Your SlideShare is downloading. ×

Acidobazické reakce

6,854

Published on

Published in: Education, Business, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
6,854
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
12
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Výuková prezentace chemie Acidobazické reakce (kyseliny a zásady)
  • 2. Acidobazické reakce  synonymum Protolytické reakce  Uskutečňují se mezi kyselinami a zásadami  Dochází ke štěpení na ionty (nabité částice)  Základem jsou teorie kyselin a zásad  Nejznámější reakcí je neutralizace
  • 3. Arrheniova teorie  Nejstarší teorií kyseliny vůbec  Kyselina je látka schopná odštěpit vodíkový kation H+  Zásada je látka schopná odštěpit hydroxidový anion OH-  Nebere v úvahu částice rozpouštědla!
  • 4. Ukázka štěpení HCl => H + Cl + - NaOH => Na + OH + -
  • 5. Brönsted-Lowryho teorie  Kyselina je schopná odštěpit proton  Zásada je schopná vázat proton  Konjugovaný pár = dvojice tvořená kyselinou v reaktantu a zásadou v produktu; zásadou v reaktantu a kyselinou v produktu  Bere v úvahu částice rozpouštědla
  • 6. Ukázka štěpení HCl + H2O => H3O+ + Cl- K1 Z1 K2 Z2 Konjugované páry
  • 7. Lewisova teorie  Kyselina je látka s volným valenčním orbitalem schopná přijmout el. pár  Zásada je látka s volnými el. páry pro zaplnění valenčních orbitalů  Nejobecnější teorie  Princip koordinačně-kovalentní vazby
  • 8. Ukázka štěpení AlCl3 + Cl2 => AlCl4 + Cl - + K1 Z1 Z2 K2 Konjugované páry
  • 9. Síly kyselin a zásad  Kyselina je tím silnější, čím snadněji odštěpí proton H+  Zásada je tím silnější, čím snadněji přijme proton H+  Existují případy, kdy se nějaká kyselina může chovat též jako zásada
  • 10. Síla kyslíkatých kyselin  Velmi slabé (HnXOn) – HBrO, HClO  Slabé (HnXOn+1) – H2SO3, H2CO3  Silné (HnXOn+2) – H2SO4, HNO3  Velmi silné (HnXOn+3) – HClO4, H2OsO5
  • 11. Síla bezkyslík. kyselin, hydroxidů  Síla bezkyslíkaté kyseliny roste společně se zvyšujícím se protonovém čísle (HF > HCl > HBr > HI)  Silné jsou hydroxidy s prvky I. a II.A skupiny periodické soustavy prvků
  • 12. Autoprotolýza vody  Samovolná reakce stejných molekul rozpouštědla H2O + H2O => H3O+ + OH- K1 Z1 K2 Z2 Konjugované páry
  • 13. Číselné stanovení síly kyselin a zásad  V 1x107 dm3 vody je 1 mol H+ a OH-  Používáme název iontový součin vody (Kv)  Kv =[H3O+]*[OH-] = [1×10-7] *[1×10-7] = = 1×10-14  [] – označení pro hodnotu koncentrace
  • 14. Příklad uvedení koncentrace  Je –li v roztoku HCl [H3O+] = 1×10-3  [H3O+] = 1×10-3 1×10-14  [OH-] = 1×10-11 Součin koncentrace H3O+ a OH- jevždy roven 1×10-14 !
  • 15. Závislost koncentrace na pH [H3O+] = [OH-] neutrální roztok [H3O+] > [OH-] kyselý roztok [H3O+] < [OH-] zásaditý roztok
  • 16. pH a pOH  pH je vyjádřeno jako kladný exponent koncentrace H3O+ v roztoku (Při [H3O+] = 1×10-3 se pH = 3)  pOH je vyjádřeno jako kladný exponent koncentrace OH- v roztoku (Při [OH-] = 1×10-3 se pOH = 3)  Hodnota pH a pOH je rozdíl mezi číslem 14 a hodnotou druhé veličiny
  • 17. Výpočet pH a pOH  Z udané koncentrace můžeme snadno hodnoty těchto veličin spočítat jako: pH = - log [H3O+] pOH = - log [OH-]
  • 18. Měření pH  Univerzální indikátorové papírky  Elektronický pH metr  Činidla pH (fenolftalein, lakmus aj.)
  • 19. ----KONEC-----

×