Scada slide

1,791 views

Published on

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,791
On SlideShare
0
From Embeds
0
Number of Embeds
7
Actions
Shares
0
Downloads
121
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Scada slide

  1. 1. INTERNATIONAL ISLAMIC UNIVERSITY CHITTAGONGDEPT. OF ELECTRICAL AND ELECTRONICS ENGINEERING Power System Operation and Contro EEE-4875 PRESENTATION ONSUPERVISORY CONTROL AND DATA ACQUISITION (SCADA) Presented by Towfiqur Rahman ET091010 8th Semester
  2. 2. OBJECTIVES:• To discuss the concept of SCADA and its branches• Protection for SCADA• Future of SCADA
  3. 3. INDEX TERMS:
  4. 4. WHAT IS SCADA?SCADA stands Supervisory Control and Data Acquisition. As the name indicates, it is not a full controlsystem, but rather focuses on the supervisory level. It is a computer system for gathering and analyzing realtime data.SCADA systems can be relatively simple, such as one that monitors environmental conditions of a smalloffice building, or incredibly complex, such as a system that monitors all the activity in a nuclear powerplant or the activity of a municipal water system. SCADA systems are used to monitor and control a plant or equipment in industries such astelecommunications, water and waste control, energy, oil and gas refining and transportation. A SCADAsystem gathers information, such as where a leak on a pipeline has occurred, transfers the information backto a central site, alerting the home station that the leak has occurred, carrying out necessary analysis andcontrol, such as determining if the leak is critical, and displaying the information in a logical and organizedfashion.
  5. 5. OVERVIEW OF SCADA SYSTEM:
  6. 6. MAIN FUNCTIONS OF SCADA: • Data acquisition, • Alarms and event monitoring, • Database and data logging, • Operator interface, • Non real time control, • Logging, • MMI (men- machine interface) use, • Automation, and • Report generation
  7. 7. CONTROLLING PROCESSES :• Industrial processes include those of manufacturing, production, power generation, fabrication, and refining, and may run in continuous, batch, repetitive, or discrete modes.• Infrastructure processes may be public or private, and include water treatment and distribution, wastewater collection and treatment, oil and gas pipelines, electrical power transmission and distribution, wind farms and large communication systems.• Facility processes occur both in public facilities and private ones, including buildings, airports, ships, and space stations. They monitor and control HVAC, access, and energy consumption
  8. 8. COMPONENTS OF SCADA o HMI (Human Machine Interface): It is an apparatus that is operated by human to monitor and control various processes. o PLC (Programmable Logic Controller): This controller is used because they are very flexible, and economical than Remote Terminal Units o Supervisory System: It collects process data and sends control commands to the process. o RTU (Remote Terminal Units): This process is connected with sensors to convert sensor signals into digital and sends digital data to Supervisory System o Communication Infrastructure: It is connecting Supervisory System to RLU’s.
  9. 9. SCADA systems have evolved in parallel with the growth and sophistication of modern computingtechnology. The following sections will provide a description of the following three generations ofSCADA systems:
  10. 10. First generation: Monolithic System; when SCADA systems were firstdeveloped, the concept of computing in general centered on “mainframe” systems.Networks were generally non-existent, and each centralized system stood alone. As aresult, SCADA systems were standalone systems with virtually no connectivity toother systems. Wide Area Networks were later designed by RTU vendors tocommunicate with the RTU. The communication protocols used were oftenproprietary at that time. The first-generation SCADA system was redundant since aback-up mainframe system was connected at the bus level and was used in the eventof failure of the primary mainframe.
  11. 11. Model of Monolithic System:
  12. 12. Second generation: Distributed; the next generation of SCADA systemstook advantage of developments and improvement in system miniaturization andLocal Area Networking (LAN) technology to distribute the processing acrossmultiple systems. Multiple stations, each with a specific function, wereconnected to a LAN and shared information with each other in real-time. Thesestations were typically of the mini-computer class, smaller and less expensivethan their first generation processors.
  13. 13. Model of Distributed System:
  14. 14. Third generation: Networked; The current generation of SCADA master stationarchitecture is closely related to that of the second generation, with the primarydifference being that of an open system architecture rather than a vendor controlled,proprietary environment. There are still multiple networked systems, sharing masterstation functions. There are still RTUs utilizing protocols that are vendor-proprietary. Themajor improvement in the third generation is that of opening the system architecture,utilizing open standards and protocols and making it possible to distribute SCADAfunctionality across a WAN and not just a LAN.
  15. 15. Model of Networked System:
  16. 16. SECURITY ISSUES:The following are TSI’s (The Security Institute, a United Kingdom based professional body for security professionals)recommendations to address some lingering security issues for SCADA:1. Security of network communications: Implementation of strong encryption over the SCADA network communications, to ensure that both monitored data and control commands are encrypted.2. Turning on security: Implementation of security features with devices on the network, especially authentication. Using secure protocols whenever possible.3. Knowing your SCADA network: Identifying all connections to external networks including wire-less networks, corporate LANs and WANs, and the Internet. Also, securing the network by eliminating all unnecessary connections to external networks.4. Hardening of the SCADA environment: Removing all unnecessary services from the hosts on the network. Also, just as in the corporate network environment, ensuring that all systems are patched and up to date.5. Conducting regular security audits: Ensuring that security practices and procedures, such as incident response, are defined and implemented. Penetration testing of the network environment should also be prudently conducted with inspection for potential back doors into the SCADA network.6. Implementing real-time threat protection: With the increasing number and complexity of attacks, its insufficient to simply patch the systems or maintain access/service control. One alternative is to implement real-time threat protection in the form of network intrusion-prevention systems. Unlike standard packet-filter firewalls, these systems perform application-layer inspection to identify attacks that are carried in the payload and block the offending traffic in real time.
  17. 17. THE FUTURE OF SCADA SYSTEM:The large territories and huge volumes of data SCADA can handle form a formidablecombination. Today’s SCADA systems can manage anything from a few thousands toone million of input/output channels.The technology is still evolving in terms of sophistication as well. SCADA systems asthey are now can perform a large variety of tasks and some systems have artificialintelligence built into them. They are also more network-enabled, thus paving the wayfor voice-data-control data convergence. With proper planning and a custom-madeinstallation, a SCADA system becomes a valuable asset.
  18. 18. THANK YOUALL

×