Ecogeographical approaches to characterize CWR adaptive traits useful for crop adaptation

407 views

Published on

Published in: Education, Technology
0 Comments
3 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
407
On SlideShare
0
From Embeds
0
Number of Embeds
5
Actions
Shares
0
Downloads
0
Comments
0
Likes
3
Embeds 0
No embeds

No notes for slide

Ecogeographical approaches to characterize CWR adaptive traits useful for crop adaptation

  1. 1. Ecogeographical approaches tocharacterize CWR adaptive traits usefulfor crop adaptationJosé M. Iriondo1, Mauricio Parra2, M. Luisa Rubio1, Elena Torres3, Rosa García41 Depto. Biología y Geología, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain,2 FAO. Division on the Intern. Treaty on Plant Genetic Resources for Food and Agriculture. Rome, Italy3 Depto. Biología Vegetal, Universidad Politécnica, Madrid, Spain4 Centro de Recursos Fitogeneticos (CRF), INIA, Alcalá de Henares, Madrid, Spain.Pre-breeding – fishing in the gene pool, EUCARPIA Genetic Resources section meeting. June 10-13 2013, Alnarp, Sweden
  2. 2. European Commission, 2007, ECCPCrop adaptation and climate change
  3. 3. EnvironmentalchangeAdditivegeneticvariationAdaptiveevolution• Wild plants:– Migration– Adaptive evolutionMoving phenotypic optima andadaptive evolution
  4. 4. Moving phenotypic optima andadaptive evolutionGomulkiewicz & Holt (1995)• Wild plants:– Adaptive evolution
  5. 5. Moving phenotypic optima andadaptive evolutionGomulkiewicz & Holt (1995)• Crops:– Artificial selection– Additive genetic variation: (CWR)
  6. 6. Need to optimize search for CWRgermplasm accessions andpopulations• The most representative collection with the least accessions• Population/accessions most likely to have the genetic additive variancefor the desired traits
  7. 7. Ecogeographical approachG E GxE TraitParra-Quijano, M., Iriondo, J.M. y Torres, M.E. A review of applications of ecogeography and geographicinformation systems in plant genetic resources. Spanish Journal of Agricultural Research (2012) 10:419-429.
  8. 8. Ecogeographical approach• Adaptive genetic diversity ismodulated by natural selection• Limiting environmental conditionsshape adaptive traits• Genetic flux• Mutation• Drift• Epistasis• DominanceGenotype xEnvironmentEnvironmentNaturalSelectionAdditivegeneticvarianceGenotypeTrait
  9. 9. Ecogeographical approach• Genetic flux• Mutation• Drift• Epistasis• DominanceGenotype xEnvironmentEnvironmentNaturalSelectionAdditivegeneticvarianceGenotypeTrait • Adaptive genetic diversity ismodulated by natural selection• Limiting environmental conditionsshape adaptive traits
  10. 10. Temperature, rainfall, bioclimatic indices, etc.Slope, orientation, elevation, latitude/longitude, etc.Soil type, pH, salinity, organic C, soil texture etc.Environmental factors that characterizethe adaptive landscape… over 100 variables available from different sources (WorldClim, FAO, NOAA, etc.)Ecogeographical approach
  11. 11. Ecogeographical LandCharacterization MapsGeneration ofecogeographicalcategories in a territory
  12. 12. Ecogeographical LandCharacterization Maps• To combine climatic, edaphic and geographicdata to enable the prediction of patterns ofadaptive genetic variation according togeographic origin (Peeters et al., 1990)Parra-Quijano, M., Iriondo, J.M., Torres, E. Ecogeographical land characterization maps as a tool for assessingplant adaptation and their implications in agrobiodiversity studies. Genetic Resources and Crop Evolution (2012)59: 205-217
  13. 13. • To obtain a complete ecogeographicalcharacterization of each germplasmaccession• Over 100 ecogeographical variablesassociated to each accession with qualitygeoreferencing data.Ecogeographical Characterizationof Germplasm Collections
  14. 14. Ecogeographical Core Collections• Ecogeographic core collections provide goodrepresentation of the genetic diversity of theoriginal collection.• Validation of ecogeographic core collectionsusing phenotypic dataEcogeographical Core CollectionPEPhenotypic Core CollectionREPRESENTATIVENESS
  15. 15. Phaseolus vulgaris seed collection15 morphological variablesEcogeographical Core Colectionscompared to Phenotypic CoreCollections and phenotypicallyassessedEcogeographical Core Collections
  16. 16. Phaseolus vulgaris Core CollectionsEcogeographical Core Collections
  17. 17. Identification of geographic gapsOptimized collection of CWRgermplasm• No characterization of CWR genetic diversity.• Efficient representation of adaptive genetic diversity in CWRs• Most representative collection with the fewest accessions• Ecogeographical representativity to adequately represent genetic diversity useful to breeders
  18. 18. Identification of ecogeographic gapsLow – null representationOptimized collection of CWRgermplasm
  19. 19. Predictive distribution map for Lupinus speciesEcogeographic gaps in high species richness areasOptimized collection of CWRgermplasmParra-Quijano, M., Iriondo, J.M., Torres, E. Improving representativeness of genebank collections through speciesdistribution models, gap analysis and ecogeographical maps. Biodiversity and Conservation (2012) 21:79–96.
  20. 20. Prioritized locations for collecting Lupinus species in SpainOptimized collection of CWRgermplasmCRFCollections
  21. 21. Focused IdentificationGermplasm Strategies• Mackay (1986, 1990, 1995)• Select accessions/populations most likely to have desired genetic variation for a target trait• Applied to traditional varieties. Even more appropriate for CWR.• Using ecogeographical data for prediction of phenotypic traits before evaluation trials.• FIGS subsets ≠ core collectionsTemperatureSalinity scoreElevationRainfallAgro-climatic zoneDisease distributionF I G SOCUSED DENTIFICATION OF ERMPLASM TRATEGYDatalayerssieveaccessionsbasedonlatitude&longitudeIllustration byMackay (1995)GISlayers/EcogeographicalvariablesGermplasmFiltering
  22. 22. Selected Brassica CWR populationswith De Martonne aridity index values< 10ELC map for Brassica L. Annual Precipitation map (Bioclim12)Brassica CWR populationsBeta L., Brassica L. and Lupinus L.Traits: Tolerance to drought and salinityFocused IdentificationGermplasm StrategiesSubset of first 100 Brassica CWRpopulations with the lowest DeMartonne aridity index values
  23. 23. • Wild populations of L. angustifolius L. from the Iberian Peninsula:• Semiarid• Subhumid• HumidCommon gardenReciprocal sowing in native localitiesDeMaertonneariditycategoriesYear 2013Year 2014Culture cycle for:Evaluation under different water availability conditionsSeed productionReducing maternal effectsFocused IdentificationGermplasm Strategies
  24. 24. If we are able to map the different adaptive scenarios for the target species, we can: Carry out efficient germplasm collections Create ecogeographicalcore collections (ex situ or in situ) Complement genotypic/phenotypiccharacterization Determine optimal places tomultiply/regenerate germplasmConclusion Identify populations/accessions most likely tohave the desired traits
  25. 25. • CAPFITOGEN: Workshops for strengthening the capacitation of national programsof plant genetic resources in Latin America – International Treaty PGRFA(http://www.planttreaty.org/es/capfitogen)– ELC Mapas: Ecogeographical Land Characterization Maps– GEOQUAL: Assessment of quality of georreferencing information– Representa: Analysis of ecogeographical representativeness– ECOGEO: Ecogeographic characterization of germplasm– ColNucleo: Generation of Ecogeographic Core Collections– DIVmapas : Maps of high ecogeographical, phenotypic, genetic diversity areas– FIGS_R: Selection of germplasm through the application of abiotic filters• Available for analysis of whole European territory and 34 European countries– On demand: mauricio.parra@fao.org, capfitogen@fao.org– Shortly as tools in the “cloud” available through internetOn-coming ecogeographic tools
  26. 26. Thank you!

×