SlideShare a Scribd company logo
1 of 25
Download to read offline
DeepLearning勉強会
Chapter	
  10	
  Sequence	
  Modeling:	
  
Recurrent	
  and	
  Recursive	
  Nets
10.1-­‐10.6
2016/2/20
リクルートテクノロジーズ
坪坂正志
今日話す内容
• 系列データに対するNeural	
  networkモデルについて
• 教科書の10.1-­‐10.6まで
• 10.1	
  Unfolding	
  Computational	
  Graphs
• 10.2	
  Recurrent	
  Neural	
  Networks
• 10.3	
  Bidirectional	
  RNNs
• 10.4	
  Encoder-­‐Decoder	
  Sequence-­‐to-­‐Sequence	
  Architectures
• 10.5	
  Deep	
  Recurrent	
  Networks
• 10.6	
  Recursive	
  Neural	
  Networks
• 10.1,10.2はRNNの基礎,	
  10.3-­‐10.6がRNNの構造を変えたバージョンにつ
いての話
• 10.7以降は次回発表します (内容としてはLSTMなどの単純なRNNでは扱
うことができない長期依存の情報の保存について)
系列データについて
• 前章までのデータと違い、入力を固定長ではなく文字列や音素列の
ような可変長のデータを扱う
• また以降では一つの入力ベクトルの系列𝒙(#)
	
  ( 𝑡 = 1, …, 𝜏)に対する
操作のみ考える
• 実際はmini-­‐batchなどを用いる場合は長さが違うベクトル系列のデータを扱
うがその部分のインデックスについては割愛
固定長によるアプローチ
• 入力データを適当なwindowサイズで区切ってつなげたデータを入力
とするneural	
  networkを考える
Bengio+,	
  A	
  neural	
  probabilistic	
  language	
  model	
  ,	
  
JMLR	
  2003より
固定長によるモデルの限界
• データの入れ替えに弱い
• “I	
  went	
  to	
  Nepal	
  in	
  2009”と”In	
  2009,	
  I	
  went	
  to	
  Nepal”は文の意味は同じなの
に固定長モデルでは全く別の入力となる
• windowサイズを短くすれば対応できるがその場合非常に短距離の文脈し
かみないことになる
• 出力が1個などの場合には対応できない
• 例えば文全体の極性を判定したいなどの場合は出力は系列の最後に一つ
のみとなるが、この場合固定長モデルでは対応できない
再帰的な表現
• 現在のシステムの状態を一個前のシステムの状態として書き現わす
• 𝑠(#)
= 𝑓(𝑠 #./
; 𝜃)
• 3番目の状態の式は
• 𝑠(2)
= 𝑓 𝑠 3
; 𝜃 = 𝑓(𝑓(𝑠 /
; 𝜃); 𝜃)
• と表される
入力・隠れ層の導入
• 前ページの再帰的な式に入力および隠れ層を導入すると
• ℎ(#)
= 𝑓(ℎ #./
, 𝑥 #
; 𝜃)
• と書ける
• ここでℎ(#)
の意味は時刻tまでの系列についての情報を保存する役割を担ってい
る
• また下の右図は再帰を展開して一つのネットワークとしてみたものになっている
• ネットワークサイズは入力長に対して変化する
再帰的な表現のメリット
• 任意の系列長のデータについて適用できる
• パラメータ数の削減
• どの時刻においても同一の関数fと同一のパラメータθを使うので保存しなけ
ればならないパラメータの数が系列長に依存しない
10.2	
  Recurrenct Neural	
  networks
• 本章では主に右図のような入力と一
個前の隠れ層から現在の隠れ層の
値が決まり、隠れ層の値から出力が
決まるようなRNNの形状を主に扱う
• 他の形式としては出力部分がなく、最
後に一つだけあるようなものも考えら
れる
• 例えば文章のポジティブ判定など
RNNの式
• RNNの式は上のように表される
• W,U,Vなどのパラメータは時刻に依存しない
• また損失関数は各時刻での損失の和の形で書く
並列性について
• 勾配の計算は出力の値が前のグラフの
値に依存するのでback	
  propagationには
O(τ)かかる
• これについては依存関係があるので並
列化することは難しい
• 一つの解決策としては右の図のような隠
れ層間の依存を排除し、出力層のみに
依存するモデルを考えることである
• これによって一般性は失われるが、訓練
時には各ステップごとに独立に計算する
ことが可能
• 訓練時には出力の部分の正解は与えられて
いるため
出力が次の入力になる場合
• いままでの単語から次の単語を予測するような問
題においては時刻tの出力が時刻t+1の入力となる
• この場合訓練時には正解ラベルをそのまま使い、
テスト時には出力層の値を使うというteacher	
  
forcingという方法がとられる
• 訓練時には出力層を無視して、正解ラベルをつかって
いるため
• 図では隠れ層間の連結が書いてないが別にあっても問
題ない
• この場合問題としてはテスト時は自動生成された
入力となるため、訓練データの分布と大きく異なる
可能性があることである
Scheduled	
  sampling
• teacher	
  forcingの欠点を補うために、次の入力に真のラベル値とモ
デルからサンプルされたデータをまぜるScheduled	
  samplingという方
法が提案されている (Bengio+2015)
• http://arxiv.org/abs/1506.03099
勾配の計算について
• 展開したネットワークは通常のNeural	
  netなのでBack-­‐propagationし
てやることによってパラメータの勾配が計算できる
• 展開したネットワークに対するBPをBPTT	
  (Back-­‐propagation	
  through	
  
time)と呼ぶ
具体的な式について
• 各パラメータについての勾配は以下の式のようになる
• (10.10)より時刻tの隠れ層についての勾配は時刻t+1の値に依存すること
がわかる
• またパラメータの勾配は全時刻についての総和となっている
生成モデルとしてみた場合
• 目的関数のところを対数尤度とした場合
• log 𝑝(𝑦(#)
| 𝑥(/)
,… , 𝑥 #
)を最大化することに相当する
• また出力層が次の時刻にコネクションがある場合
• log 𝑝(𝑦(#)
| 𝑥(/)
,… , 𝑥 #
, 𝑦 /
, … , 𝑦(#./)
)を最大化してることになる
• ナイーブにモデル化すると𝑂(𝑘>
)のパラメータが必要となるが、RNN
では系列長に依存しないパラメータでモデルが表現できる
RNNのグラフィカルモデル
• 左の図はRNNの隠れ層込みでのグラフィカルモデルを表している
• 右の図はRNNの条件付き独立性をyについてのみ見たときの図で、
過去の履歴が全て現在の出力に影響していることがわかる
モデルからのサンプリング
• モデルから系列をサンプリングするためには出力する系列をどこで
停止させるかというのを決める必要がある
• これについては主に3つの方法がある
1. 出力が離散の場合EOFのような終端を表すシンボルが出力されたら終了と
する
2. 余分なベルヌーイ分布に従う出力層を用意しておき、その出力に応じて終
了するかどうかを決定する
3. 系列長の長さ𝜏もモデルに追加して系列長の長さを先にサンプリングして
からサンプリングされた長さ分だけ出力を行う
系列以外の入力
• 入力は系列ではないが出力は系列とい
う場合がある
• 例えば画像に対するキャプション生成など
がある
• その場合は入力は固定長のベクトルでど
の隠れ層に対しても共通の入力となる
出力に対する依存モデル
• いままでは入力で条件付けた時、出力の条件付き独立性を仮定し
ていたが、一個前の出力を現在の隠れ層への入力に加えることによ
り任意の𝑃(𝑦|𝑥)を表現できる
10.3	
  Bidirectional	
  RNNs
• 今までのRNNは過去と現在の入力𝑥(/)
, … , 𝑥(#)
を使って
𝑦(#)
を推定していた
• しかし音声入力や自然言語処理などのアプリケーション
では後の入力も現在の出力を推定するのに利用できる
• このため,	
  RNNに𝑔(#)
という過去に向うRNNを追加した
Bidirectional	
  RNNモデルが存在する
• モデル自体は1997年に提案され(Schuster	
  and	
  Paliwal
1997)、文字認識や音声認識などの分野で成功している
ReNet
• 2015年にBidirectional	
  RNNを拡張して4方向を
考え、CNNのconvolution+poolingの代わりに縦
と横方向のRNNを使うモデルが提案されている
• http://arxiv.org/abs/1505.00393
10.4	
  Encoder-­‐Decoder	
  Sequence-­‐to-­‐
Sequence	
  Architectures
• 機械翻訳などの応用においては入力と
出力の長さが同じとは限らない
• 例えば入力が日本語で出力が英語など
• Encoder-­‐Decoderと呼ばれるアーキテク
チャーでは入力をEncoder部分で読み
Context	
  Cを出力する
• DecoderをCに条件づけられたもとで出力
を行う
• Cは固定長のベクトルが用いられるが、こ
こにも可変長の系列を用いることが可能
• http://arxiv.org/abs/1409.0473
10.5	
  Deep	
  recurrent	
  networks
• これまでのRNNは
• 時刻tの入力=>時刻tの隠れ層
• 時刻tの隠れ層=>時刻t+1の隠れ層
• 時刻tの隠れ層=>時刻tの出力
• と入力=>出力の部分だけをみると1層のニューラルネットワークになっている
• 下の図のように単純なRNN以外に層を追加したネットワークを考えることができ
る
• http://arxiv.org/abs/1312.6026
10.6	
  Recurrsive neural	
  networks
• RNNのような鎖構造を考えるのではなく、入
力の上に木構造を考え、同一パラメータによ
る変換処理をかけて、一番上で固定長の出
力を得るようなRecurrsive neural	
  networksと
いう構造もある
• Recurrent	
  networksに対する利点として系列
長が大きい入力に対しても木の深さは対数
オーダーのため長距離の依存関係をとらえ
ることができる
• また木の構造については単純に完全二分木
を使うほかに係り受け解析器によって得られ
た係り受け構造を使うなどがある

More Related Content

What's hot

[DL輪読会]AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning
[DL輪読会]AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning[DL輪読会]AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning
[DL輪読会]AdaShare: Learning What To Share For Efficient Deep Multi-Task LearningDeep Learning JP
 
04_深層学習(day3, day4)
04_深層学習(day3, day4)04_深層学習(day3, day4)
04_深層学習(day3, day4)CHIHIROGO
 
Linuxの基本コマンド
Linuxの基本コマンドLinuxの基本コマンド
Linuxの基本コマンド晋 小沼
 
Icml2019 kyoto ohno_ver20190805
Icml2019 kyoto ohno_ver20190805Icml2019 kyoto ohno_ver20190805
Icml2019 kyoto ohno_ver20190805Shuntaro Ohno
 
解説:歩くNPCたち
解説:歩くNPCたち解説:歩くNPCたち
解説:歩くNPCたち理玖 川崎
 
Bi-Directional Block Self-Attention for Fast and Memory-Efficient Sequence Mo...
Bi-Directional Block Self-Attention for Fast and Memory-Efficient Sequence Mo...Bi-Directional Block Self-Attention for Fast and Memory-Efficient Sequence Mo...
Bi-Directional Block Self-Attention for Fast and Memory-Efficient Sequence Mo...Satoru Katsumata
 
Embedding Watermarks into Deep Neural Networks
Embedding Watermarks into Deep Neural NetworksEmbedding Watermarks into Deep Neural Networks
Embedding Watermarks into Deep Neural NetworksYusuke Uchida
 
Disconnected Recurrent Neural Networks for Text Categorization
Disconnected Recurrent Neural Networks for Text CategorizationDisconnected Recurrent Neural Networks for Text Categorization
Disconnected Recurrent Neural Networks for Text Categorizationharmonylab
 
NIPS2019 Amazon「think globally, act locally : a deep neural network approach...
NIPS2019  Amazon「think globally, act locally : a deep neural network approach...NIPS2019  Amazon「think globally, act locally : a deep neural network approach...
NIPS2019 Amazon「think globally, act locally : a deep neural network approach...SaeruYamamuro
 
Mxnetによるデープラーニングでセミの抜け殻を識別する
Mxnetによるデープラーニングでセミの抜け殻を識別するMxnetによるデープラーニングでセミの抜け殻を識別する
Mxnetによるデープラーニングでセミの抜け殻を識別するdokechin
 
VLDB'10勉強会 -Session 2-
VLDB'10勉強会 -Session 2-VLDB'10勉強会 -Session 2-
VLDB'10勉強会 -Session 2-Takeshi Yamamuro
 

What's hot (16)

[DL輪読会]AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning
[DL輪読会]AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning[DL輪読会]AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning
[DL輪読会]AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning
 
04_深層学習(day3, day4)
04_深層学習(day3, day4)04_深層学習(day3, day4)
04_深層学習(day3, day4)
 
Paper: seq2seq 20190320
Paper: seq2seq 20190320Paper: seq2seq 20190320
Paper: seq2seq 20190320
 
Linuxの基本コマンド
Linuxの基本コマンドLinuxの基本コマンド
Linuxの基本コマンド
 
Icml2019 kyoto ohno_ver20190805
Icml2019 kyoto ohno_ver20190805Icml2019 kyoto ohno_ver20190805
Icml2019 kyoto ohno_ver20190805
 
解説:歩くNPCたち
解説:歩くNPCたち解説:歩くNPCたち
解説:歩くNPCたち
 
Bi-Directional Block Self-Attention for Fast and Memory-Efficient Sequence Mo...
Bi-Directional Block Self-Attention for Fast and Memory-Efficient Sequence Mo...Bi-Directional Block Self-Attention for Fast and Memory-Efficient Sequence Mo...
Bi-Directional Block Self-Attention for Fast and Memory-Efficient Sequence Mo...
 
Embedding Watermarks into Deep Neural Networks
Embedding Watermarks into Deep Neural NetworksEmbedding Watermarks into Deep Neural Networks
Embedding Watermarks into Deep Neural Networks
 
DRBDで始める災害対策(DR)
DRBDで始める災害対策(DR)DRBDで始める災害対策(DR)
DRBDで始める災害対策(DR)
 
ResNetの仕組み
ResNetの仕組みResNetの仕組み
ResNetの仕組み
 
Disconnected Recurrent Neural Networks for Text Categorization
Disconnected Recurrent Neural Networks for Text CategorizationDisconnected Recurrent Neural Networks for Text Categorization
Disconnected Recurrent Neural Networks for Text Categorization
 
NIPS2019 Amazon「think globally, act locally : a deep neural network approach...
NIPS2019  Amazon「think globally, act locally : a deep neural network approach...NIPS2019  Amazon「think globally, act locally : a deep neural network approach...
NIPS2019 Amazon「think globally, act locally : a deep neural network approach...
 
はじパタLT2
はじパタLT2はじパタLT2
はじパタLT2
 
Mxnetによるデープラーニングでセミの抜け殻を識別する
Mxnetによるデープラーニングでセミの抜け殻を識別するMxnetによるデープラーニングでセミの抜け殻を識別する
Mxnetによるデープラーニングでセミの抜け殻を識別する
 
VLDB'10勉強会 -Session 2-
VLDB'10勉強会 -Session 2-VLDB'10勉強会 -Session 2-
VLDB'10勉強会 -Session 2-
 
Res net
Res netRes net
Res net
 

Viewers also liked

WSDM 2016勉強会 Geographic Segmentation via latent factor model
WSDM 2016勉強会 Geographic Segmentation via latent factor modelWSDM 2016勉強会 Geographic Segmentation via latent factor model
WSDM 2016勉強会 Geographic Segmentation via latent factor model正志 坪坂
 
KDD 2016勉強会 Deep crossing
KDD 2016勉強会 Deep crossingKDD 2016勉強会 Deep crossing
KDD 2016勉強会 Deep crossing正志 坪坂
 
Tokyowebmining ctr-predict
Tokyowebmining ctr-predictTokyowebmining ctr-predict
Tokyowebmining ctr-predict正志 坪坂
 
Big Data Bootstrap (ICML読み会)
Big Data Bootstrap (ICML読み会)Big Data Bootstrap (ICML読み会)
Big Data Bootstrap (ICML読み会)正志 坪坂
 
Introduction to contexual bandit
Introduction to contexual banditIntroduction to contexual bandit
Introduction to contexual bandit正志 坪坂
 
Riak Search 2.0を使ったデータ集計
Riak Search 2.0を使ったデータ集計Riak Search 2.0を使ったデータ集計
Riak Search 2.0を使ったデータ集計正志 坪坂
 
Contexual bandit @TokyoWebMining
Contexual bandit @TokyoWebMiningContexual bandit @TokyoWebMining
Contexual bandit @TokyoWebMining正志 坪坂
 
確率モデルを使ったグラフクラスタリング
確率モデルを使ったグラフクラスタリング確率モデルを使ったグラフクラスタリング
確率モデルを使ったグラフクラスタリング正志 坪坂
 
OnlineMatching勉強会第一回
OnlineMatching勉強会第一回OnlineMatching勉強会第一回
OnlineMatching勉強会第一回正志 坪坂
 
A Unified Model for Word Sense Representation and Disambiguation
A Unified Model for Word Sense Representation and DisambiguationA Unified Model for Word Sense Representation and Disambiguation
A Unified Model for Word Sense Representation and Disambiguationsakaizawa
 
static index pruningについて
static index pruningについてstatic index pruningについて
static index pruningについて正志 坪坂
 
Exreme coffee brewing 2013 summer
Exreme coffee brewing 2013 summerExreme coffee brewing 2013 summer
Exreme coffee brewing 2013 summerHiroko Ohki Takagi
 

Viewers also liked (20)

WSDM 2016勉強会 Geographic Segmentation via latent factor model
WSDM 2016勉強会 Geographic Segmentation via latent factor modelWSDM 2016勉強会 Geographic Segmentation via latent factor model
WSDM 2016勉強会 Geographic Segmentation via latent factor model
 
Recsys2016勉強会
Recsys2016勉強会Recsys2016勉強会
Recsys2016勉強会
 
KDD 2016勉強会 Deep crossing
KDD 2016勉強会 Deep crossingKDD 2016勉強会 Deep crossing
KDD 2016勉強会 Deep crossing
 
Tokyowebmining ctr-predict
Tokyowebmining ctr-predictTokyowebmining ctr-predict
Tokyowebmining ctr-predict
 
Tokyowebmining2012
Tokyowebmining2012Tokyowebmining2012
Tokyowebmining2012
 
Recsys2014 recruit
Recsys2014 recruitRecsys2014 recruit
Recsys2014 recruit
 
Big Data Bootstrap (ICML読み会)
Big Data Bootstrap (ICML読み会)Big Data Bootstrap (ICML読み会)
Big Data Bootstrap (ICML読み会)
 
Recsys2015
Recsys2015Recsys2015
Recsys2015
 
Introduction to contexual bandit
Introduction to contexual banditIntroduction to contexual bandit
Introduction to contexual bandit
 
KDD 2015読み会
KDD 2015読み会KDD 2015読み会
KDD 2015読み会
 
Riak Search 2.0を使ったデータ集計
Riak Search 2.0を使ったデータ集計Riak Search 2.0を使ったデータ集計
Riak Search 2.0を使ったデータ集計
 
KDD2014_study
KDD2014_study KDD2014_study
KDD2014_study
 
EMNLP2014_reading
EMNLP2014_readingEMNLP2014_reading
EMNLP2014_reading
 
Contexual bandit @TokyoWebMining
Contexual bandit @TokyoWebMiningContexual bandit @TokyoWebMining
Contexual bandit @TokyoWebMining
 
NIPS 2012 読む会
NIPS 2012 読む会NIPS 2012 読む会
NIPS 2012 読む会
 
確率モデルを使ったグラフクラスタリング
確率モデルを使ったグラフクラスタリング確率モデルを使ったグラフクラスタリング
確率モデルを使ったグラフクラスタリング
 
OnlineMatching勉強会第一回
OnlineMatching勉強会第一回OnlineMatching勉強会第一回
OnlineMatching勉強会第一回
 
A Unified Model for Word Sense Representation and Disambiguation
A Unified Model for Word Sense Representation and DisambiguationA Unified Model for Word Sense Representation and Disambiguation
A Unified Model for Word Sense Representation and Disambiguation
 
static index pruningについて
static index pruningについてstatic index pruningについて
static index pruningについて
 
Exreme coffee brewing 2013 summer
Exreme coffee brewing 2013 summerExreme coffee brewing 2013 summer
Exreme coffee brewing 2013 summer
 

Similar to Deeplearning勉強会20160220

インテルが考える次世代ファブリック
インテルが考える次世代ファブリックインテルが考える次世代ファブリック
インテルが考える次世代ファブリックNaoto MATSUMOTO
 
Nested RNSを用いたディープニューラルネットワークのFPGA実装
Nested RNSを用いたディープニューラルネットワークのFPGA実装Nested RNSを用いたディープニューラルネットワークのFPGA実装
Nested RNSを用いたディープニューラルネットワークのFPGA実装Hiroki Nakahara
 
3GPP TR38.801-e00まとめ
3GPP TR38.801-e00まとめ3GPP TR38.801-e00まとめ
3GPP TR38.801-e00まとめTetsuya Hasegawa
 
データベース屋がHyperledger Fabricを検証してみた
データベース屋がHyperledger Fabricを検証してみたデータベース屋がHyperledger Fabricを検証してみた
データベース屋がHyperledger Fabricを検証してみたHyperleger Tokyo Meetup
 
D35 NonStop SQLはなぜグローバルに分散DBを構築できるのか、データの整合性を保てるのか、その深層に迫る byToshimitsu Hara
D35 NonStop SQLはなぜグローバルに分散DBを構築できるのか、データの整合性を保てるのか、その深層に迫る byToshimitsu HaraD35 NonStop SQLはなぜグローバルに分散DBを構築できるのか、データの整合性を保てるのか、その深層に迫る byToshimitsu Hara
D35 NonStop SQLはなぜグローバルに分散DBを構築できるのか、データの整合性を保てるのか、その深層に迫る byToshimitsu HaraInsight Technology, Inc.
 
Xhago3_network_no_immade
Xhago3_network_no_immadeXhago3_network_no_immade
Xhago3_network_no_immadeKazuki Murahama
 
いきなりAi tensor flow gpuによる画像分類と生成
いきなりAi tensor flow gpuによる画像分類と生成いきなりAi tensor flow gpuによる画像分類と生成
いきなりAi tensor flow gpuによる画像分類と生成Yoshi Sakai
 
インテルFPGAのDeep Learning Acceleration SuiteとマイクロソフトのBrainwaveをHW視点から比較してみる MS編
インテルFPGAのDeep Learning Acceleration SuiteとマイクロソフトのBrainwaveをHW視点から比較してみる MS編インテルFPGAのDeep Learning Acceleration SuiteとマイクロソフトのBrainwaveをHW視点から比較してみる MS編
インテルFPGAのDeep Learning Acceleration SuiteとマイクロソフトのBrainwaveをHW視点から比較してみる MS編Deep Learning Lab(ディープラーニング・ラボ)
 

Similar to Deeplearning勉強会20160220 (11)

インテルが考える次世代ファブリック
インテルが考える次世代ファブリックインテルが考える次世代ファブリック
インテルが考える次世代ファブリック
 
Deep Learning
Deep LearningDeep Learning
Deep Learning
 
Nested RNSを用いたディープニューラルネットワークのFPGA実装
Nested RNSを用いたディープニューラルネットワークのFPGA実装Nested RNSを用いたディープニューラルネットワークのFPGA実装
Nested RNSを用いたディープニューラルネットワークのFPGA実装
 
Virtual Chassis Fabric for Cloud Builder
Virtual Chassis Fabric for Cloud BuilderVirtual Chassis Fabric for Cloud Builder
Virtual Chassis Fabric for Cloud Builder
 
計算機理論入門08
計算機理論入門08計算機理論入門08
計算機理論入門08
 
3GPP TR38.801-e00まとめ
3GPP TR38.801-e00まとめ3GPP TR38.801-e00まとめ
3GPP TR38.801-e00まとめ
 
データベース屋がHyperledger Fabricを検証してみた
データベース屋がHyperledger Fabricを検証してみたデータベース屋がHyperledger Fabricを検証してみた
データベース屋がHyperledger Fabricを検証してみた
 
D35 NonStop SQLはなぜグローバルに分散DBを構築できるのか、データの整合性を保てるのか、その深層に迫る byToshimitsu Hara
D35 NonStop SQLはなぜグローバルに分散DBを構築できるのか、データの整合性を保てるのか、その深層に迫る byToshimitsu HaraD35 NonStop SQLはなぜグローバルに分散DBを構築できるのか、データの整合性を保てるのか、その深層に迫る byToshimitsu Hara
D35 NonStop SQLはなぜグローバルに分散DBを構築できるのか、データの整合性を保てるのか、その深層に迫る byToshimitsu Hara
 
Xhago3_network_no_immade
Xhago3_network_no_immadeXhago3_network_no_immade
Xhago3_network_no_immade
 
いきなりAi tensor flow gpuによる画像分類と生成
いきなりAi tensor flow gpuによる画像分類と生成いきなりAi tensor flow gpuによる画像分類と生成
いきなりAi tensor flow gpuによる画像分類と生成
 
インテルFPGAのDeep Learning Acceleration SuiteとマイクロソフトのBrainwaveをHW視点から比較してみる MS編
インテルFPGAのDeep Learning Acceleration SuiteとマイクロソフトのBrainwaveをHW視点から比較してみる MS編インテルFPGAのDeep Learning Acceleration SuiteとマイクロソフトのBrainwaveをHW視点から比較してみる MS編
インテルFPGAのDeep Learning Acceleration SuiteとマイクロソフトのBrainwaveをHW視点から比較してみる MS編
 

More from 正志 坪坂

WSDM 2012 勉強会資料
WSDM 2012 勉強会資料WSDM 2012 勉強会資料
WSDM 2012 勉強会資料正志 坪坂
 
Complex network-reading 7
Complex network-reading 7Complex network-reading 7
Complex network-reading 7正志 坪坂
 
転置インデックスとTop k-query
転置インデックスとTop k-query転置インデックスとTop k-query
転置インデックスとTop k-query正志 坪坂
 
A scalable probablistic classifier for language modeling: ACL 2011 読み会
A scalable probablistic classifier for language modeling: ACL 2011 読み会A scalable probablistic classifier for language modeling: ACL 2011 読み会
A scalable probablistic classifier for language modeling: ACL 2011 読み会正志 坪坂
 
Cvpr2011 reading-tsubosaka
Cvpr2011 reading-tsubosakaCvpr2011 reading-tsubosaka
Cvpr2011 reading-tsubosaka正志 坪坂
 
Icml2011 reading-sage
Icml2011 reading-sageIcml2011 reading-sage
Icml2011 reading-sage正志 坪坂
 
TokyowebminingInferNet
TokyowebminingInferNetTokyowebminingInferNet
TokyowebminingInferNet正志 坪坂
 
Infer.NETを使ってLDAを実装してみた
Infer.NETを使ってLDAを実装してみたInfer.NETを使ってLDAを実装してみた
Infer.NETを使ってLDAを実装してみた正志 坪坂
 

More from 正志 坪坂 (11)

Recsys2018 unbiased
Recsys2018 unbiasedRecsys2018 unbiased
Recsys2018 unbiased
 
WSDM2018Study
WSDM2018StudyWSDM2018Study
WSDM2018Study
 
WSDM 2012 勉強会資料
WSDM 2012 勉強会資料WSDM 2012 勉強会資料
WSDM 2012 勉強会資料
 
Complex network-reading 7
Complex network-reading 7Complex network-reading 7
Complex network-reading 7
 
転置インデックスとTop k-query
転置インデックスとTop k-query転置インデックスとTop k-query
転置インデックスとTop k-query
 
EMNLP 2011 reading
EMNLP 2011 readingEMNLP 2011 reading
EMNLP 2011 reading
 
A scalable probablistic classifier for language modeling: ACL 2011 読み会
A scalable probablistic classifier for language modeling: ACL 2011 読み会A scalable probablistic classifier for language modeling: ACL 2011 読み会
A scalable probablistic classifier for language modeling: ACL 2011 読み会
 
Cvpr2011 reading-tsubosaka
Cvpr2011 reading-tsubosakaCvpr2011 reading-tsubosaka
Cvpr2011 reading-tsubosaka
 
Icml2011 reading-sage
Icml2011 reading-sageIcml2011 reading-sage
Icml2011 reading-sage
 
TokyowebminingInferNet
TokyowebminingInferNetTokyowebminingInferNet
TokyowebminingInferNet
 
Infer.NETを使ってLDAを実装してみた
Infer.NETを使ってLDAを実装してみたInfer.NETを使ってLDAを実装してみた
Infer.NETを使ってLDAを実装してみた
 

Deeplearning勉強会20160220