br />Xy-44-33 ½-23-12 ½0211 ½21<br />Dos automóviles viajan por la misma carretera, uno se encuentra delante del otro. El que va adelante viaja a 60km/h, mientras que el otro lo hace a 70 km/h. ¿Cuánto tiempo tardará el segundo automóvil en rebasar al primero? <br />2.3 minutos<br />Una joyería vende su mercancía 50% más cara que su costo. Si vende un anillo de diamantes en $1500, ¿qué precio pagó al proveedor?<br />Resolver los sistemas de ecuaciones:<br />1-<br />2x-3y=4x-4y=7<br />2-31-4=47<br />∆=-8+3=-5<br />x=4-37-4=-16+21=5-5<br />y=2417=14-4=10-5<br />2-<br />4a+b=63a+5b=10<br />4135=610<br />∆=20-3=17<br />a=61105=30-10=2017<br />b=46310=40-18=2217<br />3-<br />m-n=33m+4n=9<br />1-134=39<br />∆=4+3=7<br />m=3-194=12+9=217<br />n=1339=9-9=17<br />4-<br />5p+2q=-32p-q=3<br />522-1=-33<br />∆=-5-4=-9<br />p=-323-1=3-6=-39<br />q=5-323=15+6=219<br />5-<br />x+2y=83x-5y=12<br />123-5=812<br />∆=-5-6=-11<br />x=8212-5=-40-24=-6411<br />y=18312=12-24=-1211<br />6-<br />3m+2n=7m-5n=-2<br />321-5=7-2<br />∆=-15-2=-17<br />m=72-2-5=-35+4=-3117<br />n=371-2=-6-7=-1317<br />7-<br />2h-i=-53h-4i=-2<br />2-13-4=-5-2<br />∆=-8+3=-5<br />h=-5-1-2-4=20-2=18-5<br />i=2-53-2=-4+15=11-5<br />Graficar los incisos 1, 3, 5 y 7 de los sistemas anteriores.<br />1.-<br />2x-3y=4x-4=73x=-4+2yy=2x-43<br />4y=-7+xy=x-74<br />Y=2x-43Y=x-74xyxy-4-4-5-3-1-2-1-2523-170<br />3- x=3, y=0<br />n=m-3n=(9-3m)÷4mn-45.25-3-630-1-45-1.50-37-31-230<br />5.- X=6, y=1<br />Y=(8-x)÷2y=(3x-12)÷5xYxy-46-5-5.4-25-1-3043-0.62371.8426180<br />7.-<br />i=(3h+2)/4hi6522-2-1-6-4i=2h+5hi4132905-21-4-3<br />Se vendieron boletos para una obra de teatro escolar a $4 para adultos y $1.50 niños. Si se vendieron 1,000 boletos recaudando $3,500. ¿Cuántos boletos de cada tipo se vendieron?<br />Si se mezcla una aleación que tiene 30% de Ag con otra que contiene 55% del mismo metal para obtener 800 kg de aleación al 40% ¿qué cantidad de cada una debe emplearse?<br />ECUACIONES DE 2° GRADO<br />Definir qué es una ecuación cuadrática.<br />Es una ecuación cuyo exponente mayor de uno de sus términos es el numero 2<br />Definir qué es un número real y qué es un número imaginario<br />Los números reales tiene una parte decimal y son tanto los números racionales como los irracionales, y los números imaginarios son cuyos cuadrados son negativos (-4=2i)<br />Resolver las siguientes ecuaciones cuadráticas:<br />7x2+21x=0<br />x1=0, x2=-3<br />4x2-16=0<br />x1=2, x2=-2<br />a2-3a+2=0<br />a1=2, a2=1<br />9m2+12m-5=0<br />m1=13, m2=53<br />x2-3x=0<br />x1=0, x2=3<br />5x2+10=0<br />x1=0, x2=-2<br />7y2-3y+10=0<br />y1=3+16.46i14, y2=3-16.46i14<br />2t2-t+1=0 <br />t1=1+2.644, t2=1-2.644<br />8x2-7x=0<br />x1=0, x2=78<br />a2-25=0<br />a1=5, a2=-5<br />Graficar las siguientes funciones cuadráticas:<br />y=x2-1<br />〖y=x〗^2-1 xy-38-23-100-1102338<br />X=-1<br />y=x2+5x+6<br />〖y=-x〗^2+5x+6 xy-42-30-20-1206<br />X1=-3<br />X2=-2<br />y=-x2-4<br />〖y=-x〗^2-4 xy-3-13-2-8-1-50-41-52-83-13<br />