• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Mat logaritmos  005 exercicios
 

Mat logaritmos 005 exercicios

on

  • 1,533 views

 

Statistics

Views

Total Views
1,533
Views on SlideShare
1,533
Embed Views
0

Actions

Likes
0
Downloads
11
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Mat logaritmos  005 exercicios Mat logaritmos 005 exercicios Document Transcript

    • EXERCÍCIOS SOBRE EXPONENCIAL E LOGARITMO1) Esboce o gráfico das seguintes funções: a) f(x) = 2x x x 1  d) f(x) =   - 3 1  2 b) f(x) =   2 e) f(x) = 3.2x c) f(x) = 2x + 2 x f) f(x) = 22) Resolva as seguintes equações exponenciais: x d) (2x )x + 4 = 32 1 a)   = 125 e) 4x + 1 – 9.2x + 2 = 0 5 b) 125x = 0,04 2x + 3  1 c) 5 3x-1 =   25 3) Calcule o valor do logaritmo dado. 1 a) log 8 64 b) log 4 64 c) log 64 8 d) log 2 64 e) log 2 1 f) log 2 2 g) log 1 8 h) log 1 81 2 34) Determine o domínio e faça um esboço do gráfico da função dada. a) f (x ) = log 1 x b) f (x ) = log 2 x c) f (x ) = ln( x + 1) 4 d) f (x ) = ln( x − 2) e) f (x ) = log 1 (− x ) f) f (x ) = − log 1 x 2 35) Reduza a expressão dada em um único logaritmo. 1 2 a) 4 log x + log y b) 5 ln x + ln y − 3 log 6 1 2 3 c) 3 log b ( x ) + log b (2y ) − 1 d) log 9 x + log 3 6 − 3 log 9 z 36) Sendo ln a = 2, ln b = 5, ln = −0,51 , calcule. 5 3b 2 a) ln(ab ) b) ln ab c) ln(a 2 b3 ) d) ln( ) 3 5 a7) Resolva as seguintes equações: a) ln x + ln 3 = ln 9 c) ln x − ln( x − 1) = ln 2 + ln( 3 − x ) b) ln (x − 2x 2 ) + ln 4 = 0 d) ln x 2 − ln x − ln 4 = 0
    • RESPOSTAS DOS EXERCÍCIOS DO CÁLCULO ZEROEXPONENCIAL1a) 1b) 1c)1d) 1e) 1f)2a) V = {-3}  5 2e) V = {-2; 1} 2c) V = −   2  72b) V = −   3 2d) V = {-5; 1}LOGARTIMOS 13) a) 2; b) 3; c) ; d) –6; e) 0; f) 1; g) –3; h) –4. 24) a) D f = {x ∈ R / x > 0} b) D f = {x ∈ R / x > 0}
    • c) D f = {x ∈ R / x > −1} d) D f = {x ∈ R / x > 2} e) D f = {x ∈ R / x < 0} f) D f = {x ∈ R / x > 0}  x3 2y 5) a) log( x 4 y ) ; b) ln( x 5 3 y 2 ) ; c) log b   ; d) log  36 x  .  b  9 3       z  76) a) 7; b) ; c) 19; d) 6,49. 2 37) a) 3; b) não existe; c) 2 ou ; d) 4. 2